
Abstract. The ultraviolent irradiation resistance-associated
gene (UVRAG), a component of the Beclin 1/autophagy-
related 6 complex, regulates the autophagy initiation step
and functions in the DNA-damage response. UVRAG is
frequently mutated in various cancer types, and mutations of
UVRAG increase sensitivity to chemotherapy by impairing
DNA-damage repair. In this study, we addressed the
epigenetic regulation of UVRAG in colorectal cancer cells.
UVRAG expression was increased in cells treated with
histone deacetylase (HDAC) inhibitors, such as valproic acid
and suberoylanilide hydroxamic acid. Down-regulation of
HDAC1 enhanced UVRAG expression in colorectal cancer
cells. In addition, both chemical and genetic inhibition of
HDAC1 reduced the activation of caspase-3 and cytotoxicity
in 5-fluorouracil (5FU)-treated cancer cells. In contrast,
UVRAG overexpression inhibited caspase activation and cell
death in 5FU-treated cells. Taken together, our findings
suggest that up-regulation of UVRAG by HDAC1 inhibition
potentiates DNA-damage–mediated cell death in colorectal
cancer cells.

Autophagy has important roles in cellular homeostasis
through the degradation of useless or damaged proteins and
organelles via lysosomes (1, 2). The primordial function of
autophagy is a response to stress, such as starvation,
oxidative stress, and ion stress (1, 2). Given that multiple
signaling pathways are involved in the regulation of
autophagy progress, various autophagy-related (ATG)
proteins and other autophagy-regulatory proteins have been
identified (2). The early years of autophagy research focused
on the dynamic membrane rearrangements and post-
translational modifications of ATG proteins, whereas recent
progresses has elucidated its regulation by gene expression
(3-6). Several transcription factors, such as farnesoid X
receptor (FXR), cAMP response element-binding protein,
and transcription factor EB (TFEB) coordinately control
major autophagy regulators (3, 4). In addition, autophagy-
related and lysosomal genes are up-regulated through direct
binding of TFEB to co-activator-associated arginine
methyltransferase 1 (CARM1) under starvation conditions
(5). Recently our group also reported that methyltransferase
G9 inhibition leads to increased expression of autophagy-
related genes and directly regulates BECLIN 1
(BECN1)/ATG6 expression (6).

Among various autophagy regulatory proteins, the
ultraviolent irradiation resistance-associated gene (UVRAG) is
a putative mammalian ortholog of the yeast Vps38 component
recruiting BECN1/PI3K complex protein. UVRAG promotes
autophagy via activating the BECN1/PI3K complex, but
suppresses apoptosis and tumorigenicity of cancer cells by
inhibiting cell proliferation and activation of BCL2 associated
X, apoptosis regulator (7, 8). UVRAG frameshift leads to its
expression as a truncated form in colorectal cancer (9).
Moreover, UVRAG prevents cells from accumulating
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abnormal chromosomes, thereby, developing oncogenic
mutation (10). Because autophagy maintains cellular
homeostasis under various stress conditions, dysregulation of
autophagy is involved in many diseases such as cancer,
diabetes and neurodegeneration (11). However, the precise
regulatory mechanism of autophagy is not fully understood.
In this study, we addressed epigenetic regulation for
autophagy regulators and found that UVRAG is modulated by
histone deacetylase (HDAC) in colorectal cancer cells. 

Materials and Methods

Reagents. Valproic acid (VPA), trichostatin A, BIX-01294, 5-aza-
2’-deoxycytidine, anacardic acid, and 3-(4, 5-dimethylthiazol-2-yl)-
2, 5 diphenyltetrazolium bromide (MTT) were purchased from
Sigma Aldrich (St. Louis, MO, USA). Suberoylanilide hydroxamic
acid (SAHA) was provided by Crystal Genomics Co. (Seoul, S.
Korea). Inhibitors CI994, RGFP966, PCI34051, MC1568 and
tubastatin A were purchased from Selleckchem (Houston, TX,
USA). 5-Fluorouracil (5FU) was purchased from JW Pharma
(Seoul, S. Korea).

Cell culture and transfection. HCT116 colorectal cancer cells were
obtained from the American Type Culture Collection (ATCC,
Manassas VA, USA). The cells were cultured at 37˚C in a 5% CO2
incubator and maintained in RPMI-1640 containing 10% fetal bovid
serum and 1% penicillin/streptomycin (Invitrogen, Carlsbad, CA,

USA). Validated siRNAs targeting HDAC1 (#1, 5’-CACCCGGA
GGAAAGTCTGTTA-3’; #2, 5’-GACGAGTCCTATGAGGCCATT-
3’) or scrambled control siRNA (Sc; 5’-CCUACGCCACCAA
UUUCGU-3’) were synthesized from Genolution (Seoul, S. Korea).
Both plasmids and siRNAs were transfected using Lipofectamine
2000 (Invitrogen) according to the manufacturer’s protocol. 

MTT cell viability assay. HCT116 cells (~10,000) cultured in 96-
well plates were either treated with CI994 (2.5 μM for 24 h) or
transfected with HDAC1 siRNA for 48 h. Then the cells were
treated with or without 20 mg/ml 5-fluorouracil for additional 24 h.
For MTT assay, 10 μl MTT solution (5 mg/ml) was added to the
cells which were then incubated at 37˚C for 4 h. The reaction was
stopped with solubilizing solution (10% SDA and 0.01 M HCl) to
each well. The absorbance change was measured at 570 nm by a
microplate reader (VICTOR X3; PerkinElmer, Waltham, MA,
USA). The cell viability was calculated as follows: chemical treated
cells/untreated cells ×100.

Western blotting. HCT116 cells treated with VPA (1 mM for 72 h),
SAHA (5 μM for 24 h), trichostatin A (300 nM for 24 h), 5-aza-2’-
deoxycytidine (5 μM for 24 h), BIX-01294 (10 μM 24 h), anacardic
acid (5 μM for 24 h), CI994 (2.5 μM for 24 h), RGFP966 (10 μM
for 24 h), PCI34051 (5 μM for 24 h), MC1568 (10 μM for 24 h) or
tubastatin A (10 μM for 24 h) were harvested using cell lysis buffer.
All cell lysates were prepared with 2× Laemmli sample buffer [62.5
mM Tris–HCl (pH 6.8), 2% sodium dodecyl sulfate (SDS), 25%
glycerol, 5% β-mercaptoethanol, 0.01% bromophenol blue]
(BioRad, Hercules, CA, USA). Proteins (approximately 50 μg) were
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Figure 1. Ultraviolent irradiation resistance-associated gene (UVRAG) expression is induced by histone deacetylase (HDAC) inhibitor in HCT116
cells. A: HCT116 cells were treated with dimethylsulfoxide (Cont) or epigenetic regulators valproic acid (VPA;1 mM for 72 h), suberoylanilide
hydroxamic acid (SAHA; 5 μM for 24 h), trichostatin A (TSA; 300 nM for 24 h), 5-aza-2’-deoxycytidine (5aza; 5 μM for 24 h), BIX-01294 (BIX;
10 μM 24 h) or anacardic acid (AA; 5 μM for 24 h). The cells were harvested and analyzed by western blotting with anti-UVRAG. B: HCT116 cells
were incubated with specific HDAC inhibitors, CI994 (2.5 μM), RGFP966 (10 μM), PCI34051 (5 μM), MC1568 (10 μM) or tubastatin A (Tuba A;
10 μM) for 24 h. UVRAG expression was assessed by western blotting and normalized with actin expression. C: HCT116 cells were treated with
CI994 (2.5 μM) for 24 h treated and expression of UVRAG and acetyl histone (Ac-H4, K8) were analyzed by western blotting.



quantified by using Bradford solution (BioRad). Then the samples
were resolved by SDS-polyacrylamide gel electrophoresis, and
transferred to polyvinylidene difluoride membrane. After blocking,
the membranes were incubated with specific primary antibodies;
anti-UVRAG (ab174550, Abcam, Cambridge, UK), anti-acetyl
histone (sc-8660; Santa Cruz Biotechnology, Santa Cruz, CA,
USA), anti-HDAC1 (sc7872; Santa Cruz Biotechnology), anti-poly
(ADP-ribose) polymerase (#9542; Cell Signaling, Beverly, MA,
USA), anti-cleaved caspase 3 (#9661; Cell Signaling), anti-green
fluorescent protein (GFP) (sc8334; Santa Cruz Biotechnology) and
anti-actin (#MAB1501; Milipore, Temecula, CA, USA). For protein
detection, the membranes were incubated with horseradish
peroxidase-conjugated secondary antibodies and signals were
detected with EzWestLumi Plus (ATTO, Tokyo, Japan).

Statistical analysis. Data were obtained from least three independent
experiments, and presented as means±S.E.M. Statistical evaluation
of the results was performed with one-way ANOVA. Data
represent±standard error of the mean (S.E.M.) from more than three
independent experiments, n=3.

Results

UVRAG expression is increased by HDAC inhibitors in
colorectal cancer cells. To identify novel epigenetic target
proteins, we addressed expression change of various
autophagy regulatory proteins in the context of epigenetic
changes in colorectal cancer cells. HCT116 cells were treated
with different chromatin remodeling inhibitors, including
HDAC inhibitors. Then we analyzed the level of ATG
proteins such as ATG4, ATG6, ATG7, ATG10, WD repeat

protein interacting with phosphoinositide 2 (WIPI2), and
UVRAG. Among the investigated proteins, we found that
UVRAG expression was highly increased in HCT116 cells-
treated with VPA and SAHA (Figure 1A). However, other
proteins were not notably altered under those conditions
(data not shown), suggesting that expression of UVRAG is
influenced by HDAC inhibitors. HDAC proteins are grouped
into four classes (class I, IIa, IIb, III, and IV) based on their
sequence similarity and function (12).

As UVRAG was up-regulated by HDAC inhibitors VPA and
SAHA, we further addressed which HDAC proteins regulate
UVRAG expression. HCT116 cells were treated with subtype-
selective inhibitors: class I inhibitors: CI994, RGF966 and
PCI34051; class IIa inhibitor MC1568; and class IIb inhibitor
tubastatin A. Interestingly, among the tested HDAC inhibitors,
UVRAG expression was substantially increased in cells
treated with CI994 (Figure 1B). HDAC1, HDAC2, HDAC3,
and HDAC8 are class I HDAC proteins, but CI994 has higher
selective inhibition of HDAC1 and HDAC3 than other HDAC
proteins. However, UVRAG expression was not changed by
another class I inhibitor, RGFP966, which has highly selective
inhibition for HDAC3 (Figure 1B). These results imply that
HDAC1 is involved in UVRAG expression in HCT116 cells
(Figure 1B). We also confirmed increased histone acetylation
in cells treated with HDAC inhibitor CI994 (Figure 1C).

To further examine whether UVRAG expression is
controlled by HDAC1, HDAC expression was suppressed by
specific siRNA and UVRAG expression was investigated.
Consistent with the chemical inhibitor experiment, reduction
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Figure 2. Histone deacetylase 1 (HDAC1) suppression induces ultraviolent irradiation resistance-associated gene (UVRAG) expression in HCT116
cells. A: HCT116 cells were transiently transfected with either siRNA against HDAC1 (siHDAC1 #1 and #2) or scrambled siRNA (Sc) as a negative
control. After 3 days, the cells were analyzed by western blotting and the level of HDAC1 and UVRAG protein was detected with specific antibodies.
B: The protein expression was quantified by densitometric image analysis of the western blots. 



of HDAC1 by RNAi resulted in increased UVRAG expression
as well as histone acetylation in HCT116 cells (Figure 2).
Taken together, these results indicated that HDAC1 negatively
controls UVRAG expression in colorectal cancer cells.

Inhibition of HDAC1 attenuates 5FU-induced cell death in
HCT116 cells. Since UVRAG is a multifunctional protein that
suppresses cell death, we further investigated a role of induced
UVRAG expression by inhibiting HDAC1 in 5FU-treated
cells. 5FU, a pyrimidine analog, functions via the irreversible
inhibition of thymidylate synthase and has been used in the

treatment of various types of cancers, including colorectal,
breast, gastrointestinal and cervical cancer. In accordance with
this notion, we observed an increase of caspase-3 activation
and cleavage of PARP1 in 5FU-treatd HCT116 cells (Figure
3A). However, both the treatment with CI994 and knockdown
of HDAC1 significantly suppressed the increased activation of
caspase-3 in 5FU-treated cells (Figure 3A and B). In addition,
cell death induced by 5FU was slightly, but significantly
suppressed in both CI99-treated cells and HDAC1 knockdown
cells (Figure 3C and D). These results suggest that HDAC1
knockdown reduces 5FU-mediated cell death in HCT116 cells.
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Figure 3. Inhibition of histone deacetylase 1 (HDAC1) attenuates cell death in 5-fluorouracil (5FU)-treated cells. A: HCT116 cells pre-treated with
HDAC inhibitor CI994 were additionally incubated in the presence or absence of 5FU (20 mg/ml) for 24 h. The cells were subjected to western
blotting with antibodies to poly (ADP-ribose) polymerase (PARP) and cleaved caspase-3. B: HCT116 cells were transfected with HDAC1 siRNA.
After 48 h transfection, the cells were further incubated with 5FU (20 mg/ml) for 24 h. The cells were analyzed with western blotting with antibodies
to HDAC1, PARP and cleaved caspase-3. C: HCT116 cells pre-treated with CI994 were additionally incubated in the presence or absence of 5FU
(20 mg/ml) for 24 h. Then, cell viability was measured by the MTT assay. D: HCT116 cells were transfected with HDAC1 siRNA. After 48 h
transfection, the cells were incubated with 5FU (20 mg/ml) for 24 h. Then cell viability was measured by the MTT assay. Data are presented as the
mean±SEM from three independent experiments (n>3). *Significantly different at p<0.05). 



UVRAG suppresses 5FU-induced cell death in HCT116 cells.
We addressed the effect of UVRAG overexpression on 5FU-
induced cell death. HCT116 cells transiently transfected with
UVRAG plasmid were treated with 5FU, and cell death was
determined. As shown in Figure 4, ectopic expression of
UVRAG suppressed cell death, as well as caspase activation
in 5FU-treated cells. Thus, these results suggest that
HDAC1-mediated up-regulation of UVRAG expression
inhibits 5FU-induced cell death in HCT116 cells. 

Discussion

Epigenetics affects various cellular and physiological traits,
and a number of studies have shown that epigenetic changes
also regulate autophagy (3, 4, 13, 14). Recently, our group also
reported that ATG6 is transcriptionally repressed by
euchromatic histone-lysine N-methyltransferase 2 in cancer
cells (6). Nonetheless, epigenetic regulation of the expression
of various autophagy regulatory proteins has not been
elucidated clearly. In this study, we revealed that UVRAG
expression is also epigenetically regulated by HDAC1. It was
previously reported that UVRAG expression is controlled at
both transcriptional and post-transcriptional levels (15-18).
Some microRNAs, such as Mir125a and Mir351, directly
target and reduce UVRAG expression, which lead to the
inhibition of autophagy (15). In addition, Mir183 targets

UVRAG resulting in negative regulation of UVRAG expression
in colorectal cancer (16). Furthermore, protein kinase B
(PKB/AKT1)1 inhibits autophagy by reducing UVRAG
expression in breast cancer, whereas hepatitis C virus
increases autophagy and UVRAG expression by its replication
(17, 18). Here, we further revealed that UVRAG is
epigenetically regulated. Inhibition of HDAC by chemical
inhibitors or genetic knockdown resulted in up-regulation of
UVRAG in colorectal cancer cells (Figures 1 and 2). 

UVRAG has been implicated in the formation and
maturation of autophagosomes and suppression
tumorigenicity (19, 20). In addition, UVRAG activates the
DNA double-strand-break repair system through the increase
of DNA protein kinase (21). Consequently, dysregulation of
UVRAG increases genetic instability and sensitivity in
irradiated cells (21). Deficiency of DNA mismatch repair
occurs in over 15% of sporadic colorectal cancer and 90% of
hereditary nonpolyposis colorectal cancer cases, resulting in
microsatellite instability (MSI) (22), and truncated mutations
of UVRAG with MSI were reported in colorectal cancer (23).
Interestingly, loss of function by truncated mutations of
UVRAG increases chemosensitivity to common anticancer
agents, such as 5FU, oxaliplatin, and irinotecan in colorectal
cancer (9). In accordance with the reports, we also found that
forced expression of UVRAG expression suppressed 5FU-
mediated cell death in colorectal cancer cells (Figure 4). 

Jo et al: Up-regulation of UVRAG by HDAC Inhibitor

275

Figure 4. Overexpression of ultraviolent irradiation resistance-associated gene (UVRAG) suppresses 5-fluorouracil (5FU)-mediated cytotoxicity in
HCT116 cells. A: HCT116 cells were transfected with a green fluorescent protein (GFP) control plasmid (Vec) or GFP-fused UVRAG plasmid
(UVRAG). After 24 h, the cells were treated with 20 mg/ml 5FU for 24 h and expression of poly (ADP-ribose) polymerase (PARP) and cleaved
caspase-3 was determined by western blotting. B: HCT116 cells were transfected with GFP control plasmid (Vec) or GFP-fused UVRAG plasmid
(UVRAG) and treated with 10, 20, or 50 mg/ml 5FU for 24 h, and cell viability of these cells was then determined using a MTT assay. Data are
presented as the mean±SEM from three independent experiments (n>3). *Significantly different at p<0.05. 



Among the class I HDACs, HDAC1, HDAC2, HDAC3
are found in the nucleus, while HDAC8 is localized in both
nucleus and cytoplasm (24), and class I HDACs show
diverse effects in tumors. In particular, HDAC1 is enhanced
in breast, gastric, hepatocellular, lung, pancreatic, and
prostate cancer (25, 26). Moreover, increased HDAC1 is
associated with invasion, differentiation and poor prognosis
in various cancer types (25, 26). In contrast, inhibition of
HDAC1 accelerates leukemogenesis in the early stages, and
depletion of HDAC1 leads to increase survival in established
tumor cells (26). In this study, we also found that inhibition
of HDAC1 suppressed 5FU-mediated cell death in colorectal
cancer cells (Figure 3). However, UVRAG is frequently
found to be mutated in common types of cancer (9, 27). For
example, He et al. recently showed that UVRAG is expressed
as a truncated mutation (frame shift mutation) which
abrogates the normal functions of UVRAG such as
autophagy in colorectal cancer (9). The frame shift mutation
of UVRAG found in colorectal cancer renders SW480 cancer
cells more sensitive to 5FU-mediated chemotherapy(9).
Given that individual tumors display extensive intra tumoral
heterogeneity, and HDACs epigenetically regulate multiple
targets, the effects of inhibition of HDACs on cancer are
very complicated and controversial in different cancer cells
(28). Nonetheless, HDAC inhibitors represent a promising
class of new anticancer agents (29). The disruption of
multiple pathways by HDAC inhibitors could contribute to
the cytotoxicity found in many of the clinical trials (29).
Thus, further investigations are necessary to understand the
molecular mechanism of HDAC on UVRAG expression. 

In conclusion, the results from our study suggest that
UVRAG expression is epigenetically regulated by HDAC1,
and increased UVRAG expression suppresses 5FU-mediated
cell death in colorectal cancer cells.
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