ANTICANCER RESEARCH 37: 4747-4758 (2017)
doi:10.21873/anticanres.11881

Review

Deepening a Simple Question: Can MSCs
Be Used to Treat Cancer?

JULIANA P.A. GOMES*, AMANDA F. ASSONI*, MAYRA PELATTI*, GIULIANA COATTI*,
OSWALDO KEITH OKAMOTO and MAYANA ZATZ

Human Genome and Stem Cell Research Center, Biosciences Institute,
University of Sao Paulo, Sao Paulo, Brazil

Abstract. In cancer, mesenchymal stem/stromal cells (MSCs)
have been considered as vehicles for targeted delivery of drugs
due to their inherent tropism toward primary and metastatic
tumors. However, it is still unclear whether MSCs could be
therapeutically explored without significant harm, since a great
amound of evidence indicates that MSCs are able to exert both
tumor-suppressive and pro-oncogenic effects. Here, we discuss
how MSCs might adopt a pro- or anti-inflammatory profile in
response to changes within the tumor microenvironment and
how these features may lead to opposite outcomes in tumor
development. Additionally, we address how differences in
experimental design might impact interpretation and
consistency of the current literature in this specific field.
Finally, we point-out critical issues to be addressed at a pre-
clinical stage, regarding safety and therapeutic effectiveness of
MSCs application in cancer treatment.

Mesenchymal stem/stromal cells (MSCs) are undifferentiated
multipotent cells with the ability to self-renew and
differentiate into several distinct cell lineages (1, 2). They
are composed of a heterogeneous population of cells,
involved in the maintenance and repair of tissues throughout
life. Since their first isolation from bone marrow samples,
MSCs are also obtainable from different biological sources
such as adipose tissue, umbilical cord, dental pulp and
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fallopian tubes, among others (3-6). MSCs have been shown
to derive from perivascular cells, known as pericytes, that
are released from the basement membrane surrounding blood
vessels upon injury or inflammation (7-9).

Pre-clinical studies support functional recovery after
MSCs transplantation in diverse pathologies (10-15). Many
of these studies show significant therapeutic benefits of cell
transplantation even when exogenous cells are not present in
the target tissues. This effect is predominantly associated
with the release of soluble factors affecting diverse
biological processes such as angiogenesis, apoptosis, and
immune response (13, 16-22). Due to these paracrine effects,
MSCs have been considered as “Medicinal Signaling Cells”,
delivering biological mediators to sites of injury or
inflammation (7, 23).

MSCs are also emerging as promising targeted anti-
cancer agents for the treatment of a number of different
cancer types due to their inherent tumor-tropic migratory
properties, which allow them to serve as vehicles for the
effective delivery of drugs to primary tumors and
metastatic sites. MSCs have already been engineered to
express anti-proliferative, pro-apoptotic or anti-angiogenic
agents that specifically target different cancer types (24,
25). For this purpose, transfection of MSCs using viral
vectors is the most used strategy however, some new
methods, such as the therapeutic ultrasound (TUS) are
being proposed (26).

Although this engineered-MSCs approach may be
promising, basic investigation of unmodified MSCs effects
on tumor development is needed. MSCs from different
biological sources have been evaluated in animal models of
cancer, but discrepant results have been reported (27), either
enhancing (28-30) or inhibiting tumor growth (31-33).

Therefore, in cancer, it is still unclear whether MSCs
could be used in clinical studies without significant harm. In
this review, we will focus on MSCs residents of the stroma
and mainly on exogenous MSCs used as cell therapy.
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MSCs Activity Within the Tumor Microenvironment

It is known that MSCs can modulate their secretory profile
depending on the composition of their microenvironment,
i.e., their biological behavior is modified according to the
factors that they are exposed to (34-39). The tumor
microenvironment (TME) is a functional ecosystem of
tumor, stromal elements and signaling molecules (40). The
stroma is a histological unit consisting of peri-tumoral cells,
including fibroblasts and MSCs, that actively interact with
the tumor cells (27, 40-49).

As reviewed by Ridge and coworkers (50), MSCs are key
players in cancer progression, as they can act in tumor
development at various stages of progression from growth of
the primary tumor to the establishment of distant metastasis.
It was recently pointed-out that the presence of MSCs in 3D
cancer spheroids promotes the formation of a stroma-like
tissue surrounding the tumor supporting growth and
increasing resistance to chemotherapy of liver colorectal-
tumor (51).

The bi-directional signaling between the cytokines
secreted by malignant and non-malignant cells plays an
important role in the establishment, progression, and
metastatic dissemination of cancer (52-55).

TME is also rich in cytokines derived from immune
system cells, such as tumor necrosis factor-alpha (TNF-a),
tumor growth factor-beta (TGF-f), interleukin 1 (IL-1) and
interleukin 6 (IL-6), angiogenic factors, such as vascular
endothelial growth factor (VEGF), and chemokines. As it is
reviewed by de Visser and coworkers (56), TNF-a is a key
cytokine that is mobilized during acute inflammation
mediating tumor development. Knockout mice for TNF-a
and its receptors have less susceptibility to skin cancer and
develop fewer metastases. As TNF-o receptors are
expressed in both stromal and epithelial cells, TNF-a
facilitates the development of cancer directly by regulating
the proliferation and survival of neoplastic cells, and
indirectly by exerting its effects on endothelial cells,
fibroblasts, and immune cells in the tumor
microenvironment (54, 56, 57). TNF-a was found to affect
the permeability of the blood brain barrier and its increased
expression was correlated with the development of brain
metastasis in breast cancer patients (58).

TME can influence the activity of resident MSCs
exchanging membrane proteins through nanotube structures
and through soluble factor or exosomes containing micro
RNA (40, 59-61). It has already been reported that in breast
cancer, resident MSCs can migrate to the proximity of
tumor foci, where they produce diverse cytokines such as
IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1)
and TGF-f3, contributing to tumor growth (52). As reviewed
by Bhome and coworkers (40), cancer-associated fibroblasts
(CAFs) are responsible for the structural architecture of the
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tumor and at least 20% of CAFs originate from MSCs.
MSCs differentiation to CAFs can be induced by either
CAFs or tumor and recruitment is dependent on TGF-b and
stromal cell-derived factor-1 (SDF-1), which stimulates
growth, proliferation and invasion, angiogenesis and
metastasis (40, 62).

The tumor cell mass is highly heterogeneous, which may
be the key for its progression and adaptation to different
treatment modalities, thus complicating personalized-
medicine strategies (63, 64). Among the different tumor cell
types, cancer stem cells (CSCs) deserve special attention
since they possess unique properties that are crucial for
cancer progression to a more malignant state, including high
efficiency to initiate and propagate tumors (65-70), and
increased resistance to many kinds of chemical or physical
insults (71). Cellular components of the TME, including
MSCs and pericytes, have a critical role in the maintenance
of a stem-like state in tumor cells, as well as in CSC self-
renewal (56).

MSCs and Immune Response Against Cancer Cells

The immune system has a natural capacity to detect and
destroy abnormal cells, playing a major role in preventing
tumor development. Despite that, tumor cells frequently
adopt strategies to escape from immune cells, usually related
to reduced antigen expression on their surface membrane and
to induction of an immunosuppressive microenvironment
(73-77).

In order to efficiently eliminate cancer cells, a great
effort is being made to understand how cancer evades the
immune system (78-82). In the past few years, significant
progress has been made in immunotherapy strategies for
cancer treatment. Different monoclonal antibodies, such
as the MDX-010 (ipilimumab), which recognizes the
cytotoxic T lymphocyte antigen-4 (CTLA-4), have been
developed to boost the immune response against tumor
cells. Treatment with MDX-010 was shown to increase T-
cell function and antitumor responses in patients with
advanced metastatic melanoma (83). Despite these
positive results, significant toxicity was associated with
this therapeutic approach,
inflammatory events in healthy body parts without
cancerous cells (83).

Some cancerous cells also secrete programmed death-
ligand 1 (PD-L1) and programmed death-ligand 2 (PD-L2),
which are able to interact with PD-1 receptor on T-cell

consisting mostly of

surface, thus inhibiting T-cell activation and promoting
tumor immune escape. Recently, a treatment with a novel
human IgG4 PD-1 antibody (Nivolumab) increased overall
survival in patients with squamous-cell lung carcinoma, in
comparison with the conventional chemotherapy treatment.
Nivolumab was reported efficient in disrupting PD-1-
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mediated signaling in T-cells, thereby restoring antitumor
immunity (84-90).

MSCs possess immunosuppressive properties such as the
ability to inhibit the differentiation of dendritic, B- and T-
cells, attenuate natural killer (NK) cells, and also suppress
regulatory T-cells (91-97). Therefore, possible oncogenic
effects of MSCs have been considered in several MSC-based
cell therapy protocols. The immunosuppressive potential of
MSCs, however, is highly dependent on the composition of
the microenvironment in which they are being stimulated.
Waterman and coworkers (98) reported that stimulation of
Toll-like receptors (TLR) TLR3 or TLR4 in MSCs may
result in different secretory profiles, namely MSC1 and
MSC2, mostly pro-inflammatory or immunosuppressive,
respectively. These distinct profiles also support potential
opposing effects of MSCs on cancer, either inhibiting
(MSC1) or stimulating (MSC2) tumor growth (99).

The bi-modality of MSCs was also demonstrated by Chan
and coworkers (100). It was reported that reduced levels of
interferon-y (IFN-y) cause MSCs to express major
histocompatibility complex class II (MHC-II) and ultimately
act as antigen-presenting cells (APCs), stimulating
inflammatory responses. When IFN-v is present in high levels,
MHC-II expression is reduced, preventing MSCs to act as
APCs and consequently inducing an immunosuppressive MSC
phenotype. In another in vivo study, administration of colon
cancer cells along with MSCs pre-stimulated with
inflammatory cytokines IFN-y and TNF-a, accelerated tumor
growth in mice, compared to MSCs without pre-stimulation
(101). Pre-treated MSCs showed higher expression levels of
VEGF regulated via the hypoxia-inducible factor 1-alpha
(HIF-1a) signaling pathway that enhanced tumor
angiogenesis, finally leading to increased colon cancer growth
(101, 102).

MSCs’ Pro-Cancer Effect

The cancer-associated stromal cells promote and regulate
tumor growth, invasion and metastasis by the secretion of
extracellular matrix components and growth factors (29, 103,
104). Mi and coworkers (105) observed that even MSCs’
conditioned media, due to IL-6 presence, was responsible to
promote metastasis in hepatocellular carcinoma.

In a cell therapy context, transplanted MSCs might
integrate within the cancer stroma and influence tumor
development. The formation of new blood vessels is an
important hallmark for tumor development (106). Following
intravenous injections, it was observed that MSCs were able
to home to tumor sites and assist the production of new
tumor vessels (107, 108). It was also observed that MSCs
were able to increase the proportion of CSCs in gastric
carcinoma in vitro through activation of the WNT and TGF-
[ signaling pathways (109, 110).

Besides other immune cells, lymphocytes are also being
investigated in cancer physiopathology. Recently, a
correlation of high lymphocytic reaction with better prognosis
in patients with solid colorectal cancer was reported (111).
Therefore, when MSCs act as immunosuppressants, inhibiting
T-cell proliferation, they might enhance cancer progression
(111-116).

It was demonstrated that autologous or allogeneic MSCs
might suppress the proliferation of naive and memory T
lymphocytes stimulated by alloantigen, mitogens, or T-cell
co-receptors CD3 and CD28, in a mechanism independent of
MHC recognition (117-123). This immunosuppressive
property is maintained when MSCs and lymphocytes are
separated by a semi-permeable membrane, pointing out the
involvement of soluble factors that might vary according to
the stimulating agent and the lymphocyte population used
(whether full or sorted) (121, 124-131). Nevertheless, isolated
extracellular vesicles derived from MSCs failed to suppress
lymphocyte proliferation, suggesting that cell-cell contact
also plays an important role on the immunosuppressive
potential of MSCs (132) or indicating that the factors related
to lymphocyte proliferation are not secreted through vesicles.

Similarly, MSCs inhibit the differentiation of naive and
memory CD4* T-cells into Th17 precursors and might also
inhibit naturally-occurring Th17 cells (133, 134). Human
memory Th17 cells were found to suppress T-cell activation
in breast cancer, suggesting that intratumoral Th17 cells
contribute to cancer development and compromise anticancer
therapy in breast cancer patients (135). Knockdown of
interleukin-25 (IL-25) expression in MSCs abrogated Th17
suppression both in vitro and in vivo (136), highlighting the
cytokine involvement in this process.

Epigenetic changes are also implicated in this process. It
was previously observed that MSCs induced the production
of IL-10 and the trimethylation of histone H3 lysine 4 at
FOXP3 promoter in Th17 cells, leading to a higher capacity
of these cells to inhibit in vitro proliferation of activated
CD4* T-cells (137). Also, MSCs provide maximal
enhancement of regulatory T-cell function through direct
cell-to-cell interaction mediated by the MSC membrane-
expressed CD80 molecule (138).

Regarding B lymphocytes, some contradictory results are
observed. It has been shown that MSCs could both increase
or decrease proliferation and survival of these cells (139-
144). The mechanisms of action involve both contact-
dependent factors, such as PD-L1 and PD-L2, and soluble
factors such as matrix metalloproteases. Though, these
results depend on the source of B lymphocyte and the
experimental conditions used.

The effect of MSCs is also observed in elements of the
innate immune system. MSCs have an inhibitory effect on
NK cells, affecting different aspects of their function, such
as proliferation, cytotoxicity, and cytokine production (145,
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146). Maturation and differentiation of dendritic cells (DC)
are also influenced after co-culture with MSCs, mainly
through prostaglandin E2 (PGE-2) action. Additionally, DC
previously co-cultured with MSCs impaired allostimulation
of T cells (147, 148).

MSCs’ Anticancer Effects

Conversely, many studies have also shown that MSCs can
suppress tumor growth (149, 150) (Figure 1). Despite low
expression of MHC or costimulatory molecules by MSCs, it
was hypothesized that allotransplantation of MSCs could
elicit an immune response that would ultimately inhibit
tumor growth (149, 151). Nevertheless, Khakoo and
coworkers (32) showed that the inhibitory effect on tumor
growth is due to an active role of MSCs: when human
umbilical vein endothelial cells (HUVECs) were injected in
a Kaposi's sarcoma model, no significant effect on tumor
size was observed, while a significant tumor inhibition was
observed in the same model after injection of MSCs.

MSCs may also suppress tumor growth due to an anti-
angiogenic effect (152, 153). MSCs migrate to the capillaries
and position themselves between endothelial cells, resulting
in defects in gap junctions. As a consequence, there is an
increased production of reactive oxygen species, leading to
endothelial cell apoptosis and subsequent degeneration of the
capillaries. Thus, without the necessary supply of oxygen,
the tumor stops growing.

Finally, some components of the MSCs’ secretome can
actively impair tumor growth. It has already been
demonstrated that MSCs’ conditioned medium can cause
inhibition of tumor proliferation and induction of tumor cell
death by cell cycle arrest and necrosis (31). Lu and
coworkers (22) also reported induction of tumor cell death,
but in this case, through apoptosis mediated by caspases and
p21, instead of necrosis.

Divergences on Experimental Design

Studies aiming the evaluation of MSCs as a therapeutic
approach for cancer use highly divergent methodologies,
which might hinder a precise scientific understanding of the
subject. In this section we discuss these differences and their
implications. Selection of the appropriate MSC source, time
and route of injection, experimental models, and number of
injected cells are elements that must be taken into
consideration when analyzing results.

Source of MSCs
Countless organs and tissues are now recognized as potential

sources of MSCs. Each one provides a different
microenvironment for its resident cells, acting on MSCs
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characteristics and regulating their migration and
differentiation abilities. Therefore, MSCs obtained from
different sources might have distinct biological properties
and secretome patterns (154).

What is referred to as “mesenchymal stromal cells” is in fact
a combination of different subpopulations of cells that possess
similar immunophenotypic profiles and share the ability to
differentiate into the three mesenchymal lineages. Most pre-
clinical and clinical studies have been performed using a
heterogeneous population of stromal cells (NCT02530047;
NCT01983709; NCT02181478; NCT01275612), which could
partly explain some contradictory results or even the lack of
reproducibility.

In addition, allotransplantation or even xenotransplantation
of MSCs in cancer animal models have shown inhibition of
tumor development. It is imperative to determine if these
results are due to the native pro-inflammatory effect of
transplanted cells or if they are merely due to a non-self origin
effect, with the exogenous cells eliciting an immune response
and ultimately enhancing the activity of the host immune
system to fight the tumor cells. On the other hand, in vitro and
in vivo studies using syngeneic MSCs and tumor lineages
showed important results in cancer inhibition in
immunocompetent mice (152). Also, an active and straight
role of MSCs might occur even if transplanted into
immunodeficient mice (32). Nevertheless, some studies
showed increased tumor growth after MSCs perfusion in
immunocompetent or athymic mice (28, 155).

Time and Route of Injection

One of the most frequent procedures aiming to verify the
effect of MSCs in tumor growth includes co-injection of both
MSCs and tumor cells. In this regimen, distinct proportions
of tumor cells and MSCs might interfere in the experiment
outcome. Other experimental designs include injection of
MSC:s after the tumor establishment.

The impact of different timing of MSCs infusion was
evaluated by Jazedje and coworkers (156). When MSCs
were co-injected with murine breast cancer cells, the animals
had a more severe course of the disease and displayed a
reduced survival, while MSCs injected in mice already at the
initial stage of mammary adenocarcinoma resulted in
significant reduced tumor growth and also increased lifespan,
as compared with control animals.

Moreover, MSCs can be transplanted through many routes
such as subcutaneous or intravenous, and this variable might
also impact the final outcome.

Experimental Models

Another issue to be considered is the species that tumor cells
and MSCs are derived from. Many groups use human
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Figure 1. Pro and anti-cancer effect of mesenchymal stem stromal cells
(MSCs). MSCs can produce pro or anti-cancer molecules, in response
to the tumoral microenvironment, which can directly or indirectly affect
the survival of cancer cells. MSCs have also been engineered to produce
high amounts of anti-tumoral molecules (24). IL-6, interleukin 6; IL-8,
interleukin 8; TNF-a, tumor necrosis factor-alpha; TGF-f3, tumor
growth factor-beta; MCP-1, monocyte chemoattractant protein-1; IFN-
y, Interferon-y; IL-2, Interleukin-2; IL-12, Interleukin-12; IL-18,
Interleukin-18; VEGF, Vascular Endothelial Growth Factor; TRAIL,
TNF-Related Apoptosis-Inducing Ligand; HSV-TK, Herpes Simplex
Virus-Thymidine Kinase.

tumoral cell lineages that consequently require an
immunodeficient mouse model, otherwise, cancer cells could
be recognized and destroyed by the host immune system.
Since there is a lack of effective immune response, when
MSCs are injected there are no proper interactions between
these two components. Such studies are useful to understand
the direct effect of MSCs on cancer but it is not sufficient to
answer the question about MSCs’ effects in cancer patients
with a functional immune system.

There are also murine cell lineages of different tumors,
which may have variability in their establishment or
aggressiveness, thus responding differently to treatments.
Cousin and coworkers (31) treated diverse tumor cell lines
with adipose-derived stromal cells conditioned medium in
vitro. Except for the cervical and breast cancer cell lines,
MSCs-conditioned medium was able to inhibit tumor cell
proliferation in pancreatic and other epithelial cancer-derived
cell lines (liver, colon, prostate). These results demonstrated
that different tumoral lineages may respond differently to a
given treatment (31).

Dose-dependence

The effect of MSCs on cancer therapy also depends on the
number of cells used. Long and coworkers (157),
demonstrated by in vitro co-cultures that MSCs can generate
a stimulatory or inhibitory effect on tumor growth, depending
on the ratio between MSCs and cancer cells. When the
proportion of MSCs was lower than the number of cancer
cells, the later cells were able to proliferate. Respectively,
when the proportion of MSCs was increased, the proliferation
of cancer cells was reduced. Using fibroblasts, Delinasios and
coworkers (46) studied early interactions, i.e. not fully-grown
tumor, of stromal cells and cancer cells. It was shown the
influence of cell confluence and also the HeLa: Fibroblasts
ratio on in vitro cancer establishment.

These observations suggest that, in order to achieve
successful results with MSC therapy, not only the amount of
injected cells is important, but also the frequency of the
injections. Khakoo and coworkers (32) demonstrated that,
when a single dose of MSCs was injected intravenously
concomitant to the subcutaneous injection of tumoral cells
(day zero), tumor size was reduced. In the same study, three
additional injections of MSCs were able to potentiate their
effect on tumor growth inhibition. A similar effect was also
observed when three MSCs injections were administered
after tumor establishment.

Concluding Remarks

Despite the difficulty in comparing existing studies about the
use of MSCs for cancer therapy, there is convincing evidence
of both, tumor suppression and pro-oncogenic effects of
MSCs. In any case, studies that investigate MSCs as anti-
cancer agents should take into account real-life situations
that cancer patients may experience. For instance, co-
injection of tumoral cells and MSCs does not mimic a real
clinical scenario. Instead, dose escalation studies of MSCs
delivered systemically in tumor-bearing mice seem more
suitable. In this pre-clinical setting, other important variables
should be tested, including the frequency of MSCs injections
and the type of MSCs. In the latter case, potency tests should
also be developed to discriminate MSCs populations with the
appropriate activity for a desirable anti-tumor effect. It has
been observed that MSCs secrete different proteins even
when they are obtained from the same tissue of different
donors or from different tissues of the same donor (158).
Additionally, MSCs activity is known to decline with
donor’s age (159). It would be interesting to determine a
secretome profile of MSCs that best suits cancer therapy
purposes, as Ranganath and coworkers (160) reviewed for
ischemic heart failure.

Similarly, for the investigation of possible pro-oncogenic
effects of MSCs, different MSCs/tumor cell ratios should be
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evaluated, mimicking different stages of tumor
development. Moreover, orthotopic tumor models using
MSCs of corresponding biological residence are more
informative, given the differences in the tumor
microenvironment among tissues. Noteworthy, variations in
the constitution of the tumor microenvironment occur along
the disease progression (63, 161), and the effects of such
variations on the activity of MSCs should be clarified. The
use of the appropriate cellular controls is another important
issue to be considered. Injection of differentiated cells from
the same biological source, such as fibroblasts, would
indicate whether the effect on tumor development is a
specific property of MSCs. Likewise, when human MSCs
are used in murine models, injections of syngeneic murine
MSCs would provide evidence that observed effects are not
due to an interspecies artifact.

Besides the risk of increasing and
tumorigenicity, there is the risk of MSCs injection itself.
Safety of MSCs transplantation has already been reported by
several studies, using MSCs from various sources in
different diseases (162-165), but others have shown side
effect, such as fibrosis, nausea, vomiting, increase of
respiratory rate and pulmonary edema (166-168). Therefore,
these reports highlight the importance of using well
characterized MSCs.

Overall, studies addressing the role of MSCs in tumor
development are equally important and the ensuing
complementary knowledge is critical to evaluate possible
applications of MSCs to treat cancer patients. The approach
hereby proposed for pre-clinical studies should yield
valuable information to support the elaboration of future
clinical protocols.

tumor size
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