
Abstract. Background/Aim: Glioblastoma is a frequent type
of brain tumor and is radioresistant. Arsenite, which crosses
the blood-brain barrier, shows synergistic effects with
radiation in vitro and in vivo. The mechanism remains unclear.
Materials and Methods: As synergistic radiosensitization has
been reported in p53-deficient cancer cells, radiosensitization
was evaluated using the glioblastoma cell line, U87MG-E6,
which harbors inactivated p53, in comparison with the cell
line, HCT116 p53 (−/−). Radiosensitivity was evaluated using
clonogenic assays and detection of abnormal amplification of
centrosomes (AAC). Results: Synergistic effects of arsenite on
radiosensitivity were observed in both cell lines. The
radiosensitization induced by arsenite was abolished by N-
acetyl-l-cysteine, a reactive oxygen species (ROS) scavenger.
Increased radiosensitivity by arsenite was also abolished
following knock-down of BRCA2. In addition, the increased
radiosensitization by arsenite was correlated with AAC, which
was abolished by BRCA2 knock-down. Conclusion: We
conclude that radiosensitization by arsenite is related to ROS
and BRCA2 function.

Arsenite is a well-known human carcinogen but it can also be
used to treat some types of diseases including cancers (1, 2).
Recently, arsenite has shown considerable efficacy in treating
patients with acute promyelocytic leukemia (APL) (3, 4). In
APL patients, arsenite activates numerous intracellular signal
transduction pathways, resulting in induction of apoptosis,

promotion of differentiation, and autophagy. Not only APL
tumor cells but also solid tumor cells derived from several
tissues such as liver (5), prostate (6), lung (7), and brain (8-
12) are susceptible to arsenite. In particular, a new therapeutic
method for treating glioblastoma, which is a malignant brain
tumor, is expected to be developed with arsenite. 

Arsenite damages DNA and induces cell death in
glioblastomas (8). Previously, we reported that a low
concentration of arsenite that can be used clinically induces
senescence in gliomas and may be an effective anticancer agent
(13). Indeed, using low concentrations of arsenite (1-5 μM),
radiosensitizing effects of arsenite have been reported following
analysis of cultured cells and xenografted tumors in mice (10).
Reactive oxygen species (ROS) derived from arsenite are
considered to mediate the effects of arsenite (3, 14). ROS
damage DNA, leading to induction of DNA repair functions.
Cells employ various mechanisms of DNA repair, including
homologous recombination (HR). BRCA2 plays an important
role in HR and is thus involved in the toxicity of arsenite (15).

In this study, we focused on the involvement of ROS and
BRCA2 in synergistic radiosensitization mediated by
arsenite. p53-deficient cell lines have been used in previous
analyses showing that arsenite has synergistic effects on
radiosensitization in xenografted tumors in mice. Therefore,
our current analyses were performed using the p53-deficient
glioblastoma cell line, U87MG-E6, and the HCT116 p53
(−/−) cell line for comparison.

Materials and Methods
Reagents. Sodium arsenite (NaAsO2) and N-acetyl-l-cysteine (NAC)
were obtained from Wako Pure Chemical Industries (Osaka, Osaka,
Japan). Primary monoclonal anti-γ-tubulin (mouse clone GTU-88)
form Sigma-Aldrich Co. (St. Louis, MO, USA) and secondary
Alexa Fluor 488-conjugated goat anti-mouse IgG (Molecular
Probes; Eugene, OR, USA) antibodies were used.
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Cell lines. The human malignant glioblastoma U87MG-E6
(containing viral oncoprotein E6 that inactivates p53 by accelerating
its degradation) cell line was kindly provided by Dr. Mischel (16).
The human colon cancer HCT116 p53 (−/−) (p53 knock-out) cell
line was kindly provided by Dr. Vogelstein (17). The cells were
cultured in Dulbecco’s modified Eagle’s medium with 4500 mg/L
glucose (Sigma-Aldrich Co.; St. Louis, MO, USA) supplemented
with 2 mM L-glutamine (Gibco; Waltham, MA, USA), 5% (v/v)
heat-inactivated fetal calf serum (Biological Industries, Inc.; Beit
Haemek, Israel), 100 units/mL penicillin, and 100 μg/mL
streptomycin (Invitrogen; Carlsbad, CA, USA) in a 37˚C incubator
with 5% CO2 in air. The medium was changed every other day.
Arsenite was added to medium for 4 days, and was then replaced
with fresh medium without arsenite. Cells were irradiated with X-
rays from an X-ray generator operated at 200 kV and 20 mA with a
0.5-mm copper and 0.5-mm aluminum filter.

Colony-forming assay. Colony-forming assay was used to analyze
survival fraction using plating efficiency. For the colony-forming
assay, 300-90,000 cells were plated per dish, and 0.3125-10 μM
arsenite was added to the culture 24 h later. NAC (10 mM) was added
to the culture before irradiation. The cells were incubated for 4 days
in the presence of arsenite and/or NAC, followed by an additional 10
days of incubation in the absence of arsenite to allow colony
formation. The cells were fixed and stained with a solution containing
20% methanol and 0.2% crystal violet. Colonies containing more than
50 cells were counted. At least three parallel samples were scored in
three to five replicates for each treatment condition.

Immunofluorescence. Cells grown on coverslips were fixed with 4%
formaldehyde in PBS for 15 min, washed with PBS, and fixed with
70% ethanol at −20˚C for at least 24 h. Then, the cells were
permeabilized with 0.2% Triton X-100 for 5 min at 4˚C and blocked
with 10% goat serum in PBS. Cells were incubated in primary
antibodies for 1 h at 37˚C and washed with PBS three times for 10
min each. Cells were then incubated with secondary antibodies for
1 h and washed with PBS three times for 10 min each. Coverslips
were mounted in 4,6-diamidino-2-phenylindole (DAPI).
Fluorescence images were captured using an Olympus DP70
fluorescence microscope. Proportion of cells with abnormal
amplification of centrosomes (AAC) was determined by γ-tubulin
immunofluorescence.

siRNA treatment. We used BRCA2 siRNAs with known inhibitory
effects (18). BRCA2 siRNAs (Product Name: Hs_BRCA2–7_HP
Validated siRNA) and negative control siRNA (Allstar negative siRNA)
from Qiagen (Hilden, Germany) were used. Cells (2×105) were seeded
in 35-mm dishes, incubated for 1 day, and transfected with 20 nM
siRNA using HiperFect transfection reagent (Qiagen; Hilden, Germany)
according to the instructions of the manufacturer. Transfected cells were
then cultured in normal growth medium for 48 h before treatment.
Efficient knock-down was confirmed by quantitative RT-PCR.

Real-time reverse transcription-polymerase chain reaction (RT-
PCR). Total RNA was extracted from cells according to the
manufacturer’s instructions using the RNeasy Mini Kit (Qiagen;
Hilden, Germany). mRNA silencing was quantified by real-time
PCR using the ABI Prism7500 system (Applied Biosystems; Foster
City, CA, USA). The mRNA value for each gene was normalized
to hGAPDH (No. 431088E) mRNA levels in each RNA sample. RT-

PCR quantification of BRCA2, TaqMan Gene Expression Assays
(Applied Biosystems; Foster City, CA, USA) using hBRCA2
(Hs01037420_ml) were used. All reagents necessary for running a
TaqMan RT-PCR assay, including predesigned and optimized
assays, were purchased from Applied Biosystems (ABI) and used
according to the manufacturer’s instructions. All measurements and
results were analyzed with the ABI sequence detector software.

Results 
Radiosensitizing effect of arsenite and abolishment of the
radiosensitizing effect by NAC. The radiosensitizing effect of
arsenite was evaluated by survival fraction (SF) analysis and
determined by colony-forming assay, using the U87MG-E6
and HCT116 p53 (−/−) cell lines. Arsenite mediated
radiosensitization at 0.625 μM and 1.25 μM in U87MG-E6
cells and at 5 μM and 10 μM in HCT116 p53 (−/−) cells
(Figures 1A, B). To further investigate the relationship
between arsenite-mediated radiosensitization and ROS, the
anti-oxidant NAC was used. NAC inhibited the
radiosensitizing effect of arsenite in both U87MG-E6 and
HCT116 p53 (−/−) cells (Figures 1C, D). 

Abolishment of the radiosensitizing effect of arsenite by
BRCA2 knock-down. To investigate the involvement of
BRCA2 in the radiosensitizing effect of arsenite, we knocked
down BRCA2. BRCA2 knock-down in both cell lines was
confirmed with quantitative RT-PCR (Figure 2A). When SF
analysis was performed, X-rays alone had no effect on
radiosensitivity of BRCA2 knock-down U87MG-E6 or
HCT116 p53 (−/−) cells. However, treatment with arsenite
alone decreased survival of BRCA2 knock-down cells from
0.099 to 0.054 for U87MG-E6 cells and from 0.097 to 0.041
for HCT 116 p53 (−/−) cells (Figure 2B, C). Interestingly,
the radiosensitizing effect of the combination of arsenic and
radiation was abolished by BRCA2 knock-down in both
U87MG-E6 and HCT116 p53 (−/−) cell lines (Figure 2D, E).

Abolishment of abnormal amplification of centrosomes
(AAC) with the combination of radiation and arsenite in
BRCA2 knock-down cells. AAC is involved in the toxicity of
arsenite (19). To analyze the relationship between arsenite-
induced radiosensitivity and BRCA2, we focused on AAC.
AAC was analyzed 1 day after arsenite and/or radiation
treatment of U87MG-E6 cells (Figure 3). Transfection of
control siRNA led to an increase in AAC of 12.3% following
arsenite alone treatment, 13.4% following X-ray treatment
alone, and 36.2% with the combination of arsenite and
radiation. Transfection of BRCA2 siRNA led to an increase
in AAC-positive cells of 11.5% compared to control siRNA-
transfected cells following treatment with arsenite alone. No
remarkable difference was observed following X-ray
treatment alone. Comparison of theoretical additive values
and experimental values in the combination of arsenite and
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radiation showed that experimental values were higher than
the theoretical additive values and suggested synergistic
effects in cells transfected with control siRNA. In cells
transfected with BRCA2 siRNA, experimental values were

almost the same as theoretical additive values, suggesting
abolishment of synergistic effects (Figure 3B). The
mechanisms underlying the radiosensitizing effects are
summarized in a schematic (Figure 4).
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Figure 1. Radiosensitization by arsenite in p53-deficient cells and the abolishment by treatment with the anti-oxidant, NAC (10 mM). Survival
fraction following irradiation and arsenite treatment of (A) U87MG-E6 cells with p53 inactivated by E6 and (B) HCT116 p53 (−/−) cells, which
are p53 deficient. Cells were pre-treated with various concentrations of arsenite for 1 h and exposed to various doses of X-rays. In the case of
treatment of NAC, survival fraction following irradiation and arsenite treatment of (C) U87MG-E6 and (D) HCT116 p53 (−/−) cells. Cells were
pre-treated with NAC or negative control siRNA (CONi) or BRCA2 siRNA (BRCA2i) and arsenite for 1 h and exposed to various doses of X-rays.
Cell survival was determined with the colony-forming assay. Data are the mean±SD (n≥3). 



Discussion

In the present study, the U87MG-E6 glioblastoma cell line
was used to analyze the radiosensitizing effect of arsenite.
We demonstrated that ROS produced by arsenite contributes

to the radiosensitizing effects. Furthermore, we found that
arsenite may play two roles in the radiosensitizing effect:
induction of DNA damage via ROS and inhibition of
BRCA2 function that is required for DNA repair (Figure 4).
Previous reports showed a relationship between ROS and the
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Figure 2. Radiosensitization by arsenite in p53-deficient cells was abolished by treatment with BRCA2 siRNA. (A) Efficiency of BRCA2 knock-
downn with siRNA. BRCA2 and GAPDH expression was determined by quantitative RT-PCR, and relative BRCA2 expression was normalized to
GAPDH. Data are the mean±SD (n=3). Survival fraction following irradiation and treatment of (B, C) U87MG-E6 and (D, E) HCT116 p53 (−/−)
cells. Cells were pre-treated with BRCA2 siRNA and arsenite for 1 h and exposed to various doses of X-rays. Cell survival was determined with
the colony-forming assay. Raw (B, D) and normalized (C, E) data are shown. Data are the mean±SD (n≥3).



radiosensitizing effect of arsenite. ROS has been directly
measured (10, 20). In this study, we investigated the
relationship between ROS and the radiosensitizing effect of
arsenite using SF analysis. NAC, a widely used anti-oxidant,
inhibited the radiosensitizing effect, strongly suggesting that
ROS contributed to the radiosensitizing effect of arsenite.
Arsenite-induced ROS causes DNA damage (21, 22). ROS
produced by arsenite causes SSBs, which are converted to
double-strand breaks (DSBs) during replication (23, 24, 25).
Thus, DNA damage generated by ROS may contribute to the
radiosensitizing effect of arsenite by producing DSBs. 

Non-homologous end joining and HR are important
mechanisms of DNA repair (26). BRCA2, which participates
in HR, is involved in the toxicity of arsenite (15). To
investigate the relationship between BRCA2 and the
radiosensitizing effect of arsenite, we examined the
radiosensitivity in BRCA2 knock-down cells. The
radiosensitizing effect of arsenite with SF analysis was
abolished in BRCA2 knock-down cells. As shown in Figures
2B and D, BRCA2 knock-down increased the sensitivity to
treatment with arsenic alone, and the sensitivity was
increased to almost the same value as that with the
combination of arsenite and radiation. This implies that
BRCA2 was involved in the radiosensitizing effect of
arsenite and that inhibition of BRCA2 function may be
directly linked to the radiosensitizing mechanism. Arsenite
may suppress DNA repair that is normally mediated by
BRCA2. Thus, BRCA2 knock-down may increase sensitivity
to arsenite and abolish the radiosensitizing effect (Figure 4).
The mechanism through which BRCA2 is involved in the
radiosensitizing effect of arsenite is still unclear. The type of
DNA damage caused by the combination of arsenite and
radiation may be important. Complex DNA damage is more

difficult to repair than simple DNA damage (27, 28).
Because SSBs are generated by arsenite, and DSBs are
generated by radiation, the radiosensitizing effect may be
evoked by complex DNA damage consisting of SSBs and
DSBs caused by the combination of arsenite and radiation.
Because BRCA2 mainly repairs complex DNA damage (29),
the observed radiosensitizing effect may be abolished by
BRCA2 knock-down.

We also found a change in AAC that was correlated with
the radiosensitizing effect of arsenite in SF analysis. AAC is
involved in the toxicity of arsenite (19) and radiation (30),
and is an indicator (31) of mitotic catastrophe. Mitotic
catastrophe causes cytotoxicity because DNA cannot be
properly segregated into two daughter cells in the M phase
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Figure 3. Synergistic increase in abnormal amplification of centrosomes in mitotic. U87MG-E6 cells irradiated and treated with arsenite was
abolished by treatment with BRCA2 siRNA. (A) Micrographs of γ-tubulin immunofluorescence obtained from U87MG-E6 cells treated with arsenite.
Typical photographs are shown at 600×. (B) Proportion of cells with abnormal amplification of centrosomes of total of 40 mitotic U87MG-E6 cells
1 day after irradiation in the presence or absence of arsenite. Data are the mean±SD (n≥3). 

Figure 4. Schematic representation of radiosensitization by arsenite. 



of cell division. Also, the radiosensitizing effect of arsenite
on AAC was abolished with BRCA2 knock-down. We
believe that the radiosensitizing effect was due to the
function of ROS and BRCA2, and as a result, AAC was
detected as the endpoint. The results of the analysis of AAC
in BRCA2 knock-down cells showed a similar trend as the
SF analysis (Figure 4). AAC is detected following replication
that occurs in the presence of DNA damage (32). The AAC
results strongly suggested that DNA damage was involved in
the radiosensitizing effect of arsenite. 

Arsenite is a promising radiosensitizing agent. Though
effects of some metal-related elements on radio-sensitivity
have been reported (33-35), gadolinium (Gd), a metal-related
element, has also been reported to have radiosensitizing
effects similar to arsenite. Gd mediates the radiosensitizing
effect via ROS that is generated from the metal surface, and
the characteristics of the radiosensitivity may be similar to
those of arsenite (36, 37). A phase I clinical trial of
combination therapy of arsenite and radiation for patients
with solid tumors has been completed, and the safety of
arsenite as a clinical drug was proven (38, 39). Our study
showed that arsenite has synergistic effects on
radiosensitivity via ROS and BRCA2 function. Analyses of
the synergistic effects of arsenite in radiosensitivity will
contribute to improvements in radiotherapy using arsenite or
other metal-related elements such as Gd. 
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