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Abstract. Background/Aim: The aim of the current study was
to determine the effects of the ERG small-molecule inhibitor YK-
4-279 on ERG™ prostate cancer patient-derived xenografts
(PDX). Materials and Methods: ERG activity was blocked using
YK-4-279 in three subcutaneously-implanted ERG* (LuCaP
23.1, 86.2 and 35) and one ERG™ (LuCaP 96) PDX. Treated
animals tumor volume (TV), body weight (BW) and serum
prostate-specific antigen (PSA) were compared to vehicle-treated
control animals. Gene expression, proliferation, apoptosis,
microvessel density and ERG expression were also assessed.
Results: Administration of YK-4-279 decreased TV (p=0.026),
proliferation (p=0.0038) and PSA (p=0.022) in Severe
Combined Immunodeficiency (SCID) mice bearing LuCaP 23.1
tumors. LuCaP 86.2, LuCaP 35 and LuCaP 96 showed no
significant changes in TV, or PSA. Mineralocorticoid receptor
(MR) and MR-direct target genes were up-regulated in
treatment-resistant LuCaP 86.2 and LuCaP 35 PDX.
Conclusion: YK-4-279 decreased ERG* LuCaP 23.1 tumor
growth, but not LuCaP 86.2 and LuCaP 35 ERG™" tumor growth.

Prostate cancer (PCa) remains a heterogeneous disease with
multiple genetic (1) and epigenetic (2) factors. In 2005,
Tomlins et al. discovered the TMPRSS2-ERG gene fusion,
a combination of a prostate-specific, androgen-responsive,
transmembrane serine protease and the ‘ETS related gene’ or
ERG (1). ERG expression is normally present in endothelial
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and hematopoietic cell lines (3), however when fused with
TMPRSS2, ERG proteins are aberrantly transcribed,
resulting in downstream activation of ERG target genes
resulting in cellular proliferation (4).

Clinically, the TMPRSS2-ERG fusion is found in 40-50%
of primary PCa (5,6) with slightly less prevalence in PCa
metastases (25-40%) (7, 8). There have been mixed results,
thus far, when discussing the clinical and prognostic
implications of TMPRSS2-ERG with some studies indicating
aggressive disease (9,10), while other studies suggest more
benign associations (11, 12). Furthermore, there is some
evidence that the relative level of ERG expression carries
prognostic significance with one study describing higher
expression levels as predictive of more advanced disease (13).

In 2009, Erkizan and colleagues
translocation-generated fusion protein in Ewing’s Sarcoma,
EWS-FLI1 (14). Through direct binding screening, they
discovered the small-molecule inhibitor, YK-4-279. Subsequent
experiments revealed increased apoptosis and decreased
xenograft tumor growth in YK-4-279-treated EWS-FLI1™ lines
(14). As FLI1 is a class I ETS gene with homology to ERG and
ETV1, this molecule was then tested in several PCa lines with
initial studies of LNCaP (ETV1*) and VCaP (ERG") showing
decreased transcriptional activity, downstream protein expression
and reduced invasive capacity (15). Further experiments with
ETV1 xenograft models revealed YK-4-279 treatment reduced
tumor growth and metastases relative to control while expression
of downstream ETV1 target genes were inhibited (16).

We chose to study YK-4-279 in pre-clinical PDX models
to evaluate the translational application of ERG inhibitors in
ERG™ PCa patients. YK-4-279 inhibition of ERG* PDX
revealed significant tumor volume, proliferation and prostate
specific antigen (PSA) response in one line (LuCaP 23.1),
partial response in another (LuCaP 86.2), with no response
in the third ERG* PDX (LuCaP 35) and the ERG™ control
(LuCaP 96). Overall survival was not significantly improved

studied a similar
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Table 1. Primer sequences for gPCR analysis.

Primer name Primer sequence

Probe sequence

ERG forward
ERG reverse
RPS16 forward
RPS16 reverse

5’AGGCCAGATTTACCATATGAGC 3’
5’GGAGATGGTTGAGCAGCTTT 3’
5’CGCGCACGCTACAGTACA 3’
5’CGGATGTCTACACCAGCAAA 3'

CAGCCTGG

TGCTGGAG

in any of the animals bearing ERG* PDXs. Molecular
analysis suggested that ERG inhibition resulted in an
increase in mineralocorticoid receptor (MR) and downstream
associated gene expression in the two ERG* PDX lines that
were treatment resistant.

Materials and Methods

LuCaP PDX. Human PCa specimens were obtained as part of the
University of Washington Medical Center Prostate Cancer Donor
Program, which is approved by the University of Washington
Institutional Review Board. All animal studies described in this article
were approved by and performed in compliance with the University
of Washington Institutional Animal Care and Use Committee and
NIH guidelines. The LuCaP PDX lines were maintained by serial
passage in severe combined immunodeficient (SCID) male mice. All
LuCaP xenograft lines were evaluated for ERG expression by
quantitative PCR (qPCR) and immunohistochemistry (IHC) (Figure
1). We utilized four Lucas Foundation Cancer of the Prostate (LuCaP)
PDX models including three ERG* and one ERG~ as control. ERG*
LuCaP lines 23.1 and 35 were derived from metastatic lymph nodes,
while 86.2 was derived from a bladder metastasis. ERG~ LuCaP 96
(control) was derived from a transurethral resection of the prostate
(TURP) specimen.

Quantitative PCR. qPCR was performed on Prism 7900HT (Applied
Biosystems, Foster City, CA, USA) with Platinum qPCR Supermix-
UDG with ROX (Life Technologies, Carlsbad, CA, USA). RT-qPCR
assays and conditions were designed and performed as recommended
by the Universal ProbeLibrary Assay Design Center (Roche, Basel,
Switzerland). Probes used for the detection of ERG and RPS16 are
listed in Table I. qPCR data were normalized to RPS16.

Animal study design. CB-17 SCID mice (Charles River) were
implanted subcutaneously with either LuCaP 23.1, 86.2, 35, or 96
tumor tissue. Animals underwent rolling enrollment once tumors
reached 100 mm3 and were randomized into one of two groups
(Control vs. Treatment). Group 1 (Control) received vehicle (37.5 uL
DMSO/12.5 pL PBS) via intraperitoneal injection while Group 2
(Treatment) received YK-4-279 (150 mg/kg) in 37.5 uL DMSO/12.5
pL PBS as per Rahim et al. (16). All animals were dosed thrice
weekly with dosing continued until tumors reached 1000 mm3. Tumor
volumes (TV) were measured using digital calipers (calculated as
LxHxWx0.5236) and body weights (BW) were measured twice
weekly. Serum PSA was measured weekly until euthanasia using an
ARCHITECT Chemiluminescent Microparticle Total PSA assay

3386

(Abbot Laboratories, Chicago, IL, USA). Animals were euthanized
after up to 10 weeks of follow up, when tumors exceeded 1,000 mm3,
or when animals became otherwise compromised. The tumors were
then divided equally into paraffin blocks with the remainder flash
frozen for subsequent sequencing analysis.

RNA sequencing. Flash frozen LuCaP PCa xenograft tissue samples
were histologically evaluated for regions of viable tumor. RNA was
isolated from 16 xenografts of animals (2 control, 2 treated from
each line) with 280% tumor content. For xenografts with <80%
tumor, stroma and necrotic tissue were removed prior to sectioning.
RNA was extracted using the Qiagen RNeasy Kit, (Qiagen Inc.,
Valencia, CA, USA), according to the manufacturer's protocol. On-
column DNase digestion was performed. RNA concentration, purity
and integrity were assessed by NanoDrop (Thermo Fisher Scientific
Inc., Waltham, MA, USA) and Agilent Bioanalyzer. RNA-Seq
libraries were constructed from 1 pg total RNA using the Illumina
TruSeq Stranded mRNA LT Sample Prep Kit according to the
manufacturer’s protocol. Barcoded libraries were pooled and
sequenced six per lane on the Illumina HiSeq 2500 generating
50 bp paired end reads. Sequencing reads were mapped to the hg19
human and mm9 mouse genomes using TopHat v2.0.12. Sequences
aligning to the mouse genome deriving from potential
contamination with mouse tissue were removed from the analysis
as previously described (17). Gene level abundance was quantitated
from the filtered human alignments in R using the Genomic
Alignments Bioconductor package v1.0.1. Differential expression
was assessed using transcript abundances as inputs to the edgeR
Bioconductor package in R. For edgeR analysis, genes filtered for
a minimum expression level of at least 1 count per million reads
(CPM) in at least two samples were used to calculate expression
differences using an exact test with a negative binomial distribution,
applying a significance level of 0.05 with Benjamin-Hochberg false
discovery rate (FDR) adjustment (GEO accession # GSE86387).

Tissue microarray construction. Each tumor was fixed in buffered
formalin and embedded in paraffin. Xenograft tissue microarrays
(TMAs) were constructed using duplicate 1-mm diameter cores
from 70 control and 71 treated tumors.

Immunohistochemistry. Five-micron thick sections of the TMAs
were deparaffinized and rehydrated in sequential xylene and graded
ethanol. Antigen retrieval was performed in 10 mM citrate buffer
(pH 6.0) in a pressure cooker. Endogenous peroxidase and
avidin/biotin were blocked respectively (Vector Laboratories Inc.,
Burlingame, CA USA). Sections were then incubated with 5%
normal goat-horse-chicken serum, incubated with primary antibody
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Figure 1. Expression of ERG transcript and protein in LuCaP Xenograft lines: Of the twenty-three LuCaP PDX models assayed by gPCR analysis,
six models (LuCaP 23.1 and 23.1 CR, LuCaP 35 and 35 CR, LuCaP 86.2 and LuCaP 92.1) expressed ERG at the transcript (A) and protein (B)
levels. CR=Castrate Resistant. ERG transcript levels are expressed relative to RPSI6.

(Table II), incubated with biotinylated secondary antibody (Vector
Laboratories Inc., Burlingame, CA, USA), followed by ABC reagent
(Vector Laboratories Inc., Burlingame, CA, USA) and stable DAB
(Invitrogen Corp., Carlsbad, CA, USA). All sections were

counterstained with hematoxylin and mounted with Cytoseal XYL
(Richard Allan Scientific, San Diego, CA, USA). Mouse or rabbit
IgG (Vector Laboratories Inc., Burlingame, CA, USA) were used as
negative controls.
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Figure 2. Tumor volume in YK-4-279-treated ERG* LuCaP 23.1, 35 and 86.2 and ERG- LuCaP 96: LuCaP 23.1 animals treated with YK-4-279
(n=18) had significantly decreased normalized tumor volume (TV) (p=0.026) compared to controls (n=18) (A). LuCaP 86.2 treated animals (n=17)
showed a trend towards decreased normalized TV (p=0.056) compared to controls (n=17) (B). LuCaP 35 treated animals (n=17) revealed no overall
trends in normalized TV (p=0.649), compared to control animals (n=17) (C). LuCaP 96 treated animals (n=19) revealed no overall trends in
normalized TV (p=0.533) compared to controls (n=18) (D). Individual TVs are plotted. Blue=YK-4-279 treated vs. Grey=untreated animals.

Immunohistochemical assessment. Proliferation was assessed by
determining the mitotic index counting up to 3 fields/ core for
duplicate 1 mm punches at 200x magnification (two observers, CM
and LB). Microvessel density was assessed using CD34 (Table II).
Duplicate 1 mm punches were visualized and Ki-67+ tumor cells or
CD34+ endothelial cells were counted relative to negative controls.
Averages were computed followed by overall averages for treated
and untreated tumors and expressed as a ratio. ERG immunostaining
was assessed using a quasi-continuous scoring system, created by
multiplying each optical density level (“0” for no brown color, “1”
for faint and fine brown chromogen deposition, and “2” for clear
and coarse granular chromogen clumps) by the percentage of cells
at each staining level. The sum of the 3 multiplicands provided a
score for each tissue core (score range: 0-200). The final score for
each sample was the average of 2 duplicated tissue cores. Only
nuclear positivity was evaluated in ERG IHC staining. The final
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scores were categorized as “none” (score range: 0), “weak” (score
range: 1-100), “moderate” (score range: 101-150) and “intense”
(score range: 151-200). Unusable samples, including missing,
necrotic or folded tissue cores, were excluded from final analysis.

Statistical analysis. Tumor volume (TV), prostate specific antigen
(PSA), body weight (BW) and overall survival (OS) between
control and treated animals were compared when >2 animals
remained in each group. Prior to analysis, Grubb’s outlier test was
performed on TV, PSA and BW with signifcant values (p<0.05)
excluded. Differences in TV, PSA and BW between control and
treated animals were calculated using unpaired #-tests with unequal
variances, with significance set at p<0.05. Kaplan—Meier analysis
was performed for overall survival using the log-rank (Mantel-Cox)
test. For IHC comparison, unpaired #-tests with unequal variances
and significance set at p<0.05 were utilized.
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Figure 3. YK-4-279 Treatment of ERGY LuCaP 23.1. LuCaP Animals
treated with YK-4-279 (n=18) experienced significantly decreased
normalized serum PSA values (A) (p=0.023) compared to controls
(n=18). Normalized body weight was also significantly decreased in
these animals (B) (p=0.018), but no effect on overall survival was seen
(C), (p=0440). PSA and BW results are plotted as normalized
mean+SEM. p-Values pertain to overall treated vs. untreated animals.
Individual data points marked with * indicate significant difference
between control and treated animals at that time point. Gray hatched
line=vehicle control, continous black line: YK-4-279 treated.
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Figure 4. YK-4-279 Treatment of ERG* LuCaP 86.2. LuCaP 86.2
treated animals (n=17) showed a trend towards decreased normalized
serum PSA (A) (p=0.092) compared to controls (n=17). There were no
differences in normalized BW (B) (p=0.762) or OS (C) (p=0.763) seen.
PSA and BW results are plotted as normalized mean+SEM. p-Values
pertain to overall treated vs. untreated animals. Individual data points
marked with * indicate significant difference between control and
treated animals at that time point. Gray hatched line=vehicle control,
continous black line: YK-4-279 treated.
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Figure 5. YK-4-279 Treatment of ERG* LuCaP 35. LuCaP 35-treated
animals (n=17) revealed no overall trends in normalized PSA (A)
(p=0.746), BW (B) (p=0.154), or OS (C) (p=0.171) compared to control
animals (n=17). PSA and BW results are plotted as normalized
mean+SEM. p-Values pertain to overall treated vs. untreated animals.
Individual data points marked with * indicate significant difference
between control and treated animals at that time point. Gray hatched
line=vehicle control, continous black line: YK-4-279 treated.
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Figure 6. YK-4-279 Treatment of ERG~ LuCaP 96 (control). LuCaP 96-
treated animals (n=19) revealed no overall trends in normalized PSA
(A) (p=0.565), or BW (B) (p=0.382) compared to controls (n=18). OS
was significantly shorter in YK-4-279-treated animals by the log-rank
test (C) (p=0.026). PSA and BW results are plotted as normalized
mean+SEM. p-Values pertain to overall treated vs. untreated animals.
Individual data points marked with *indicate significant difference
between control and treated animals at that time point. Gray hatched
line=vehicle control, continous black line: YK-4-279 treated.
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Figure 7. Immunohistochemical analysis of ERG. ERG expression in LuCaP 23.1 (A), LuCaP 35 (B), LuCaP 86.2 (C) and LuCaP 96 (D). Note
arrow highlighting ERG expression in endothelial cells. Magnification x200.

Table II. Antibody information.

Protein Company and Ab cat# Antibody type THC condition and optimization

ERG Abcam-ab92513 Rabbit polyclonal 1:100 citrate pH6, 30 min pressure cooker
Caspase 3/Cleaved Cell signaling-9661 Rabbit polyclonal 1:100 citrate pH6, 30 min pressure cooker
CD34 Abcam-ab8158 Rat monoclonal 1:160 citrate pH6, 30 min pressure cooker
ZEB Sigma-HPA 027524 Rabbit polyclonal 1:100 citrate pH6, 30 min pressure cooker
TWIST Santa Cruz-Sc15393 Rabbit polyclonal 1:66 citrate pH6, 30 min pressure cooker
Results a significant decrease in BW (p=0.0176), with no change in

YK-4-279 elicits differential effects on ERGT PDX. The ERG*
LuCaP lines for the current study encompass a range of relative
ERG expression levels including low (35), medium (23.1) and
high expressors (86.2) based on transcript levels (Figure 1).
Three ERG™ (23.1, 86.2 and 35) and one ERG™ PDX (96) were
treated with YK-4-279 revealing differential effects on TV,
PSA, BW and OS. YK-4-279 treatment of animals bearing
LuCaP 23.1 tumors significantly decreased TV (p=0.026)
(Figure 2A) and serum PSA (p=0.0229). However, there was

OS (Figure 3). A trend towards decreased TV (p=0.0563)
(Figure 2B) and serum PSA levels (p=0.0921) was observed
in YK-4-279 treated animals bearing LuCaP 86.2 tumors with
no change in BW or OS (Figure 4). YK-4-279 had no effect
on LuCaP 35 TV, PSA, BW, or OS (Figure 2C; Figure 5).
Finally, the YK-4-279 treated animals bearing the ERG- LuCaP
96 tumors displayed no change in TV, PSA, or BW (as
expected), yet these animals experienced a statistically
significant decrease in OS (p=0.0259) (Figure 2D; Figure 6).
The impact of YK-4-279 treatment on cell death, proliferation,
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Figure 8. RNA-Seq data of YK-4-279 treated PDX compared to untreated PDX. Tumor RNA was isolated from three ERG expressing PDX LuCaP
23.1, LuCaP 35 and LuCaP 86.2 and one ERG~ PDX line LuCaP 96. The tumor RNA from YK-4-279 treated and untreated animals on study [2
control, 2 treated from each line (n=16)] was used for RNA-Seq. The expression of the top 20 upregulated genes and bottom 20 downregulated
genes are shown for each of the ERG* PDX lines (PDX line of interest is underlined). Ctrl: Vehicle control; YK-4-279: treated.

microvessel density and ERG expression. At the end of the
study, ERG" tissues were acquired for histochemical and
immunohistochemical analysis. ERG expression was evaluated
in all four YK-4-279 treated and vehicle treated PDX lines. All
three ERG* PDX lines expressed ERG while LuCaP 96 the
ERG™ line did not (Figure 7). No difference in ERG staining
was observed between YK-4-279 treated and vehicle treated
PDX tumors (LuCaP 23.1 [p=0.398], LuCaP 35 [p=0.688],
LuCaP 86.2 [p=0.585]). Initial inspection did not suggest any
increase in necrosis between treated and untreated tumors. Cell
death, as determined by caspase 3 staining, was no different
between the YK-4-279 treated and vehicle treated LuCaP PDX
tumors (23.1 [p=0.267], LuCaP 35 [p=0.201], LuCaP 86.2
[p=0.759]). Tumor cell proliferation, as determined by mitotic
index, was significantly different between the YK-4-279 treated
and vehicle treated LuCaP 23.1 (p=0.0038). Since ERG is
expressed in endothelial cells, microvessel density (CD34) was
also assessed in the ERG* PDXGs, but there was no difference
in microvessel density between the YK-4-279 treated and
vehicle treated animals (LuCaP 23.1 [p=0.404], LuCaP 35
[p=0.389], LuCaP 86.2 [p=0.845]).
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YK-4-279 treatment decreases the expression of ERG-
associated genes and increases mineralocorticoid-associated
genes. As YK-4-279 is a functional inhibitor of ERG, RNA-
Seq on treated and untreated tumors was used to determine the
impact of ERG suppression on downstream gene expression
after YK-4-279 treatment (Figure 8). A representative sample
of the top 20 up-regulated and bottom 20 down-regulated down
genes is shown in Figure 8. As the response to ERG inhibition
was different between each of the ERG* PDX lines, each line
was assessed separately. Two genes previously shown to be
suppressed by ERG in PCa were in the top 20 up-regulated
genes in the tumors of the YK-4-279 treated animals, TFF3 and
AZGP1 (18, 19). No known ERG-associated genes of interest
were identified in the 20 down-regulated genes in the PDX
tumors post-YK-4-279 treatment with the exception of ETV1
in the LuCaP 86.2 PDX line. This was an unexpected finding
as YK-4-279 inhibits ETV1 activity as described (15). ERG
has also been associated with epithelial-mesenchymal transition
(EMT) (20, 21) and while we did identify a decrease in EMT
related genes in the LuCaP 23.1 tumors after YK-4-279
treatment (p=0.01), we did not identify a specific EMT-



Winters et al: Small-molecule Inhibition of ERG* Prostate Cancer Xenografts

Figure 9. Immunohistochemical analysis of Twist. Twist expression in LuCaP 23.1 (A), LuCaP 35 (B), LuCaP 86.2 (C) and LuCaP 96 (D). Arrows

highlight nuclear Twist localization. Magnification x200.

associated pathway by gene set enrichment analysis in the
other lines (GSEA). Additionally, through IHC, tumors were
evaluated from YK-4-279-treated and untreated animals for the
known EMT transcription factors Twist and Zeb (Figures 9 and
10), but found no difference in protein expression between
treated and untreated groups. Further, nuclear staining for these
EMT-associated transcription factors was only observed in a
subset of cells within each tumor (Figures 9 and 10) (22).
Interestingly, in the top 20 genes up-regulated in the PDX
tumors after YK-4-279 treatment (Figure 8), a number of genes
associated with the mineralocorticoid receptor (MR) were
identified. These included the MR itself (NR3C2), SGKI1,
FKBP5 and TSC22D3 (Figure 8) and each of these genes has
been shown to be a direct target of the MR (23) (NR3C2,
SGK1, FKBP5, TNS1, TSC22D3 transcript expression is
shown in Figure 11). RASL12 is also considered to be a direct
target for MR, but it was not present in the RNA-Seq data (23).
Steroid receptor activity can also be impacted by microtubule
dynamics, which ERG has been suggested to affect (24). An
up-regulation of the tubulin genes (TUBA3D, TUBAS3E,

TUBA4A, and TUBA4A) and the microtubule interacting
protein (TACC2) was observed (25) in the tumors obtained
from YK-4-279 treated animals (Figure 8). GSEA
demonstrated that the tumors from YK-4-279 treated animals
had a gene expression signature similar to a signature up-
regulated after androgen (R1881) treatment in LNCaP cells
(NELSON_RESPONSE_TO_ANDROGEN_UP) (p<0.001).
Genes in this group include (FKBP5, SGK1, and AZGP1).
Additionally, GSEA demonstrated that enrichment of messages
down-regulated after androgen (R1881) treatment in LNCaP
cells (NELSON_RESPONSE_TO_ANDROGEN_DN) was
significantly associated with messages down-regulated after
YK-4-279 treatment (p<0.001).

Discussion
ERG has been associated with proliferation and metastasis
in PCa (4, 6, 20). ERG protein is expressed in primary PCa

(5, 6, 26) and to a lesser extent in metastases (7, 8, 27). We
have argued previously that this difference may indicate
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Figure 10. Immunohistochemical analysis of Zeb. Zeb expression in LuCaP 23.1 (A), LuCaP 35 (B), LuCaP 86.2 (C) and LuCaP 96 (D). Arrows

highlight nuclear Zeb localization. Magnification x200.

ERG is important in primary PCa, yet may no longer be
required for survival and proliferation in a subgroup of
castration-resistant prostate cancer (CRPC) metastases.
Thus, these subsets may acquire additional mutations/
rearrangements, promoting proliferation and survival
irrespective of ERG expression (8).

YK-4-279 has been shown to decrease tumor growth in
ETV1 positive PCa LNCaP tumors (16). However, there are
a limited number of ERG* models of PCa. Our hypothesis
was that ERG inhibition would impact tumor growth in
PCa, with the understanding that PCa is a heterogeneous
disease and different tumor phenotypes will display
different responses to treatment. To determine the
translational application of anti-ERG therapy in PCa, we
identified and treated 3 LuCaP PDX lines that expressed
ERG with YK-4-279.

We found that the androgen-sensitive LuCaP 23.1 PCa PDX
responded to YK-4-279 with significantly decreased tumor
volume and serum PSA levels, however the androgen sensitive
PDX LuCaP 35 and LuCaP 86.2, which expresses the AR
v567es variant, did not significantly respond to treatment (28).

3394

231 cHl
23.1YKA279

23.1_YK4279

86.2_Ctl
862 YK4279

86.2_YKA279

35_Ct
35 YK4279

35_YK4279

86.2_Ctl
96_Ctr
96_YK4279

96 _YK4279

8
i
&

35_Ctrl

96_Ctrl

NR3C2

FKBPS

SGK1

TSC2203 N

Figure 11. Expression of the mineralocorticoid receptor (NR3C2) and
associated genes in YK-4-279 treated PDX compared to untreated PDX.
RNA was isolated from tumors from YK-4-279 treated and untreated
animals on study (2 control, 2 treated from each line (n=16)) for RNA-Seq.
Three ERG-expressing PDX lines LuCaP 23.1, LuCaP 35, and LuCaP 86.2
and one ERG- PDX line LuCaP 96. The expression of the mineralocorticoid
receptor and four direct target genes regulated by the mineralocorticoid
receptor are shown. Ctrl: Vehicle control; YK-4-279: treated.

Taken together, these data suggest a heterogeneous response to
YK-4-279 with one PDX line responding, one with a partial
response, and a third with no response. Additionally, while
tumor volume did not change, animals bearing the LuCaP 96
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ERG™ PDX line treated with YK-4-279 similarly to the other
ERG* LuCaP lines had a decrease in body weight suggesting
treatment associated toxicity.

An analysis of proliferation using a mitotic index
identified a decrease in proliferative index in LuCaP 23.1
tumors acquired from the animals at the end of the study. We
did not observe any difference in apoptosis between the
treated and untreated groups. ERG is expressed in
endothelial cells and thus ERG inhibition could potentially
impact tumor vasculature, however, no change in
microvessel density was observed in the PDX models after
YK-4-279 treatment.

We used RNA-Seq on tumors from animals on study to
determine whether YK-4-279 was impacting gene
expression downstream of ERG. Initially, we identified two
ERG suppressed genes that were up-regulated after YK-4-
279 treatment and then focused on known and novel
pathways that appeared to be altered in tumors after ERG
inhibition by YK-4-279. As mentioned above, ERG has
been associated with EMT (20, 21) and proliferation (4)
yet, we found no proliferation-associated pathways as being
differentially regulated in the tumors of treated and
untreated animals. Additionally, while the expression of a
number of EMT associated genes was changed in the
tumors during treatment, no distinct EMT-associated
pathways were altered at the gene expression level or by
IHC analysis.

One interesting finding by RNA-Seq, was an increase in
expression of tubulin proteins and TACC?2, a micro-tubule
interacting protein (25). ERG has been shown to promote
taxane resistance in CRPC (24), however, whether this
resistance to taxanes in ERG* PCa is related to the regulation
of tubulin remains to be seen.

Another interesting finding was the increase in the
mineralocorticoid receptor (MR) and its direct target genes
after ERG inhibition by YK-4-279. The increase in MR and
MR-associated proteins, specifically FKBPS, suggests that
MR activity is increased in tumors of animals treated with
YK-4-279 (23). However, even though it is a direct target of
the MR, FKBP5 generally attenuates MR action, but
increases the activity of the androgen receptor (29). The
possible action of FKBP5 in promoting AR action is
supported by the GSEA analyses showing enrichment of
messages up-regulated after androgen (R1881) treatment in
LNCaP cells, in response to YK-4-279 treatment.

Our results demonstrated that while there was treatment-
associated toxicity, inhibiting ERG activity using YK-4-279
significantly blocked tumor growth of the LuCaP 23.1 PDX.
However, it did not significantly impact LuCaP 35 and
LuCaP 86.2 PDX tumor growth. Expression of MR-
associated genes and tubulin were increased post-YK-4-279
treatment in these PDX models. Based on these data, we
hypothesize that ERG inhibition may represent a potential

therapy for some PCa patients with ERG* disease. Follow-
up studies using small- molecule inhibition of ERG, with
improved toxicity profiles, are needed to better understand
the full potential of targeting ERG in PCa and what potential
mechanisms of resistance exist to prevent efficacy of this
therapeutic intervention.
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