
Abstract. Background/Aim: Recent innovations in the
development of systemic and targeted therapies have improved
survival and quality of life in multiple myeloma (MM)
patients. However, in most cases, this hematological
malignancy of monoclonal B-lymphocytes remains incurable.
Exaggerated Wnt/β-catenin signaling has been demonstrated
in lymphoma and MM, therefore targeting related signaling
molecules might represent a promising therapy approach.
Griseofulvin, a widely used antifungal drug, is chemically
related to other known Wnt-inhibitors and we recently
demonstrated its potent in vivo efficacy in a murine myeloma
model. Materials and Methods: The anti-tumor apoptotic
effect of griseofulvin at doses ranging from 0.1-200 μM was
investigated on a total of ten human and two murine
myeloma/lymphoma cell lines, as determined by 3’3-
dihexyloxacarbocyanine iodide (DiOC6) and propidium iodide
(PI) staining in flow cytometry. Results: Griseofulvin
significantly induced apoptosis in all investigated myeloma
and lymphoma cell lines in a dose-dependent manner, while
healthy control cells were less sensitive. Conclusion: Given
the known safety profile and apoptosis induction at low
effective doses, our data warrant further in vitro and in vivo
studies utilizing griseofulvin as a potential therapy agent for
MM and lymphoma.

Multiple myeloma (MM) represents a hematological
neoplasm characterized by monoclonal malignant secretory
plasma cells in the bone marrow and is commonly

accompanied by monoclonal protein in peripheral blood
and/or urine (1, 2). Innovative therapy strategies, including
immunomodulatory drugs (IMiDs) like bortezomib,
lenalidomide and thalidomide improve both treatment
outcome and patient survival. Also cell-based therapies have
been proven to be feasible and effective in initial clinical
trials (3, 4). However, despite recent innovations, sustainable
treatment strategies are still indispensable since the majority
of patients might eventually experience relapse of disease.

The activation of the Wnt pathway, usually restricted to
embryonic development, represents a tumor-specific
signaling pathway and has been shown to induce and
maintain oncogenic effects, particularly in the oncogenesis
and promotion of lymphoma and MM (5-14). Hence, a
specific inhibition of Wnt signaling suppresses tumor
progression and, thereby, renders Wnt signaling molecules
an interesting therapeutic target for MM (14, 15).

Our recent studies confirmed the in vitro and in vivo
efficacy of several agents by targeting Wnt/beta-catenin
signaling molecules, especially in hematopoietic types of
cancer (16-30). Griseofulvin, as the investigated drug, is
chemically related to other known Wnt inhibitors and has
already shown anticarcinogenic properties in vivo (31). Here,
we demonstrated in vitro treatment efficacy and selective
induction of apoptosis by griseofulvin in a broad range of
myeloma and lymphoma cells.

Materials and Methods
Cell lines and culture conditions. Cell lines were obtained from
DSMZ (Braunschweig, Germany) or ATCC (LGC Standards, Wesel,
Germany) and incubated at 37˚C with 5% CO2 at 90 % humidity.

The human myeloma cell lines KMS 18, OPM-2, RPMI-8226
and U-266 (all obtained from DMSZ) were cultured in RPMI-1640-
medium (PAA, Pasching, Austria), supplemented with 5% heat-
inactivated fetal calf serum (FCS; Invitrogen, Darmstadt, Germany)
and 1% penicillin-streptomycin (Seromed, Jülich, Germany).
Human lymphoma cell lines Raji, SU-DHL-4, Oci Ly 8 Lam 53 and
primary chronic lymphocytic leukemia (CLL) cells were cultured
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under identical conditions as human myeloma cell lines. MPC-11 is
a murine plasmocytoma cell line and RAW 264.7 is a leukemia
monocyte macrophage cell line. Cells were cultured in RPMI-1640
medium supplemented with 5% heat-inactivated FCS and 1%
penicillin/streptomycin. RAW 264.7 cells were harvested by using
0.05% trypsin-EDTA solution (Invitrogen).

The human colon fibroblast cell line CCD-18Co was obtained
from ATCC (LGC Standards) and cultured in ATCC-formulated
Eagle’s minimum essential medium (LGC Standards) supplemented
with 15% of heat-inactivated FCS and 1% penicillin-streptomycin.
Cells were harvested by 0.05% trypsin-EDTA solution (Invitrogen),
centrifuged at 1,200 × g for 7 min and re-suspended in 1 ml media
to define the cell count. Media were renewed at least every 3 days.

Human samples. Peripheral blood lymphocytes (PBLs) were isolated
from blood samples of healthy volunteers using Ficoll density
gradient centrifugation (Lymphoprep; Nycomed, Oslo, Norway).
Blood from buffy coats was diluted 1:2 with phosphate-buffered
saline (PBS)/1% bovine serum albumin (BSA) (both from PAA) and
used for a Ficoll gradient (Lymphoprep). The leukocyte layer was
transferred to new tubes after centrifugation at 800 × g for 
30 minutes. Cells were washed three times with PBS/1%BSA and
re-suspended in RPMI-1640 medium supplemented with 10% FCS,
1% penicillin/streptomycin and 2.5% HEPES buffer solution (PAA).

Drugs and chemical reagents. Griseofulvin was purchased from
Sigma-Aldrich (Steinheim, Germany) and tested at concentrations
ranging from 0.1 to 200 μM for 72 h. For CCD-18Co cells,
concentrations up to 400 μM were tested.

3’3-Dihexyloxacarbocyanine iodide (DiOC6) and propidium iodide
(PI) staining. Reduced mitochondrial transmembrane potential is
known to occur late in the apoptotic process. We used DiOC6
staining and flow cytometry to assess the mitochondrial
transmembrane potential. Therefore, 1×105 cells were plated in 3
ml medium in 6-well plates. Griseofulvin was dissolved in
dimethyl sulfoxide (DMSO) (Invitrogen) and added to the medium
at different concentrations for three days. Staining with DiOC6 for
detecting viable cells and with PI, which binds to DNA in necrotic
cells, was used for the apoptosis assay, measured by a
fluorescence-activated cell sorter (FACS) (BD FACSCanto II;
Becton Dickinson Biosciences, Franklin Lakes, NJ, USA). The
medium containing drug-treated cells was transferred from each
well into a glass tube. Then, cells were centrifuged at 800 × g for
7 min, washed with phosphate buffered saline (PBS, pH 7.4) (Roti-
Stock 10x, purchased from CarlRoth, Karlsruhe, Germany) and
stained after repeated centrifugation by adding 500 μl staining
solution (RPMI-1640, 0.5% bovine serum albumin (BSA), 80 nM
DiOC6) for 15 min at 37˚C. After another washing step with
PBS/1% BSA, cells were re-suspended in 500 μl PBS/1% BSA.
FACS analysis was performed immediately after the addition of 5
μl PI solution (100 μg/ ml) with a BD FACSCanto II (Becton
Dickinson Biosciences) flow cytometer. Approximately 10,000
counts were made for each sample. In this assay, viable cells show
high fluorescence intensity for DiOC6 and a low fluorescence for
PI. Necrotic cells fluoresce in an opposite manner, with high
intensity for PI and a low intensity for DiOC6. Early apoptotic cells
show low fluorescence for both DiOC6 and PI. Cells with high
fluorescence intensity for both DiOC6 and PI correspond either to
late apoptotic cells as apoptotic bodies or debris.

Cell viability assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium-bromide (MTT). The efficacy of griseofulvin in
CCD-18Co cells was determined by cell viability in MTT assay.
Viable cells convert the yellow MTT (Sigma Aldrich) into purple
formazan when taken-up into mitochondria. Previously, cells were
plated at 1×104 well/ 100 μl in 96-well plates and left to adhere
overnight in the incubator. Twenty-four h later media were removed
and renewed containing various concentrations of griseofulvin. After
69 h, 1 μl MTT (5 mg/ml) was added to each well and incubated
for another 3-h period. Then, 80 μl of the media were removed and
50 μl of acidified isopropanol was added for cell lysis. After shaking
for 10 min, the amount of formazan was measured at 565 nM. The
measured amount of formazan in treated cells was compared to
untreated cells.

Statistical analysis. Values are given as mean±standard deviation
(SD). At least three separate and independent experiments were
performed with each cell line. Paired, two-tailed Student’s t-test was
used for statistical analysis. A p-value less than 0.05 was considered
significant.

Results
Titration of griseofulvin. The mean 50% inhibitory
concentration (IC50) after 72 h was calculated following
titration. Griseofulvin concentrations leading to a significant
decrease in viability of all tested myeloma and lymphoma
cells were, therefore, determined. PBLs and CCD-18Co
colonic fibroblasts served as healthy controls. All, except
CCD-18Co, cells were investigated by DiOC6 and PI staining
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Table I. Half-maximal inhibitory concentration (IC50) of griseofulvin
for human lymphoma, human and murine multiple myeloma, murine
leukemia and control cell lines. CCD-18Co cells and peripheral blood
lymphocytes (PBLs) served as controls. A total of 1×105 cells were
cultured under different concentrations of griseofulvin for 72 h. Cell
viability and apoptosis was measured by 3’3-Dihexyloxacarbocyanine
iodide (DiOC6) and propidium iodide (PI) staining in flow cytometry.
CCD-18Co cells were investigated by the 3-(4,5-dimethylthiazol-2-yl) -
2,5-diphenyltetrazolium-bromide (MTT) assay. Results represent the
mean of data from three independent experiments each.

                                                                      IC50 (μM)

Cell line                                                     Griseofulvin

KMS 18                                                            9 μM
OPM-2                                                             45 μM
RPMI-8226                                                      26 μM
U-266                                                               18 μM
MPC-11                                                           44 μM
Primary CLL cells                                           80 μM
Raji                                                                   33 μM
RAW 264,7                                                      28 μM
Oci Ly 8 Lam 53                                             30 μM
SU DHL 4                                                       22 μM
CCD-18Co                                                     >400 μM
PBL                                                                 180 μM



in flow cytometry. CCD-18Co cells were investigated by
MTT. IC50 values of griseofulvin employed after 72 h of
incubation are given in Table I.

Effect of griseofulvin on viability of human myeloma cells.
The viability of all investigated myeloma cells decreased in
a concentration-dependent manner following the addition of
griseofulvin. Low concentrations, starting from 10 μM, were
required for a significant apoptosis induction in most human
myeloma cells except OPM-2 cells, which tolerated doses up
to 50 μM without a significant decline in viability. Results
are shown in Figure 1. Figure 2 (Panel A and B) shows the
corresponding flow cytometry results.

Effect of griseofulvin on viability of human lymphoma cells.
Exposure to griseofulvin also significantly decreased
lymphoma cell viability in all tested cell lines. The IC50 of
Raji, SU-DHL-4 and Oci Ly 8 Lam 53 was attained after
treatment with 33 μM, 22 μM and 30 μM, respectively; a
significant induction of apoptosis was registered, comparably
with myeloma cells, at a griseofulvin concentration of 10 μM.
Primary CLL cells were least susceptible to the toxicity of
griseofulvin with an IC50 of 80 μM. Figure 3 presents the
respective results. Figure 2 (Panel C) presents the
corresponding flow cytometry results.

Effect of griseofulvin on viability of murine cells. The effects
of griseofulvin treatment in human myeloma and lymphoma
cells were also reproducible in murine myeloma and
leukemia monocyte macrophage cells. Required griseofulvin
concentrations for a significant decrease of viability in RAW
264.7 cells were comparable to those for human myeloma
and lymphoma cells and slightly higher in MPC-11 cells
with an IC50 of 28 μM and 41 μM, respectively. Results are
given in Figure 4.

Effect of griseofulvin on viability of healthy controls. We
chose CCD-18Co colon fibroblasts and PBLs in order to
analyze the toxicity of griseofulvin towards healthy stroma
cells and lymphocytes, respectively. CCD18-Co cells and
PBLs tolerated higher concentrations of griseofulvin
compared to myeloma and lymphoma cell lines tested.
Results are shown in Figure 5.

Discussion

MM represents a systemic malignant neoplasm caused by
degenerated plasma cells, mainly due to frequent gene
mutations and/or chromosomal translocations (30). Today’s
therapy schedules are built upon a primary initiated high-
dose chemotherapy followed by facultative hematopoietic
stem cell transplantation (32-35). Recent therapy innovations
enriched our therapeutic repertoire and led to both increased
patient survival and improved quality of life. However, up to
now, most MM patients remain incurable when solely treated
with chemotherapy (3, 36, 37).

Meanwhile, targeting tumor-specific signaling pathways
promoting tumor differentiation and proliferation represents
an established therapeutic approach in cancer research and
treatment. As a promising example of abrogated signaling
pathways, targeting canonical Wnt signaling might, thus, play
a pivotal role for treatment of MM (10-14). Development and
propagation of MM cells is, inter alia, dependent on the bone
marrow microenvironment. Bone marrow stromal cells were
shown to provide Wnt ligands encouraging an exaggerated
proliferation of MM cells (37-39). The inhibition of Wnt/β-
catenin signaling, in return, retards MM growth as evidenced
by numerous in vitro and in vivo studies (40).

Our laboratory recently revealed several drugs as potent
inducers of apoptosis in lymphoma and myeloma cells in vitro
and partially proved in vivo efficacy in subsequent animal
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Figure 1. Effect of griseofulvin on viability of KMS-18, OPM-2, RPMI-8226 and U-266 human myeloma cells. Cells were cultured with griseofulvin
for 72 h. Cell viability and apoptosis was measured by 3’3-Dihexyloxacarbocyanine iodide (DiOC6) and propidium iodide (PI) staining in flow
cytometry. Results represent data from three independent experiments. Data are shown as the mean±SD. *p<0.05 compared to untreated cells.



studies. Four of these drugs were already shown to inhibit the
Wnt pathway through targeting either β-catenin itself or its
downstream factors (16-26, 40, 41). Owing to their chemical
relationship to well-documented Wnt-inhibitors, such an
inhibitory potential is also conceivable for the remaining agents.

Griseofulvin is an orally active antifungal drug, first
isolated from Penicillium griseofulvum in 1939, used for the
treatment of several dermatophytoses (39). Its mechanism of
action was attributed to a selective inhibition of microtubule
depolymerization and induction of abnormal cell mitosis by
blocking at the G2/M phase. These antiproliferative and
antimitotic effects are merely weak in mammalian cells
following the intake of sufficient fungicidal doses (42-44).

Griseofulvin-promoted abnormal microtubule stabilization
was shown to induce a cascade of events leading to apoptosis.
In HT 29 colorectal adenocarcinoma cells, low doses of 10
μM induced apoptosis, whereas higher doses of >20 μM
initiated significant G2/M arrest. Higher doses (>20 μM)
caused an increase of cell death and G2/M mitotic arrest.
Griseofulvin-induced G2/M arrest was not solely attributed to
the induction of abnormal mitotic spindle formation but also

to the elevation of cyclin B1/cdc2 kinase activity and the
down-regulation of myelin transcription factor-1 (myt-1)
protein expression. Additionally, caspase 3 activation and B-
cell lymphoma 2 (Bcl-2) hyperphosphorylation were supposed
to be the mechanisms of griseofulvin-induced apoptosis (44).
Another study demonstrated that very high concentrations of
griseofulvin (>100 μM) were required to inhibit microtubule
polymerization in HeLa cervical cancer cells, albeit much
lower drug concentrations (1-20 μM) effectively suppressed
the dynamic instability of microtubules; the authors concluded
that the primary mechanism of action by which griseofulvin
inhibits mitosis in human cells is by suppressing spindle
microtubules dynamics similar to other antimitotic drugs as
vinca alkaloids and taxanes (44). Besides that, treatment of
adrenocortical cancer cells with a griseofulvin concentration
of 40 μM for 24 h resulted in a significant induction of
apoptosis, as shown by caspase 3/7 cleavage (46).

Interestingly, in HL-60 leukemia cells, the activation of the
nuclear factor-kappa B (NF-ĸB) pathway, as well as the
activation of c-Jun N-terminal kinases (JNKs), significantly
promoted the phosphorylation of Bcl-2 resulting in G2/M
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Figure 2. Exemplary results generated by flow cytometry. Within the quarters, the relative number of cells is given in percentages. (A) OPM-2 cells
before and after treatment with 100 μM griseofulvin. (B) KMS-18 cells before and after treatment with 10 μM griseofulvin. (C) Raji cells before
and after treatment with 50 μM griseofulvin. Cells were treated with griseofulvin at different concentrations. Flow cytometry was performed seventy-
two hours after incubation. 



cell-cycle arrest and induction of apoptosis (47); this is of
major importance since the majority of the above mentioned
signaling pathways and molecules also interfere with the Wnt
pathway, particularly within the scope of hematological
neoplasms. Despite those initial results, the effect of
griseofulvin on both MM and lymphoma was solely
addressed in vivo by a recent study of our workgroup using
a murine myeloma cell model in which we could demonstrate
prolonged survival and reduced tumor growth in myeloma-
bearing mice (31), whilst in vitro data were lacking.

Our presented in vitro data indicate that griseofulvin
affects the growth of multiple myeloma and lymphoma since
it significantly reduced the viability of all tested myeloma
and lymphoma cell lines by apoptosis induction due to
reduced mitochondrial membrane potentials. Thereby, both
human and murine cells were equally affected in a dose-

dependent manner. Doses of approximately 10 μM
significantly decreased cell viability in most myeloma and
lymphoma cell lines tested. Interestingly, CCD-18Co colonic
fibroblasts and PBLs, serving as healthy controls, tolerated
higher drug concentrations. These data and the given safety
profile of griseofulvin, as a commonly used anti-fungicidal
drug, emphasize its favorable tolerability.

Due to its influence on Wnt-associated signaling molecules
in leukemia and other malignancies, griseofulvin might also
interfere with signaling molecules embedded in the Wnt and
associated signaling pathways in lymphoma and multiple
myeloma. Griseofulvin demonstrated a significant cytotoxic
potential towards both MM and lymphoma cells by apoptosis
induction and slightly decreased the viability of healthy
controls. Hence, advanced studies investigating its potential as
novel therapeutic drug for MM and lymphoma are warranted.
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Figure 4. Effect of griseofulvin on viability of MPC-11 and RAW 264.7 murine myeloma and leukemia cells, respectively. Cells were cultured with
griseofulvin for 72 h. Cell viability and apoptosis was measured by 3‘3-Dihexyloxacarbocyanine iodide (DiOC6) and propidium iodide (PI) staining
in flow cytometry. Results represent data from three separate experiments each. Data are shown as mean±SD. *p<0.05 compared to untreated cells.

Figure 3. Effect of griseofulvin on viability of primary CLL, Raji, SU DHL 4 and Oci Ly 8 Lam 53 human lymphoma cells. Cells were cultured with
griseofulvin for 72 h. Cell viability and apoptosis was measured by 3‘3-Dihexyloxacarbocyanine iodide (DiOC6) and propidium iodide (PI) staining
in flow cytometry. Results represent data from three separate experiments each. Data are shown as mean±SD. *p<0.05 compared to untreated cells.
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