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Neurovascular Bundle Infiltration Can Explain Local Relapses
Using Conformal Radiotherapy of Prostate Cancer
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Abstract. Aim: To quantify the impact of decreased margins
for two treatment techniques, three-dimensional conformal
radiotherapy (3D-CRT) and volumetric-modulated arc therapy
(VMAT), on local control in curative treatment of prostate
cancer. Materials and Methods: The planning target volume
(PTV) margins were decreased in steps of 1 mm from 10 to
1 mm. Treatment plans using 3D-CRT and VMAT technique
were produced for all margin sizes and the dose to the neuro
vascular bundles (NVB), that was not included in the PTV, was
investigated. Results: Due to the more conformal dose delivery
using VMAT, the dose to the NVB decreased more rapidly by
VMAT compared to the 3D-CRT plans. The dose difference
was significant for margins from 1-7 mm. Conclusion: One
should be very cautious before clinical routines are changed,
bearing in mind whether the change means more conformal
treatment technique, smaller margins or target segmentation
in different imaging modalities.

Prostate cancer (PC) is the most common cancer among men
in Sweden, EU and North America. In Sweden, 9500 men
develop PC each year and approximately 20% of all Swedish
men will be diagnosed with PC during their lifetime. Each
year, 2500 men die from PC in Sweden (which is 5% of all
mortality). Many patients experience side-effects of their PC
treatment such as rectal bleeding, incontinence and
impotence. In addition to great costs for the society, these
side-effects cause impaired quality of life for a long period
of time.
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With technical advances in radiotherapy, such as three-
dimensional conformal radiotherapy (3D-CRT) (1), intensity-
modulated radiotherapy (IMRT) (2) and volumetric arc
therapy (VMAT) (3), the conformity of the dose distribution
has been improved (4). Despite this, in radiotherapy for PC,
the proximity of the prostate and the organs at risk (OAR)
are limiting factors (5).

The alteration in position and shape of the prostate and the
OAR implies uncertainties in set-up and delivery of
radiotherapy (6-8), which could lead to treatment fields partly
or completely missing the target (9). In the International
Commission on Radiation Units and Measurements (ICRU)
report 50 an additional margin is applied to the delineated
clinical target volume (CTV) to account for geometrical
uncertainties, the planning target volume (PTV) (10).

The PTV margin has been reduced from typically 15-20 mm
to 3-7 mm with the use of fiducial markers (11) and image-
guided radiotherapy (IGRT) (12), where daily pre-treatment
imaging was used to take into account the inter-fractional
variation of the geometrical position of the prostate (13).

According to studies from Heemsbergen et al. (14) and
Witte et al. (15), local control was reduced using IMRT
compared to 3D-CRT box technique in patients with high-
risk tumours. It has also been shown by Chao et al. that the
microscopic spread in the neuro vascular bundles (NVBs) is
dependent on the differentiation of the tumour (16).

In this comparative treatment planning study, we studied the
difference in tumour control probability (TCP) in the NVBs
for different PTV margins (1-10 mm in steps of 1 mm) using
the 3D-CRT box technique and VMAT in order to explain the
clinical observation in the above-mentioned studies.

Materials and Methods

Patients. Fourteen consecutive patients with biopsy-proven localized
adenocarcinoma T1-T3NX/0MX/0 indicated for curative radiotherapy
of localized PC were included in the study. The prostate CTV was 21
ml to 69 ml (mean=44 ml).
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Table 1. The parameters used for the tumour control probability calculations for the clinical target volumes (CTV) and the neurovascular bundles

(NVB). Four different a/f ratios were used.

Stage/target DSOGy Gamma o/f Ratios (Gy) Reference
C/ICTV 63.30 5.00 1.5,3.0,6.0,10.0 (17-23)
C/NVB 63.30 5.00 1.5,3.0,60,10.0 (17-23)
Table II. The parameters used for the normal tissue control probability calculations.

Stage/organ DSOGy Parameter m o/ Ratio (Gy) Parameter n Reference
Grade>2/rectum 81.80 0.22 3.00 0.2900 (24)
Grade>3/bladder 62.00 0.11 6.00 0.13 (25)

Patient immobilization and positioning. For treatment planning
purposes, all patients underwent computed tomographic (CT)
scanning using 2.5 mm slice thickness. The patients were placed on
their back on the table, and a knee and foot fixation was used.

Target volumes and OAR. The prostate gland was contoured and
defined as the CTYV, using magnetic resonance imaging (MRI) as
support for target segmentation. The seminal vesicles were excluded
from the CTV. The CTV to PTV margin was 1-10 mm in all
directions, increased in steps of 1 mm for a total 10 PTVs for each
patient (Figure 1). The NVBs were segmented separately and not
included in the CTV, thus the NVBs did not affect the PTV. The
NVB-CTV was defined as a circle of 7 mm (Figure 1) in order to
cover 90% of microscopic spread in tumours with Gleason score 7
(16). The rectum, the bladder and the femoral heads were segmented
as OAR. The length of the rectum was 3 cm above and below the
CTV in the longitudinal direction and was defined as the whole
content inside the outer wall. The bladder was segmented as the
whole content inside the outer wall.

Treatment planning. For each patient in the study, two treatment plans
for each PTV were made using 3D-CRT and VMAT respectively,
which gave a total of 20 treatment plans per patient. The treatment
plans were made in RayStation 5 (RaySearch laboratories, Stockholm,
Sweden) using an in-house developed ironPython script, which is a
built-in functionality in the treatment planning system. The treatment
plans were made for an Elekta Synergy instrument (Elekta,
Stockholm, Sweden) with an Agility multi-leaf collimator. The 3D-
CRT treatment plan used four equally spaced beams (0. 90. 180 and
270 degrees) using 15 MV x-ray beams and the VMAT treatment plan
one full arc (182-178 degrees) using 6 MV x-ray beams. All plans
were calculated with a voxel size of 1x1x2.5 mm3. The prescribed
dose was 78 Gy in 39 fractions.

Evaluation criteria. The dose coverage of the PTV was to meet the
criteria that 98% of the volume should receive at least 95%
(Dgg,>95%) and 2% of the volume at most 107% (D(7¢,<2%) of
the prescribed dose (10). Due to different PTV margins, there were
no dose evaluation criteria for the OAR. Depending on the size of
the PTV, two levels of average dose to the rectum and the bladder
were used as optimization criteria to reach a dose level in the OAR
as low as possible with retained dose conformity to the PTV.
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TCP was calculated for the prostate-CTV and the NVB-CTV, and
normal tissue control probability (NTCP) was calculated for the
rectum and the bladder. TCP and NTCP parameters are presented in
Tables I and 1II, respectively. For TCP and NTCP calculations, the
RayBiology module in RayStation was used.

Statistics. A paired, double sided t-test was used for both TCP and
NTCP comparisons (Matlab 2016b, MathWorks Inc., Natick, MA,
USA). A significance level of 5% was used. Only one p-value is
mentioned for the cases where significance was shown in the
results, due to the great number of p-values in this work. Instead,
confidence intervals are used to show if the difference in TCP and
NTCP was significant or not for each PTV margin. The difference
was considered significant if the confidence interval did not
contain zero.

Results

In Figure 2, the TCP values for 3D-CRT and VMAT are
plotted for the left and right NVB and for the prostate.

The TCP values for the left and right NVB were
calculated with four different a/f-values: 1.5, 3.0. 6.0 and
10 Gy (see Figure 2). The TCP values for both NVBs were
significantly higher when the 3D-CRT technique was used
for margins of 1-7 mm (p<0.05). The parameters used for
the TCP model are shown in Table I.

In Figure 3, the NTCP values and their confidence
intervals for the rectum and bladder are shown. The
parameters used for the NTCP model are shown in Table II.
There was a significant difference between the two treatment
techniques for all margins used, both for the rectum and the
bladder, where the probability for normal tissue complications
were significantly lower when VMAT was used.

All treatment plans fulfilled the dose coverage criteria
D98% >95% for the corresponding PTV. The mean TCP
values for the prostate are shown in Figure 2.

There were no differences in TCP values for the prostate-
CTV, regardless of PTV margin and o/fB-value used (see
Figure 2).
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Figure 1. Transversal and sagittal view of one representative patient. The rectum (brown), bladder (pale yellow), prostate-clinical target volume

(CTV) (pink) and neurovascular bundle-CTV (yellow) are delineated.
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Figure 2. Mean tumour control probability values by margin for all a/f-values by three-dimensional conformal radiotherapy (squares) and
volumetric-modulated arc therapy (diamonds). The mean difference is shown as circles with its confidence interval (+).

Discussion

There are at least two studies describing an increase in
clinical local failure during radiotherapy of prostate cancer
when the treatment techniques have become more conformal
(14, 15). It has also been shown that the microscopic spread

of tumour cells in the NVB
differentiation of the tumour (16).

In this study, we investigated the impact on the TCP in the
NVBs during radiotherapy of PC for different treatment
techniques and margins. We showed that there was a
significant difference in TCP for NVB-CTV using 3D-CRT

is dependent on the
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Figure 3. Mean normal tissue control probability values for the rectum (left) and the bladder (right). Three-dimensional conformal radiotherapy is
represented by squares and volumetric arc therapy by diamonds. The mean difference is shown as circles with its confidence interval (+).

and VMAT for PTV margins up to 7 mm (p<0.05), where
the TCP was higher when using 3D-CRT. For larger margins,
the NVBs were included in the PTV and the TCP was similar
for both treatment techniques. But the NTCP for the rectum
and the bladder was significantly lower for VMAT,
irrespective of margin, due to the more conformal dose
distribution around the PTV.

This study confirms that in regard to the TCP in the NVB,
more conformal techniques influence local control. The
decreased local control is due to a more conformal dose
distribution and the reduction of the PTV margins, which
reduces side-effects. The margins can be safely reduced due
to on-line verification of the prostate position (IGRT and
fiducials). Therefore, this study shows the importance of
better outlining of CTV in PC, taking into account
information concerning microscopic spread in the NVBs and
information of capsular infiltration for other investigations
such as MRI. The disadvantage of a larger CTV is an
increased dose to the rectum. By separating the rectum from
the prostate using rectum spacers (26-31), the dose to the
rectum will be lowered. This will be even more important
when using small margins and very conformal techniques
such as VMAT and proton therapy.

Even the modality in which the CTV is outlined affects
the risk of small PTV margins. It has been shown by
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Gunnlaugsson and co-workers that the CTV is 23% larger
when it is defined on computed tomography compared to
defining it on MRI (32). They also showed that during
extreme hypo-fractionated radiotherapy, the prostate
increases in volume during the treatment by up to 15%. In
this case, the risk of local relapse is larger when outlining
the CTV on MRI if the same PTV margin is used for both
computed tomography and MRI. Therefore, it is of great
importance to understand the meaning of the PTV margin
which has to be adapted to the modality used.

Since this is a treatment planning study, we only studied
a static scenario, which explains the high TCP values for
prostate-CTV regardless of the margin size since prostate-
CTV is always inside the PTV. In this case, the TCP values
are used as a measure of acceptable dose coverage of the
CTV. For a dynamic case, the TCP values would decrease
with decreasing PTV margin. In addition, the same
parameters in the TCP model were used for both prostate and
NVBs. However, in this case, the TCP value was used for
relative comparisons and absolute values are of less
importance.

There are clinical observations in which there were fewer
local relapses after radiotherapy of PC when the treatment
technique was less conformal (14, 15). This study shows that
the dose coverage of the NVBs decreases when narrower
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PTV margins are used in combination with changing
treatment technique from 3D-CRT to VMAT. Therefore, one
should be very cautious before clinical routines are changed,
as to whether the change means more conformal treatment
technique, smaller margins or target segmentation in
different imaging modalities.
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