
Abstract. Background/Aim: A review of the literature is
proposed as a contribution to current knowledge on technical,
physical, and clinical issues about PET-guided planning and
re-planning radiotherapy (RT) in head and neck cancer.
Materials and Methods: PubMed and Scopus electronic
databases were searched for articles including clinical trials.
Search terms were “gross tumor volume (GTV) delineation”,
“head and neck cancer”, “radiotherapy”, “adaptive
radiotherapy” in combination with “PET”. Results: A 18F-
FDG-PET and CT-scan comparison in GTV definition for RT
planning of head and neck cancer was shown in twenty-seven
clinical trials with a total of 712 patients. Only two clinical
trials focused on PET-guided adaptive radiotherapy (ART)
with a total of 31 patients. Conclusion: 18F-FDG-PET is able
to achieve an accurate and precise definition of GTV
boundaries during RT planning, especially in combination
with CT-scan. ART strategies are proposed to evaluate tumor
volume changes, plan boost irradiation on metabolically
active residual neoplasm and protect organs at risk (OaRs). 

Head and neck (H&N) cancer is the sixth most common
cancer worldwide and each year more than half a million
patients are diagnosed with this disease (1, 2). At diagnosis
60% of them present a non-metastatic locally advanced
disease, stage III or IV, requiring a multimodality treatment
(1, 3). In these cases, radiotherapy (RT) and concurrent
chemotherapy (CHT) are considered the nonsurgical standard
of care.

These neoplasms carry a poor prognosis with
approximately 50%-60% local recurrence and 20-30% of
metastases within 2 years from treatment (4). RT has the aim
to improve locoregional control both in early stage disease,
where RT has an elective role, and in advanced stage, in the
setting of combined modality treatment (5). It has been
estimated that in the majority of cases, RT treated tumors
relapse within the 95% dose coverage volume, probably due
to the presence of radiation-resistant hypoxic areas (6-12). 

[18F]-fluorodeoxyglucose-PET (18F FDG-PET) is effective
during the RT planning to define the Gross Tumor Volume
(GTV) boundaries, especially in combination with a CT-
scan. During RT, 18F-FDG PET is useful to detect metabolic
tumor evolution and to monitor therapy response also before
clear anatomic changes. This result depends on its superior
ability to detect vital cancer tissue. Therefore, it is potentially
useful to develop adaptive radiotherapy (ART) with
treatment replanning following not only morphological but
even metabolic changes. ART is based on reassessment of
macroscopic tumor volume (GTV), and of organs at risk
(OaRs) (as parotid and submandibular glands) after a specific
time from RT start allowing the optimization of plan
conformality during treatment. This approach, especially if
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combined with dose-escalation strategies directed against the
residual tumor, could contrast radio-resistance leading to
higher Tumor Control Probability (TCP) and reduced rates
of severe acute and late effects (13-15).

Being an emerging method, only few concept studies, no
literature reviews and only few clinical trials using 18F-FDG
PET/CT as a re-planning tool are available in literature.

In this article we report the current state of art on the use
of 18F-FDG PET in planning and replanning (ART) of H&N
cancers to assess the impact of this new therapeutic strategy
in patient’s managements.

Materials and Methods

Search strategy. PubMed and Scopus electronic databases were
searched for articles published until 15th August 2017. Articles
published in English and with no time limits were included in this
review. Reviews, case reports and non-human studies were
excluded. Studies were identified and evaluated by two of the
authors (E.F. and M.F.) combining the following major medical
subject headings: “GTV delineation”, “head and neck cancer”, and
“radiotherapy” or “adaptive radiotherapy” in combination with
“PET”. Additional eligible studies were identified by screening the
reference lists of the studies found.

Inclusion criteria. Studies were excluded if the title and/or abstract
was not appropriate for the aim of the review. The full text of
eligible studies and of studies whose relevance was uncertain were
obtained. Selected studies were eligible if they met the following
criteria: (i) clinical trials, (ii) studies including patients with H&N
cancer treated with 18F-FDG PET-guided RT, (iii) studies including
the comparison between 18F-FDG PET and CT-based definition of
target volumes in RT (planning studies) or studies including PET-
guided ART aimed to plan boost irradiation on metabolically active
residual neoplasm (re-planning studies). 

Results
In literature a 18F-FDG-PET and CT-scan comparison in
GTV definition for RT planning of head and neck cancer is
shown in twenty-seven clinical trials with a total of 712
patients. Only two clinical trials focused on PET-guided
adaptive radiotherapy (ART) for head and neck cancer were
available with a total of 31 patients. 

Discussion

Role of 18F-FDG PET in radiation oncology: benefits and
potential issues. 18F-FDG is the most popular radio-tracer used
in oncology and its use is increased also in patients treated with
RT (16). Currently, some authors nearly considered 18F-FDG
PET/CT as a routine test in RT practice to contour target
volumes (both primary tumor and metastatic lymph nodes) in
patients with H&N carcinoma, decreasing inter- and intra-
observer variability and increasing the conformity to real tumor
boundaries (17, 18). In fact, its use is able to achieve a more

accurate and precise definition of GTV boundaries, reducing
also the risk of possible under- or over-treatment of the real
tumor volume based only on morphological imaging especially
in combination with CT-scan. Obviously, in case of difficulties
in boundaries contouring, other imaging modalities in addition
to 18F-FDG PET/CT can be used to better define tumor limits
(19). Several studies compared the use of 18F-FDG PET and
CT-scan in target volumes definition showing, in the majority
of cases, that 18F-PET-based target volumes are smaller than
CT-scan-based ones with statistically significant differences
(Table I) (20-46).

Moreover, the delineation of GTV and standardized
uptake value (SUV) levels evaluation allows the design of
dose escalation strategies, improving the possibility to
identify tumor subvolumes with higher risk of recurrences
(17, 47-50). 18F-FDG PET may be useful even as a
prognostic factor due to the ability to early detect tumor
recurrences (15-18, 51-54). 

The main problem in the use of 18F-FDG PET during RT is
the presence of possible false positive results, due to the rise of
radiation-induced inflammatory areas leading to incorrect target
volumes expansion (15, 17). For Hentschel et al. (55) the
mismatch due to inflammation between viable tumor and target
volume based on a per-treatment 18F-FDG PET is already
evident after the delivery of >20 Gy during radio-chemotherapy.
Currently, the presence of radiation-induced inflammation in
normal tissues also leads to investigate the use of other
radiotracers as 3’-deoxy-3’-[18F]fluorothymidine (FLT), [18F]-
fluoromisonidazole (FMISO), [18F]-fluoroazomycin (FAZA),
and [60Cu]-diacetyl-bis(N(4)-methylthiosemicarbazone (ATSM)
(56). However, 18F-FDG still remains the most frequently
used molecular radiotracer mainly because of its higher
availability (16).

18F-FDG PET-based ART: debated aspects in head and neck
radiation treatment. Although 3D-conformal radiotherapy
(3D-CRT) and intensity modulated radiotherapy (IMRT)
represent the gold standard for H&N cancer treatment,
several aspects remain debated. Primarily, the treated
volumes (volumes receiving the prescribed dose) are still
wide despite their technological progress, and this has an
important impact on tissue toxicity (57). Furthermore,
tumor volumes and OaRs as salivary gland, mucosae and
muscles may be subjected to changes during RT. Also,
patient weight loss can modify the position of anatomical
structures (57). Kupelian et al. (57) observed that these
modifications are more evident in HPV positive cancers
where tumor volume changes suggest a faster response to
RT. Modifications occurring during RT are both anatomical
and functional and they can lead to an incorrect dose
distribution with a potential underdosage of tumor
volumes, overdosage of OaRs, and increased volumes
receiving high doses (58).
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18F-FDG PET-based ART: aims and characteristics. 18F-
FDG PET-guided ART represents a technique potentially
able to reduce and correct both anatomical and metabolical
changes due to improved dose coverage tailoring. In fact,
18F-FDG PET is able to show metabolical changes before the
occurrence of anatomical ones (59). Furthermore 18F-FDG
PET offers the possibility to guide ART distinguishing
between radioresistant and radioresponder areas leading to
dose redistribution with increased dose to the most active
residual areas of the GTV (16, 53). 

GTV evaluation during treatment is crucial for ART being
the region with higher tumor cell density and therefore the
more prone to local recurrence (11, 15). In fact, replanning
of dose distribution can follow the new target volumes
silhouette adapting to volume shrinks and shifts (60, 61).
Geets et al. (60, 62) stated that this may lead to future dose
escalation studies and to increased RT efficacy, especially
using highly conformed techniques and a Simultaneous
Integrated Boost (SIB) approach on the shrunk volume with
better sparing of the adjacent healthy areas and thus
respecting their dose constraints. A concept study by the
same authors (62) showed the feasibility of a helical-
tomotherapy-based adaptive IMRT in a pharyngolaryngeal
carcinoma. The authors reported a decreased GTV
throughout the radiation course using both anatomic and 18F-
FDG PET functional imaging (p<0.001) leading also to CTV
and PTV reduction. On the contrary this technique had a
limited impact on doses to selected OARs (spinal cord,
ipsilateral and controlateral parotid, oral cavity) compared to
a nonadaptive technique.

ART and dose painting technique. Potentially improved
results could be theoretically achieved through dose painting
technique where higher radiation doses are delivered to
target subvolumes (dose painting by contours) or to single
different voxels based on their SUV intensity (dose painting
by numbers). In fact, taking into account the correlation
between 18F-FDG uptake and the risk of local recurrences,
a heterogeneous dose may be delivered in order to boost
specific “high risk” subvolumes (49, 63-64). The purpose is
to achieve a radiation biological conformity and not only a
physical one, considering also the heterogeneity of tumor
biology due to differences in terms of hypoxia and
proliferation (48, 56, 63).

Moreover, in the H&N region, several OaRs as oral cavity,
mandible, salivary glands and inner ears are close to RT
target (17). Planning modifications can lead not only to
better tumor coverage but also to a better OARs sparing and
thus to reduced incidence of side-effects.

Castadot (58) showed that during radiotherapy, CT-scan
alone can improve target volumes delineation and can be
considered as a valid approach. However, 18F-FDG PET
seems the better option for dose painting (65). In fact “dose

painting by numbers” implies signal conversion from voxel
levels to heterogeneous dose prescription and computation
of the total dose (66) taking into account the possible target
volumes propagation involving the growth of “newborn” and
“orphan” areas (67).

Currently, only one center (68, 69) reported on clinical
experience on dose painting in 18F-FDG PET-guided ART.

In a comparative dosimetric study by Olteanu et al. (70)
ART seems to be superior to non-ART treatments due to the
possibility of dose painting rearrangement. This resulted in
an increased minimum dose and in a reduced maximum dose
to target volumes and in a lower dose to OaRs with an
overall improvement of planning results. Moreover, with
ART, small tumor volumes have a greater possibility for dose
escalation with OaRs saving through the use of a SIB or dose
painting by numbers (19).

Technical issues. Geets et al. (60) showed in a concept study
that an automatic method of PET imaging segmentation
during RT is not adequate due to the difficulty in
distinguishing residual neoplasms from normal benign tissue
reactions. Olteanu et al. (67) reported that an ART planning
can also last a whole working day and thus a non-rigid image
coregistration with the deformation of target volumes
boundaries followed by manual control may improve
feasibility. Castadot et al. (71, 72) confirmed the low
feasibility of ART planning in clinical routine without an
automatic method of volume delineation. Even these authors
highlighted how the use of a deformable method of
segmentation can be useful in 18F-FDG PET-guided ART
(71, 72). In fact, this method can spare 26-47% of total
contouring time in replanning and can reduce the inter- and
intraobserver variations compared to rigid registration. This
different approach allows an automatic re-delineation of
target volumes using a corresponding deformation map of
the target volumes contoured before. In their first clinical
trial, Duprez and colleagues (68) defined the total dose with
a rigid image registration, while Berwouts and coworkers
(69) used a deformable image co-registration method for
total dose calculation, for target volumes propagation
facilitating targets re-contouring, and thus decreasing the
working time. Obviously, the intervention of a radiation
oncologist is needed to check, monitor, and eventually
correct the adapted volumes (67). The manual adjustment by
the physician creates the mismatch between voxels (original
voxels in pre-treatment CT-scan and their corresponding
voxels in per-treatment CT-scan), creating newborn and
orphan voxels (67). The tiny swallowing structures are the
most common areas of adjustment (67). Deformable
coregistration allows to decrease the replanning time up to
10 minutes for patients coregistration, deformation of
volumes of interest, and creation of a dose map, and to
around 1 hour for expert radiation oncologist review. 
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Table I. 18F-FDG PET and CT-scan comparison in GTV definition for radiotherapy planning of H&N cancer.

Author,                Reference      Patients       Disease                             PET-based                                                              Results
year                                                                   stage                         contouring method

Ciernik I.F.                20                 12            IIb-IVa               Visual criteria based on 50%                T+N: GTVCT≥25% GTVPET-CT in 33% pts; 
et al., 2003                                                                                          of the max value                         GTVCT ≤25% GTVPET-CT in 17% pts (p=NR)
Daisne J.F.                21                 29              II-IV           Automatic segmentation algorithm      T: GTVCT > GTVPET (differrence range=28-37%)
et al., 2004                                                                              based on the measured s/b ratio                   [Oropharyngeal T: GTVCT > GTVPET 
                                                                                                                                                                                                                     (32.0 cc vs. 20.3 cc)* (p=0.02);
                                                                                                                                                                     Laringeal and hypopharyngeal T: GTVCT 
                                                                                                                                                                    > GTVPET (21.4 cc vs. 13.4 cc)* (p<0.01)]
Geets X.                    22                 23              II-IV           Adaptive threshold-based automatic                        T: GTVPET < 40% GTVCT
et al., 2004                                                                                method according to s/b ratio                         [Oropharyngeal lesions: GTVPET 
                                                                                                                                                                              < GTVCT (19.3 cc±21.4 cc vs. 
                                                                                                                                                                               29.0 cc±31.0cc )# (p=0.013); 
                                                                                                                                                                       Laringeal and hypopharyngeal lesions: 
                                                                                                                                                                         GTVPET < GTVTC (14.5 cc±11.3 cc
                                                                                                                                                                            vs. 24.9 cc±19.0 cc)# (p=0.003)]
Heron D.E.                23                 21              II -IV                            Visual criteria                                        T: GTVCT > GTVPET (65.0 cc
et al., 2004                                                                                                                                                                  vs. 42.7 cc)* (p=0.002)
                                                                                                                                                                            (GTVCT and GTVPET difference 
                                                                                                                                                                              not significative for N: p=0.5)
Scarfone C.               24                  6                 NR                              Visual criteria                                 T: GTVPET/CT > 3.3 cc (15%)* GTVCT
et al., 2004                                                                                                                                                    N: GTVPET/CT > 5.0 cc (17%)* GTVCT
                                                                                                                                                                                                 (p=NR)
Paulino A.C.             25                 40   III – IV (95% pts)   Volume based on 50% intensity                          T:GTVCT > GTVPET (37.2 cc
et al., 2005                                                                               level relative to the tumor max                                  vs. 20.3 cc)# (p=NR)
                                                                                                                                                                           [GTVCT > GTVPET in 75% cases; 
                                                                                                                                                                             GTVCT ~ GTVPET in 8% cases; 
                                                                                                                                                                            GTVCT < GTVPET in 18% cases]
Breen S.L.                 26                 10                NR                              Visual criteria                              T: GTVCT > GTVPET/CT (27.7 cc±26.5 cc
et al., 2006                                                                                                                                                    vs. 23.3±19.2 cc)* (α: not significative)
Wang D.                    27                 16                NR                    Visual criteria (SUV≥2.5)                            T+N: GTVCT > GTVPET (68.8 cc
et al., 2006                                                                                                                                                                    vs. 61.8 cc)* (p=NR)
Ashamalla H.            28                 25              II-IV                Visual criteria (n if SUV≥2.5)             T+N: GTVCT > GTVPET/CT (44% pts) (p=NR)
et al., 2007
El-Bassiouni M.        29                 25               I-IV               Visual criteria based on tumor                       T+N: GTVCT > GTVPET (29.6 cc
et al., 2007                                                                                 max and background uptake                                 vs. 23.0 cc)# (p=0.0022)
Schinagl D.A.X.       30                 77              II-IV             Visual criteria; volume based on:          T: GTVCT ~ GTVPET-VIS (22.7 cc vs. 21.5 cc)*
et al., 2007                                                                                              SUV of 2.5;                             GTVCT > GTVPET (GTV40, GTV50, GTVS/B) 
                                                                                             a fixed threshold of 40% and 50%;                (22.7 cc vs. 16.4 cc, 10.5 cc, 11.2 cc)* 
                                                                                                  a s/b ratio adaptive threshold                           (p≤0.0001 for all comparisons)
Newbold K.L.           31                 18             II-IVb            Volume based on 50% density of              T+N: GTVPET/CT > 6.2 cc (74%)# GTVCT
et al., 2008                                                                                the max of the interest region                        In case of known T: GTVPET/CT > 
                                                                                                                                                                  6.1 cc (78%)# (p=0.008); in case of unknown 
                                                                                                                                                                     T: GTVPET/CT > 6.3 cc (61%)# (p=0.012)
Deantonio L.             32                 22              I-IVb              Fixed image intensity threshold                             T+N: GTVPET < GTVCT
et al., 2008                                                                              method (40% of max intensity)                          (17.2 cc vs. 20.0 cc)* (p=0.2);
                                                                                                                                                                              GTVPET/CT > GTVCT (26.0 cc
                                                                                                                                                                                   vs. 20.0 cc)* (p<0.0001)
de Figueiredo            33                  9      Advanced stage           Automatic segmentation                                T: GTVCT> GTVPET (71.4 cc
B.H. et al., 2009                                                                                 based on s/b ratio                                           vs. 39.3 cc)* (p=0.004)
Dirix P.                      34                 15             III-IVa                Automatic contouring based                         T+N: GTVCT > GTVPET (33.6 cc
et al., 2009                                                                                               on s/b ratio                                               vs. 18.7 cc)* (p=0.0005)
Guido A.                   35                 38              I-IVb                Visual criteria based on 50%                        T+N: GTVCT > GTVPET (34.5 cc
et al., 2009                                                                                      intensity level relative                          vs. 29.4 cc)* (p<0.05); not statistically 
                                                                                                            to the tumor max                                 significant p and n separate analyses
Iğdem S.                    36                 26               I-IV                      Standardized SUV and                                  T+N: GTVCT < GTVPET/CT 
et al., 2009                                                                                             visual criteria                                       (26.5 cc vs. 35.5 cc)* (p=0.004)
Delouya G.                37                 25              I-IVb                            Visual criteria                                        T: GTVCT > GTVPET (24.0 cc
et al., 2011                                                                                                                                                                  vs. 18.0 cc)* (p=0.001)
                                                                                                                                                                              N: GTVCT ~ GTVPET (p=0.08)

Table I. Continued



Replanning time and frequency. Monitoring per-treatment
target volumes, OaRs anatomical shrinkage, metabolical
modifications, and the consequent replanning are at the basis
of ART. However, the optimal time of replanning is not clear.
The results of Duprez and colleagues clinical trial (68)
suggest that PET re-imaging can be performed during the
first week of treatment but they also observed that target
volumes show a significant reduction appropriate for dose-
painting technique after 8 fractions.

For Geets and collegues (62) a treatment plan based only
on pre-treatment imaging is only a simplification of the
entire treatment but even one single re-imaging and
consequent replanning at the mid-treatment does not give
relevant benefit. In fact anatomic and functional changes
occur during the entire RT duration and it is important to
take into account also the onset of actinic inflammation
creating noisier imaging difficult to assess. Also, the group
of Ghent University Hospital used two replanning for each
radiation treatment in their two clinical trials (68, 69). In
fact, a single replanning is not considered sufficient to detect
all target variations occurring during the therapy.

For Geets and colleagues (62) the optimal time for
reimaging and replanning is during the first 2 or 3 treatment
weeks of a conventional protocol. For Differding et al. (66)
a decrease of target volumes can be shown in the first
radiation treatment week. However, replanning is considered
optimal after two treatment weeks but no later due to
increasing edema and inflammation and the consequent
difficult to distinguish boundaries.

Dose summation. Currently, the summation of the distributed
dose is a challenge (68). The dose count of all treatment
plans of the whole RT cycle is a crucial point also for a
correct outcome evaluation (69). Olteanu et al. (67) proposed
different methods of dose summation taking into account, in
different ways, of “orphans” and “newborn” areas
(chronological and antichronological methods).

The anti-chronological method shows the summation of
the total doses including those of “orphan” voxel areas as a
summation of all ROIs in pre-treatment CT. On the contrary,
in the chronological method the doses are calculated in a CT-
scan performed the last day of RT including “newborn”
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Table I. Continued

Author,                Reference      Patients       Disease                             PET-based                                                              Results
year                                                                   stage                         contouring method

Kajitani C.                38                 15             II-IVA                           Visual criteria                                          T+N: GTVCT > GTVPET/CT 
et al., 2011                                                                                                                                                                   in 66.7% pts (p=0.12)
Fried D.                     39                 91              II-IV                 Visual criteriaand 40%-50%                     T: GTVCT > GTVPET (32.0 cc vs. 29.0 
et al., 2012                                                                                          peak PET activity                               if visual interpretation, 10.8 if PET40, 
                                                                                                                                                                                    7.0 if PET50)# (p=NR);
                                                                                                                                                             N: GTVCT > GTVPET (16.0 cc vs. 8.0 cc)# (p: NR)
Perez-Romasanta      40                 19                NR              Adaptive threshold-based method           T+N: GTVCT < GTVPET in 84.6% of lesions; 
L.A., 2012                                                                                        according to s/b ratio                  GTVCT > GTVPET in 15.4% of lesions (p=0.000)
Venkada M.G.           41                 26                NR                              Visual criteria                                 T: GTVCT> GTVPET (54.8 ±64.5 cc vs. 
et al., 2012                                                                                                                                                               48.4±53.2 cc)* (p<0.001);
                                                                                                                                                                          N: GTVCT< GTVPET (11.0±14.9 cc
                                                                                                                                                                               vs. 12.7±15.5 cc)* (p<0.001)
Anderson C.M.         42                 14            III-IVb                           Visual criteria                                      T: GTVCT > GTVPET/TC (45.0 cc
et al., 2014                                                                                                                                                                    vs. 35.0 cc)* (p=NR)
Arslan S.                   43                 37                NR                       Visual criteria (n with                              T: GTVCT > GTVPET/CT (55.8 cc
et al., 2014                                                                                              SUVmax > 2)                                               vs. 32.7 cc)# (p<0.001)
                                                                                                                                                                            N: GTVCT < GTVPET/CT (5.3 cc
                                                                                                                                                                                     vs. 7.5 cc)# (p<0.001)
                                                                                                                                                                           T+N: GTVCT > GTVPET (82.0 cc
                                                                                                                                                                                    vs. 50.9 cc)# (p<0.001)
Bird D.                      44                 11              III-IV                          Semi-automated                                      T: GTVCT > GTVPET (11.6 cc
et al.; 2015                                                                                     segmentation algorithm                                       vs. 8.8 cc)# (p=0.059)
Chauhan D.               45                 21               I-IV                           40% of SUVmax                                 T: GTVCT < GTVPET (29.6±31.3 cc
et al., 2015                                                                                              as reference                                           vs. 32.0±33.7 cc)* (p=0.468)
Leclerc M.                46                 41             III-IV                        Automatic gradient                                   T: GTVCT > GTVPET (40.4 cc
et al., 2015                                                                                             based method                                              vs. 28.8cc)* (p<0.0001)

GTV: Gross tumor volume; N: nodal disease; NR: not reported; pts: patients; RT: radiotherapy; s/b: signal to background; T: primary tumor; vs.:
versus; *average; # median.



voxel doses. Obviously, the choice of the count method is
essential for treatment evaluation also because the total dose
can result different depending on the used approach (69).

18F-FDG PET-based ART: clinical trials. In literature only
two papers, both published by authors from Ghent University
Hospital, Belgium, are available (68, 69). Both clinical trials
had a prospective design: one was a phase I study (69) and
the other was a phase I dose escalation study (68) with a total
of 31 patients. Patients and clinicopathologic features,
imaging, treatment data and results of these clinical trials are
summarized in Tables II-IV.

In both clinical trials radiation treatment was divided into
three consecutive phases (phase I: from 1st to 10th fraction,

phase II: from 11th to 20th fraction and phase III: from 21st
to 32nd fraction) with three different treatment plans.
Megavoltage external beam RT was delivered in both studies
with “dose painting by numbers” IMRT based on pre- and
per-treatment functional imaging in all phases with the
exception of conventional IMRT (delivery of uniform doses)
performed in the 3rd phase in Duprez et al. (68) study. 

In both trials re-imaging was performed with 18F-FDG
PET/CT at 8th fraction with consequent treatment
replanning. The new radiation planning started in the nearby
next phase (II phase). In Berwouts study (69) a second 18F-
FDG PET/CT re-imaging was performed at 18th fraction
performed with consequent treatment replanning in the III
phase. On the contrary, in Duprez study (68) the III phase
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Table II. Clinical trials: patients and tumor characteristics.

Author,                              Medical center                Reference     Patients    Age range            Histologic                           Site                           Stage
year                                                                                                                       (yrs)                 diagnosis                                                       (AJCC 2010)

Duprez F.                Ghent University Hospital,           68               21             46-72            Squamous cell            Oral cavity: 9.5%               I: 0%
et al., 2011                             Belgium                                                                                  carcinoma: 100%         Oropharynx: 52.4%          II: 19.0%
                                                                                                                                                                                    Hypopharynx: 19.0%        III: 23.8%
                                                                                                                                                                                         Larynx: 19.0%            IVA: 42.9%
                                                                                                                                                                                                                              IVB: 14.3%
Berwouts D.           Ghent University Hospital,           69               10             48-74            Squamous cell            Oral cavity: 10%               I: 10%
et al., 2013                             Belgium                                                                                  carcinoma: 100%          Oropharynx: 50%              II: 0%
                                                                                                                                                                                     Hypopharynx: 30%           III: 40%
                                                                                                                                                                                          Larynx: 10%               IVA: 30%
                                                                                                                                                                                                                               IVB: 20%

Table III. Clinical trials: studies design and treatment characteristics.

Author,         Reference     Study     Inclusion                    Radiotherapy                       Pre-       Per-treatment                        Median dose 
year                                    design       criteria                           planning                       treatment       imaging                        prescriptions (Gy)
                                                                                                                                         imaging         and time

Duprez F.           68          Phase I       HNC         Phase I (1-10 fr): DPBN IMRT    18F-FDG       18F-FDG         CTVHD -        GTV -         PTVEN
et al., 2011                          dose           M0           based on pre-treatment imaging     PET/CT         PET/CT             Dose             Dose 
                                        escalation      non-        Phase II (11-20 fr): DPBN IMRT                             after               level I           level II 
                                             trial        resected       based on per-treatment imaging                              8th fr.             Phase I:        Phase I:       Phase I: 
                                                                             Phase III (21-32 fr): conventional                                                     25.0               30.0             21.6 
                                                                                     IMRT based on previous                                                         Phase II:      Phase II:      Phase II: 
                                                                                       per-treatment imaging                                                               30.0              30.0             21.6
                                                                                                                                                                                      Phase III:     Phase III:     Phase III:
                                                                                                                                                                                           25.9              25.9                 -
Berwouts D.       69          Phase I       HNC              Phase I (1-10 fr): DPBN          18F-FDG        18F-FDG                       GTV and GTVLN
et al., 2013                           trial            M0           based on pre-treatment imaging     PET/CT        PET/CT                            Phase I: 27.0
                                                              non-         Phase II (11-20 fr): DPBN based                          after 8th                           Phase II: 21.6 
                                                           resected         on 1st per-treatment imaging                           and 18th fr.                         Phase III: 21.6
                                                                             Phase III (21-32 fr): DPBN based                                                                        CTVEN
                                                                                 on 2nd per-treatment imaging                                                                       Phase II-II: 40

CTV: Clinical target volume; DPBN: dose painting by numbers; EN: elective neck; GTV: gross tumor volume; HD: high dose; HNC: head and
neck cancer; IMRT: intensity modulated radiotherapy; LN: metastatic lymph nodes; PTV: planning target volume.



was based on a RT plan created on previously identified per-
treatment volumes. In Duprez study (68) the definition of the
total dose sum was performed through a rigid CT and PET
registration method. On the contrary, Berwouts et al. (69)
used a deformable image co-registration method both for the
target volumes propagation and for total dose calculation.
In both studies no acute G4 toxicity able to discontinue the
treatment, assessed by the CTCAE (Common Toxicity
Criteria for Adverse Effects) v. 2, was recorded. An update
of the dose-escalation study (73) showed also no G4 toxicity
after a median of 38 and 22 months of follow-up for dose
level I and II, respectively. The median dose of 80.9 Gy
resulted as the maximum tolerated dose (MTD) recorded in
3-month follow-up (73). An actuarial local and regional
control of 95 and 93% respectively and 68% of freedom
from distant metastasis after 2 years of follow-up was
recorded (73). During follow-up a 42.8% rate of patient’s
death was recorded (44.4% of deaths caused by progressive
disease). In the most recent study Berwouts et al. (69)
reported 70% of complete response at 3rd month follow-up
and 90% complete response rate (with the exception of 1
patient who undergone pathological lymph node dissection
after RT) and 90% of overall survival after a median follow-
up of 13 months. 

Conclusion

The growing interest in 18F-FDG PET capacities in defining
hypermetabolic areas has brought to an increased use of this
technique in RT planning and particularly in target volumes
definition of H&N cancer. Moreover 18F-FDG PET-guided
ART can be considered a new strategy in the treatment of
H&N cancer. The integration of anatomic and metabolic data
is potentially useful to evaluate cancer biology and radiation
resistance during RT. The study of these features and the
evaluation of mismatch between dose distribution and target
volumes allow to define an adapted high dose volume
significantly smaller compared to pre-treatment plan

although requiring a demanding work for replanning (58).
The expected results are a more individualized therapy with
improved dose distribution and locoregional control, a
decreased probability of recurrences and toxicity and
therefore a better therapeutic ratio (18, 53). Using repeated
CT-scan it is possible to achieve 70% GTV shrunk during
RT (7 weeks) (74) while with 18F-FDG PET this data is
difficult to be defined due to the scarce number of available
studies. In fact, based on the small number of published
studies, no strong evidence on 18F-FDG PET-guided ART is
available. Though ART seems to be superior to standard
planning strategies because of better target coverage and
improved OaRs sparing, there are several unsolved questions
such as timing and frequency of re-planning, re-planning
procedures, validation of fast segmentation tools taking into
account non-uniform anatomical and metabolical volume
modifications, and dose summation methods (13, 70). In a
recent study, Brouwer et al. (75) highlighted some pre-
therapy predictive factors potentially used to identify patients
who may benefit more from ART (e.g. tumor site and parotid
glands planned dose). However, specific studies reporting
data to identify clinical, biological and technical issues to
select patients for 18F-FDG PET-guided ART are still lacking
(58).

Currently, the lack of strong evidence on 18F-FDG PET-
guided ART leads to consider it a not-routine technique and
to take into account also the cost-effort/effectiveness
balances. Therefore, its validation will require future phase
II and III trials.
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Table IV. Clinical trials: results.

Author,           Reference       Acute          Late        MDT (maximum                  LRC (locoregional                                          Survival
year                                        toxicity      toxicity        tolerated dose)                             control)

Duprez F.              68            No ≥G4      No ≥G4      Median dose of           95% local and 93% regional                  42.8%pts dead (F-UP: 2 yrs) 
et al., 2011                                                                         80.9 Gy               actuarial control (F-UP: 2 yrs);              (not statistically significant the 

                                                                                                                  68% actuarial freedom from distant    difference between actuarial DSS and 
                                                                                                                             metastasis (F-UP: 2 yrs)                       DFS in dose level I and II)
Berwouts D.         69            No ≥G4         NR                       -                        70% CR (F-UP: 3 months);                   100% OS (F-UP: 3 months);
et al., 2013                                                                                                        90% CR (F-UP: 13 months)                   90% OS (F-UP: 13 months)

CR: Complete response; DFS: disease-free survival; DSS: disease-specific survival; F-UP: follow-up; G: grade; NR: not reported; pts: patients; yrs:
years.
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