
Abstract. Melanoma is the deadliest form of skin cancer
and one of the most difficult cancers to treat. Overall,
melanomas have more mutations than any other cancer type.
Oncogenic mutations in c-KIT, NRAS and BRAF components
of the MAPK pathway have been identified in nearly 90% of
cutaneous melanoma and this information has been used to
develop small molecules that inhibit their activity. Highly
selective BRAF and MEK inhibitors have demonstrated
impressive clinical results. However, the short duration of
response, the acquired resistance in most cases and the
toxicity issues support the rationale for drug combination
approaches to improve the outcome of MAPK inhibitors,
increase their efficacy, prevent and/or overcome resistance.
This review discusses several promising rational
combinatorial strategies investigated or could be
investigated in clinical studies. 

Incidence and mortality rates for melanomas, the most
common form of cancer in people aged from 25 to 29,
continue to rise faster than any other cancer type. Although
melanoma accounts for only a small percentage of skin
cancers, it is responsible for the majority of deaths of all skin
cancers (1, 2). Increased understanding of the molecular

events involved in melanoma development has led to the
identification of novel targets and to the development of new
targeted agents. Gene alterations identified in melanoma
pointed to distinct molecular subsets of tumors with direct
implications in therapeutic strategies. Among these,
activating BRAF mutations occur in 50-60% of melanomas
(V600E substitution represents about 90% of BRAF
mutations), NRAS mutations in 20-30% of melanomas
(mutually exclusive with BRAF mutation), KIT mutations
and/or amplification in 39% of mucosal and 36% of acral
melanomas (3, 4). These mutations opened new therapeutic
perspectives targeting the MAPK pathway (hyperactivated in
90% of melanomas) with V600EBRAF, MEK or RTK
inhibitors (5-7).

Vemurafenib and dabrafenib, specific inhibitors of the
mutant BRAF (V600E), have been approved by the Food and
Drug Administration (FDA) in 2011 and 2013 respectively,
for the treatment of patients with unresectable or metastatic
melanoma carrying the V600E mutation in BRAF.
Furthermore, trametinib a selective inhibitor of MEK1/2 was
approved for the same indication in 2013. The approval of
these inhibitors was based on improved rates of overall and
progression-free survival compared to chemotherapy in phase
III clinical trials (6, 8, 9). Moreover, among new MEK
inhibitors in clinical development, pimasertib and binimetinib
(MEK162) have been recently reported to be particularly
promising in the case of patients with mutant NRAS
melanoma (10-12). Finally, the results of clinical trials
evaluating RTK inhibitors sunitinib and imatinib in patients
presenting mutated c-KIT have been published and showed
an average response rate of 20% (7, 13).

Targeting MAPK pathway in melanoma with MAPK
inhibitors has shown clinical benefit. However, the short
duration of response and progression-free survival in patients
due to resistance or to general toxicity indicate that
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combination therapeutic strategies are needed to enhance the
effect of MAPK inhibitors. Therefore, efforts are ongoing to
further understand resistance mechanisms and also to
improve the outcome of MAPK inhibitors by rational use of
combination therapy.

Current Combinations of Targeted 
Therapies and Perspectives

Cotargeting MAPK pathway at multiple levels. Regardless of
the encouraging results obtained with the BRAF inhibitors
dabrafenib or vemurafenib, the majority of patients develop
resistance to BRAF inhibitors and relapse (14). In most cases,
resistance is associated with reactivation of the MAPK
pathway (15, 16). In addition, BRAF inhibitor-induced
paradoxical activation of the MAPK pathway in RAS mutant
cells and in wild-type BRAF cells, can result in secondary
cancers, including cutaneous squamous-cell carcinoma (17-19).
In this context, we reported the prominent role of cyclic AMP
signaling pathway in the sensitivity of WTBRAF/WTNRAS
melanoma cells to vemurafenib (20). We found that cells with
low phospho-CRAF and high cAMP levels are sensitive to
vemurafenib while in the resistant ones phospho-CRAF
expression was high; and CRAF inhibition through cAMP
stimulation overcame the resistance to the drug.

The MEK inhibitor trametinib, also improves the overall
survival of patients with the BRAF V600E mutation
compared with chemotherapy, and is not associated with
paradoxical activation of the MAPK pathway (6). Further,
the idea of combining a BRAF inhibitor with a MEK
inhibitor has been tested for the treatment of BRAF mutated
melanomas. Interestingly, this regimen blocks the MAPK
pathway at two signaling points and can reduce the
cutaneous toxicity related to the paradoxical reactivation of
the MAPK pathway (21-23). Most importantly, phase III
trials have shown that combined BRAF and MEK inhibition,
compared with BRAF inhibition alone, delays the emergence
of resistance and reduces toxic effects (24) (Table I). For
instance, it was shown in two independent phase III trials,
that the combination of dabrafenib and trametinib, compared
with dabrafenib alone or the combination of vemurafenib
plus cobimetinib, compared with vemurafenib alone
significantly improved the progression-free survival, the
overall survival and the objective response rate (complete
plus partial) (24-26). 

The rate of cutaneous squamous cell carcinoma highly
decreased with the combination compared to the BRAF
inhibitors alone (24-26). The combination of these inhibitors
have been approved by the FDA in 2014 (dabrafenib and
trametinib) and 2015 (vemurafenib and cobimetinib) for
patients with unresectable or metastatic melanoma with a
BRAF V600E or V600K mutation. The combination of
BRAF and MEK inhibition also showed a synergistic effect

on the growth inhibition of NRAS mutant melanoma cells
when there is a higher activity of the MAPK pathway and
dependence of proliferation and survival on this pathway
(27). Inhibition of ERK1/2 is also a promising strategy in
melanoma. SCH772984 is a new selective inhibitor of
ERK1/2 that has demonstrated antitumor activity in
preclinical studies, against BRAF mutant, NRAS mutant and
wild-type melanoma (28). Other selective ERK1/2 inhibitors
as GDC-0994 are currently ongoing clinical trials as single
agent (NCT01875705) or in combination with MEK
inhibitors (NCT02457793) (Table I). Consequently, these
findings provide a rationale for cotargeting MAPK pathway
at multiple nodes (Figure 1) and suggest that this therapeutic
strategy is a more effective one.

Co-targeting of MAPK and PI3K/AKT signaling pathways.
PI3K/AKT pathway is frequently activated in melanoma.
Activating mutation of c-KIT and NRAS can lead to
constitutive activation of PI3K-AKT pathways (29, 30). In
BRAF mutant melanoma, we showed that PI3K/AKT
activation is associated with intrinsic and acquired resistance
to BRAF inhibition (31). 

Constitutive activation of PI3K/AKT pathway is due to
multiple mechanisms (15, 32-34) including the loss of the
tumor suppressor PTEN (20-30% of melanomas) that confers
resistance to MAPK inhibition in melanoma (35-37).
Therefore, acquired and innate oncogenic alteration in the
PI3K/AKT signaling can explain the inefficiency of single
pathway inhibition and the rationale for the concurrent
targeting of both MAPK and PI3K/AKT pathways (Figure
1) to counteract resistance and obtain beneficial long-term
clinical effects. Several studies have demonstrated antitumor
activity and pointed out synergistic effect of cotargeting
MAPK and PI3K/AKT pathways in BRAF and NRAS
mutant melanomas (22, 24, 31, 38-40).

Otherwise, clinical studies have investigated the
combination of MAPK and PI3K/AKT inhibitors in
melanoma and other solid tumors (Table I). For instance,
phase lb combination trial of a MEK inhibitor, pimasertib
(MSC1936369B), and a PI3K/mTOR inhibitor, SAR245409,
was investigated in patients with locally advanced or
metastatic solid tumors (NCT01390818). The combination
of BYL719 (PI3K inhibitor) and binimetinib (MEK
inhibitor) was studied in patients with advanced solid tumors
(NCT01449058). Also, a phase I trial of BKM120 (PI3K
inhibitor) combined with vemurafenib was also evaluated in
V600E/KBRAF mutant advanced melanoma. Preliminary data
show that these combinations are tolerated and active.
However, data presented to date have only shown modest
clinical activity of the combination. The efficiency of dual
targeting could be increased by optimal dosing/timing
schedules, or enriching the patients with predictive factors.
Co-targeting of MAPK and p53 pathways. As a guardian of
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the genome, p53 protects cells from genetic assaults by
triggering cell-cycle arrest and apoptosis. In many tumors, the
TP53 gene itself is mutated disabling its tumor suppressor
activity. In melanoma, p53 is mutated in only 17% of
cutaneous melanoma and in 8-10% of acral and mucosal
melanomas (4); but its function is frequently attenuated by a
variety of mechanisms, including increased expression of
MDM2 (41) and/or MDM4 (42). Additionally, p53 function
is compromised by deletions in the CDKN2A locus, which
inactivates both p14ARF and p16INK4a in about 50% of
melanomas (43). Increasing evidence supports a role for p53
in BRAF and NRAS driven melanoma progression in mice

(44, 45) and zebrafish (46). Thus, p53 represents an important
therapeutic target for melanoma. In an effort to reactivate
p53, two strategies have been employed (Figure 1).

The first involves increasing wild-type p53 levels by
interfering with the MDM2/4 mediated proteasomal
degradation of p53 using antagonists that inhibit
MDM2/MDM4-p53 interactions. Combining the antagonist of
the MDM2–p53 interaction, Nutlin3, with MAPK inhibitors
suppresses melanoma growth and potentiates MAPK
inhibition (47, 48). Restoring the apoptotic function of p53 by
inhibiting MDM2 and iASPP cooperates with V600EBRAF
inhibition to suppress human melanoma cell growth both in
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Table I. Selected clinical trials of combined strategies in melanoma.

Agents                                                                 Phase                     Sponsor                                                Patients                                           NCT

Dabrafenib (BRAF inhibitor) +                       Phase 3            GlaxoSmithKline               Patients With BRAF-mutant melanoma         NCT01584648
Trametinib (MEK inhibitor)
Vemurafenib (BRAF inhibitor) +                    Phase 3         Hoffmann-La Roche                Patients with metastatic melanoma             NCT01689519
Cobimetinib (MEK inhibitor)
LGX818 (BRAF inhibitor) +                        Phase 1b/2                Novartis                      Patients with BRAF mutant melanoma          NCT01909453
Binimetinib (MEK inhibitor)
Cobimetinib (MEK inhibitor) +                      Phase 1             Genentech, Inc.                     Patients with locally advanced or             NCT02457793
GDC-0994 (ERK inhibitor)                                                                                                               metastatic solid tumors
Binimetinib (MEK inhibitor) +                      Phase 1b           Array BioPharma                    Patients with selected advanced               NCT01449058
BYL719 (PI3K inhibitor)                                                                                                                           solid tumors
Pimasertib ( MEK inhibitor) +                        Phase 1               EMD Serono                       Patients with locally advanced or             NCT01390818
SAR245409 (PI3K/mTOR inhibitor)                                                                                                metastatic solid tumors
Pimasertib ( MEK inhibitor) +                        Phase 1                     Sanofi                                  Patients with solid tumors                    NCT01985191
SAR405838 (MDM2 antagonist)
Binimetinib (MEK inhibitor) +                     Phase 1b/2         Array BioPharma               Patients with NRAS mutant melanoma         NCT01781572
LEE011 (CDK4/6 inhibitor)
LGX818 (BRAF inhibitor) +                           Phase 2            Array BioPharma             Patients with advanced BRAF melanoma       NCT01820364
LEE011 (CDK4/6 inhibitor)
Vemurafenib ( BRAF inhibitor) +                 Phase 1-2      Assistance Publique -              Patients with metastatic melanoma             NCT02202200
Palbociclib (PD-0332991)                                                        Hôpitaux de Paris
Anti- CTLA-4 (ipilimumab) +                        Phase 3        Bristol-Myers Squibb                        Patients with untreated                      NCT01844505
anti-PD-1 (Nivolumab)                                                                                                                        advanced melanoma
Dabrafenib (BRAF inhibitor) + 
anti- CTLA-4 (ipilimumab) +/–                      Phase 1            GlaxoSmithKline             Patients with V600E/K mutation positive       NCT01767454
Trametinib (MEK inhibitor)                                                                                                   metastatic or unresectable melanoma
atezolizumab (anti-PD-L1 antibody) +           Phase 1             Genentech, Inc.                   Patients with BRAFV600-mutation            NCT01656642
Vemurafenib (BRAF inhibitor) +/–                                                                                            positive metastatic melanoma
Cobimetinib ( MEK inhibitor)
MK-3475 (Pembrolizumab) (anti-PD-1)       Phase 1,2            Merck Sharp &                    Patients with advanced melanoma             NCT02130466
+ Dabrafenib (BRAF inhibitor)+                                                Dohme Corp.
Trametinib (MEK inhbitor)
durvalumab (MEDI4736) (anti–PD-L1)         Phase 1           MedImmune LLC                        Patients with metastatic or                   NCT02027961
+ Trametinib (MEK inhibitor) +/–                                                                                                   unresectable melanoma
Dabrafenib (BRAF inhibitor)
Dabrafenib ( BRAF inhibitor)+                       Phase 2      University of California,                  Patients with BRAFV600E                  NCT01721603
Stereotactic Radiosurgery                                                            San Francisco                           melanoma brain metastases
Pembrolizumab) (anti-PD-1) +                        Phase 1     Abramson Cancer Center                     Patients with advanced                      NCT02303990
hypofractionated RT                                                        (University of Pennsylvania)                   and metastatic Cancers
Pembrolizumab) (anti-PD-1) +                      Phase 1-2            Yale University                             Patients with metastatic                     NCT02407171
Sterotactic Body Radiotherapy                                                                                                           melanoma or NSCLC



vitro and in vivo (49). Further, the combination of pimasertib
(MEK inhibitor) with another antagonist of MDM2
(SAR405838) was investigated in phase I trial in patients with
solid tumors (NCT01985191) (Table I). In cells where MDM2
is low, MDM4 could be the principle regulator of p53 (50). It
has been shown that MDM4 is overexpressed in about 65%
of human melanomas and that its inhibition by SAH-p53-8
affects the growth of melanoma cells that have acquired
resistance to BRAF inhibitors and synergizes with BRAF
inhibitors to kill BRAF mutant cells (50).

The second strategy used to re-activate p53, consists of
targeting p53 directly using small molecules as PRIMA-1
(stands for “p53 Reactivation and Induction of Massive
Apoptosis”) and its methylated form PRIMA-1Met (APR-
246) that have the ability to convert mutant and wild-type
inactive p53 to an active conformation, restoring DNA
binding and transcriptional activity (51, 52). PRIMA-
1/PRIMA-1Met alone or in combination with chemotherapy
has been shown to have good efficacy against various types
of cancers, such as leukemia (53), breast (54, 55), thyroid
(56), pancreatic (57), ovarian (58), prostate (59), colorectal
(60) and non-small lung cancers (61). The safety of APR-
246/PRIMA-1Met has recently been tested in a phase I
clinical trial (62) and after positive data obtained from a
clinical phase I/II study with APR-246, a global pivotal
phase III study in high grade serous ovarian cancer
(HGSOC) patients is also intended for PRIMA-1Met. In
melanoma, we evaluated recently the potential of combining
oncogenic BRAF inhibition with direct pharmacological
reactivation of p53 (63). We found that the p53 activator
(PRIMA-1Met) synergized with the BRAF inhibitor
vemurafenib to induce apoptosis and suppress proliferation
in vitro and to inhibit tumor growth of BRAF mutated
melanoma cells in vivo. Importantly, this drug combination
decreased the viability of both vemurafenib-sensitive and
resistant melanoma cells irrespectively of the p53 status.
Thus, PRIMA-1Met through its ability to directly reactivate
p53 regardless of the mechanism causing its deactivation,
and thereby dampen PI3K signalling, sensitizes
V600E/KBRAF-positive melanoma to BRAF inhibitors. This
work has also been the rationale for an academic phase I/II
clinical trial using this original combination.

Nevertheless, the anti-melanoma potential of p53
reactivation was also evaluated in combination with a MEK
inhibitor in NRAS mutant melanoma cells and our
preliminary results demonstrate a strong synergistic effect of
this combination (data not published).

Taken together, these data suggest that the combination of
MAPK inhibitors with additional pharmacological agents
like a p53 reactivator, converting their predominantly
cytostatic to a cytotoxic effect, could improve their efficacy.
Co-targeting MAPK and CDK/4. Cyclin-dependent kinases
(CDK) are a family of serine/threonine kinases that drive

cycle progression, control transcriptional processes, DNA
replication and cell division (64, 65). The synthesis of
cyclins and their bindings to CDK are specific of the stages
of the cell cycle and regulate CDK activity (64, 65) . The
activity of CDK is also regulated by the families of the
inhibitory proteins of CDK including p15, p16INK4a, p18,
p21 and p27. The p16INK4a protein binds to CDK4/6
inhibiting interaction with cyclins D, which would otherwise
promote cell-cycle progression by inhibiting retinoblastoma
(RB) protein (64, 65). The p16/cyclin D/CDK4/6/RB protein
pathway (CDK4 pathway) is dysregulated in 90% of
melanomas (66, 67). Furthermore, activation of the CDK4
pathway cooperates with mutant BRAF or NRAS in
transformation of melanocytes (68, 69). MAPK pathway also
enhances CDK4 signaling through increasing cyclin D1
expression. Amplification of cyclin D1 is detected in about
17% of BRAF V600E-mutated human metastatic
melanomas, and, when it is combined with dysregulation of
CDK4, it contributes to the resistance to BRAF inhibitor in
such mutant melanoma cells (70). Thus, the emerging CDK4
as an important target in melanoma and other cancers led to
the development of small-molecule inhibitors of the kinase
activity of CDK4 (Figure 1). CDK4/6 inhibitors have been
tested as single agents or in combination. Studies were
focusing on evaluating the rational combination of CDK4/6
inhibitors with MAPK inhibitors (Table I). A study have
demonstrated that dual inhibition of CDK2 and CDK4
enhanced response to BRAF and MEK inhibitors in
melanoma cells in vitro and in vivo (71). Further, the
combination of CDK4-inhibitor palbociclib with trametinib
(MEK inhibitor) has shown a synergistic effect in NRAS-
mutant melanoma (72). The CDK4/6 inhibitors palbociclib
(PD-0332991) and ribociclib (LEE011) have been evaluated
in several phase I-II trials in combination with MEK and
BRAF inhibitors (NCT02065063, NCT02202200,
NCT01777776, NCT01781572 and NCT01820364). The
combination of the CDK4/6 inhibitor ribociclib (LEE011)
with the MEK1/2 inhibitor binimetinib (MEK162) has also
shown an activity in patients with NRAS mutant melanoma
(NCT01719380). The activity of CDK4/6 inhibitors appears
to be greater where there is higher activity of CDK4 pathway
(mutant or amplified CDK4, gains of cyclin D1) and
inactivation of RB protein appears to predict resistance to
CDK4 and CDK6 inhibitors (73).

Multimodality Treatments and Future Directions

Immunotherapy and targeted-therapy combinations. Another
modality in melanoma treatment involves the use of
immunotherapy. The immune checkpoint inhibitors, anti
CTLA-4 (ipilimumab) and anti-PD1/PDL1 antibodies
(pembrolizumab, lambrolizumab, nivolumab, MPDL3280)
(Figure 2) have made revolutionary immunotherapeutic
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advances and have demonstrated clinical activity in
melanoma (23, 74-78). In addition to their use as
monotherapies, anti-CTLA-4 and anti-PD1/PDL1 are now
being combined in clinical trials, and have shown impressive
response rates (Table I). Indeed, concurrent or sequential
combination of anti-CTLA-4 and anti-PD-1 achieved an
objective response rate (ORR) of 40% (ranging from 21 to
53%, n=52). Further, 31% of the patients treated with the
concomitant combination had a reduction in disease burden
of at least 80% (NCT01024231). 

The discovery of either molecularly effective targeted
therapies or immunotherapies has led to dramatic
improvements to the standard-of-care treatment of
melanoma. Treatment with targeted therapy yields rapid but
non-durable responses in most patients. Conversely,
treatment with immune checkpoint blockade can produce
durable but often delayed responses. Thus, dual immune and
molecular therapy together can lead to early and robust
antitumor responses with long-term benefit for patients.

Targeted therapy affects antitumor immunity, and synergy
may exist when targeted therapy is combined with
immunotherapy (Figure 2). Indeed, it was suggested that
oncogenic BRAF can lead to a tumoral immune escape (79,
80). Furthermore, treatment with MAPK inhibitors is
associated with enhanced expression of melanocytic antigens,
antigen recognition by T cells, and influx of cytotoxic T
lymphocytes (CTLs) (81-83). Also, it was suggested that
resistance to BRAF inhibitor leads to increased expression of
PD-L1 in melanoma cells, and MEK inhibition shows dual
therapeutic effects with simultaneous suppression of PD-L1
expression and induction of apoptosis (84). These findings
offer compelling evidence for the development of combined
targeted and immune therapies, and indicate immune
checkpoint blockade may enhance antitumoral response when
combined with MAPK inhibition. An ongoing targeted and
immunotherapy trial uses dabrafenib with or without
trametinib combined with ipilimumab in patients with BRAF
V600E/K-mutated metastatic melanoma (NCT01767454).
Other clinical studies have been planned or are underway
(Table I), each with varying dose levels and schedules of
combination therapy administration (NCT01656642,
NCT02130466 and NCT02027961). These trials will help in
understanding the profile of toxicity, the optimal timing and
sequence of the combination therapy profile. It will also
provide preliminary efficacy data of various combinations and
will help to guide optimal management of melanoma patients.

Combining MAPK inhibition and radiotherapy. Melanoma is
commonly regarded as a radioresistant tumor entity, although
adjuvant radiotherapy plays a role in treatment regimens for
patients suffering from advanced disease by reducing the risk
of local and metastatic tumor relapse (76). Moreover,
radiation therapy is often used to relieve symptoms caused by

the spread of the melanoma, especially to the brain or bones.
Radiation, like a variety of other cellular stress factors, can
activate or down-regulate multiple signaling pathways,
leading to either increased cell death or increased cell
proliferation. Modulation of the signaling process however,
depends on the cell type, radiation dose, and culture
conditions (85). MAPK signaling is known to potentially
influence tumor cell radiosensitivity because of their activity
associated with radiation-induced DNA damage response.

ERK is activated very rapidly in tumor cells in response
to radiation (86). Mutations occurring in the RAS/RAF
pathway further result in enhanced tumor cell proliferation
and survival after irradiation (87, 88).

Interestingly, inhibition of BRAF in melanoma brain
metastasis with activating BRAF mutations results in
sensitization to ionizing radiation (89, 90). The combination
of BRAF inhibitor dabrafenib with stereotactic radiosurgery
in V600EBRAF melanoma brain metastases is investigated in
a phase 2 prospective trial (NCT01721603).

The MEK inhibitor trametinib radiosensitizes RAS-/RAF-
mutated melanoma cells by inducing prolonged G1 arrest and
premature senescence. In this pre-clinical study Schick et al.
demonstrated that combining trametinib and radiotherapy is
well tolerated and reduces tumor growth in vivo (91).

Furthermore, Eder S et al. (92) have shown that
pharmacological interference with MAPK signaling
increases vulnerability of NRAS-mutant melanoma cells to
ionizing radiation and point towards a possible use for
combined MEK inhibition and localized radiation therapy of
malignant melanoma in the NRAS-mutant setting where
BRAF inhibitors offer no clinical benefit. Additionally, RTKi
potentiate the effect of radiotherapy in cancer (93). These
observations suggest that signaling through the MAPK
pathway is important in radiation response and radiation
resistance, and inhibition of this cascade may be an attractive
means to sensitize tumor cells to ionizing radiation. 

Regarding the rationale behind combined targeted therapy
and immunotherapy and given the potential synergy between
radiotherapy and targeted therapy on one hand and
immunotherapy on the other, adding radiotherapy to the dual
therapies (imuno- and targeted- therapies) could also be an
option that may lead to improvements in locoregional and
distant tumor control and would be effective in the cases of
brain metastasis.

P53 reactivation and radiotherapy. P53 pathway is known to
be implicated in the regulation of the response to ionizing
radiations in tumor cells (94-96). Radiation will induce ataxia
telangiectasia (ATM) mutated and other kinases that results
in the phosphorylation and activation of p53 (Figure 2) (97). 

Several studies have reported synergistic suppressive
effects of combining TP53 gene transfer treatment with x-
ray radiation on various cancer cells including head and
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Figure 1. Key melanoma signaling pathways involved in proliferation and survival and selected therapeutic agents that target each of these pathways.
MAPK pathway is the central pathway in melanoma, activated in nearly 90% of cases due to oncogenic mutations in c-KIT, NRAS and BRAF. In
parallel, PI3K/AKT pathway is also activated in melanoma due to loss of function of PTEN or activation of AKT. The pro-apoptotic p53 pathway
is inactivated in the majority of the cases in melanoma due to overexpression of its negative regulators (MDM2/MDM4). The p16/cyclin D/CDK4/6
- retinoblastoma protein (RB1) pathway (CDK4 pathway) is also dysregulated in melanoma. Numbers in the red circles (1-9, 11) and green circle
(10) represent respectively the mechanism of action of inhibitors and activators used to modulate these pathways with a high therapeutic potential.



neck, glioblastoma, colorectal, cervical, lung, and
malignant glioma cell lines (98-103). In murine melanoma
cells, Duan X. et al. (104) found that heavy-ion radiation
combined with TP53 gene transfer induced apoptosis.
Furthermore, the effects of wild type p53 activation via
MDM2 inhibition in combination with radiation have been
examined in lung and prostate cancers (95, 105, 106).
Recently, a study by Feng F. et al. (107) showed that
MDM2 inhibition combined with MI-219 results in p53-
dependent sensitization of prostate cancer cells to radiation.
Another study by William J. et al. (108) reported that
intrinsic radiosensitivity of 39 human tumor cell lines
segregated into distinct genotype-dependent radiosensitivity
groups that are associated with wild-type TP53 and mutant
TP53, showing that wild-type TP53 cells are significantly
more sensitive than mutated ones. 

Unfortunately, only a few observations are available for
the impact of p53 targeting on radiotherapy in melanoma.

Immunotherapy and radiotherapy combination. Investigations
into the interaction between radiotherapy and the host immune
system have elucidated new mechanisms that can potentially
be exploited to improve the efficacy of radiotherapy (109).

The combination of local radiotherapy and immune-
modulation can augment local tumor control and cause
distant antitumor effects (abscopal), increasing tumor-antigen
release and antigen-presenting cell (APC) cross-presentation,
improving dendritic cell (DC) function, and enhancing T cell
priming (110-113) (Figure 2). On the other hand, ionizing
radiation can also generate chemotactic signals that recruit
several myeloid-cell types with distinct roles in T cell
suppression (114-116).

The major clinical successes in the nascent field of
radioimmunomodulation are the result of the advent of immune-
checkpoint inhibitors. Inhibitors of the CTLA-4 pathway, such as
ipilimumab, have shown encouraging results in the treatment of
patients with cancer. CTLA-4 functions as an immunosuppressor
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Figure 2. Multimodality treatments and future directions. Schematic representation of the main reasons behind the rationale to use combinatorial
approaches including targeted therapies, immunotherapy and radiotherapy. New immunotherapeutic agents in melanoma involve immune checkpoint
inhibitors anti-CTLA-4 and anti-PD1/PDL1 antibodies. (A) Upon T cell activation via T cell receptor (TCR) engagement by MHC-peptide complex
between APC and T cells, CTLA-4 competitively blocks the binding of costimulatory ligands CD80 and CD86 to CD28. Antibodies against CTLA-
4 (ipilimumab) act at the initiation of the immune response by maintaining T cell activation. (B) In metastatic melanoma, the interaction of PD-L1
expressed by melanoma cells with PD-1 induces T cell suppression. Anti-PD-1 antibodies induce T cell reactivation by preventing binding of PD-1
with its ligands. (C) Activation of dendritic cells and up-regulation of MAA (melanoma associated antigens) by BRAF inhibition and suppression
of PD-L1 expression by MEK inhibition offer compelling rationale to combine targeted and immune therapies. (D) Radiotherapy can induce the
activation of p53 via ATM. Targeting MAPK and p53 can sensitize melanoma cells to radiation. (E) Radiotherapy combined with anti-PD-L1 up-
regulates MHC, and increases tumor cell susceptibility to immune-mediated cell death.



by increasing the signal intensity required for CD8+ T cells to
engage target cells in the tumors (117). 

A retrospective study where patients with advanced
melanoma were grouped into those who had received
concurrent radiotherapy while on ipilimumab (Ipi-RT), and
those who did not, showed an improved survival and
complete response rates in patients treated with concurrent
ipilimumab and radiotherapy versus ipilimumab alone. Also,
toxicities were not increased in the Ipi-RT group compared
with ipilimumab alone (118).

In addition, inhibition of the PD-1/PD-L1 pathway on T
cells has been associated with a potent antitumor activity in
mouse tumor models and in clinical trials (71, 115-117).

A preliminary preclinical report has indicated that
radiotherapy combined with anti-PD-1 antibody treatment
can result in primary tumor control (119). More recent data
from the same group indicated that this therapy combination
results in induction of endogenous antigen-specific immune
responses, resulting in improved local control in single tumor
models of melanoma or breast carcinoma (112).

Thus, current evidence indicates that enhancing innate and
adaptive immunity by combining radiotherapy and immuno-
therapy is a crucial strategy to improve patient survival.

Conclusion

Melanoma treatment has witnessed dramatic progress and
several revolutionary therapeutic advances with the
discovery of molecularly-effective targeted therapies (BRAF
and MEK inhibitors) and immunotherapies (anti-CTLA-4
and anti-PD1/PDL1 antibodies) which significantly improve
the standard-of-care treatment of melanoma. Monotherapy is
unlikely to yield a long-term benefit due to drug resistance.
Thus, rationale-based combinatorial strategies are the key to
overcome resistance and obtain a long-term response.
Ongoing studies are investigating many combinatorial
approaches but the key issues addressed are the ideal timing
and sequences of combination regimens that can give the
higher efficacy, durable response and lower toxicity. 
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