
Abstract. Cancer remains one of the leading causes of death
worldwide, indicating that current cancer therapies are
ineffective. Therefore, new treatments with high specificity and
low toxicity are needed. Cancerous cells can be distinguished
from normal cells based on expression of key proteins, namely
surface proteins, scaffold proteins and signaling molecules.
Moreover, cancer cells communicate with the tumor micro -
environment consisting of a heterogenous population of cells,
extracellular matrix components and soluble factors such as
cytokines/chemokines and growth factors. Most therapeutic
interventions have been designed to specifically target these
proteins of interest. Biomimetic peptides (BPs) are artificially
designed peptides that imitate the action of parent proteins or
peptides. BPs can be classified into at least three types based
on their target molecule: BPs that target (i) cell-surface
molecules, (ii) intracellular molecules, and (iii) cancer
cell–tumor microenvironment interactions. In this review, we
analyze/discuss the current strategies for targeting tumors
using BPs.

Cancer is one of the leading causes of death worldwide and
this is due to high morbidity, recurrence rate and mortality
(1). In general, tumorigenesis is a highly complex multi-step
process. Tumor cells exhibit unique characteristics, such as
the capacity to continually undergo unregulated proliferation,
evade apoptosis, promote abnormal angiogenesis and invade
other organs after migrating through blood and lymphatic
vessels (2, 3). Although surgery, chemotherapy and

radiotherapy are widely accepted as the main therapeutic
approaches for treating cancer, these treatments often have
severe adverse effects that significantly reduce the quality of
life for the patient. Hence, new, more effective therapeutic
interventions that have a high specificity for cancer cells and
low toxicity to normal, healthy tissue are urgently needed.

The term ‘biomimetics’, was first coined by the American
neurophysiologist Otto Schmitt, and refers to “a creative
form of technology that uses or imitates nature to improve
human lives” (4, 5). This concept has since been applied to
several scientific fields including chemistry, nanotechnology,
mechanics, robotics and medicine. In the medical field,
numerous studies have been published, utilizing biomimetic
applications such as artificial organ and dental implant
surface modifications to improve the biocompatibility of
these materials (6-8). 

Peptides are critical molecules that regulate many biological
events. For example, hormonal peptides serve as modulators
of homeostasis within the body (9-11). Bioactive peptides
derived from digested dietary proteins also play an important
role in the cardiovascular (12, 13), gastrointestinal (12, 14)
and nervous systems (12, 15). Moreover, antimicrobial
peptides (AMPs) are important components of the innate
immune system (12, 16). Artificially synthesized peptides can
be easily and rapidly mass produced within the laboratory.
Therefore, numerous studies have attempted to develop
artificially designed biomimetic peptides (BPs) that mimic the
actions of the parent proteins or the peptides from which they
originate and may be novel therapeutic candidates for a range
of conditions (17-25). BPs can be classified into at least three
types, based on their derivation and molecular targets: BPs
targeting (i) cell-surface molecules, (ii) intracellular molecules,
and (iii) interactions between cells and the tissue
microenvironment (e.g. extracellular matrix components,
cytokines, other tissue-resident cells).

Cancer cells can generally be distinguished from normal
cells based on the activity of specific proteins, and most
current therapeutic agents specifically target these proteins
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or signaling molecules (26). This review will highlight the
current strategies for targeting tumors using BPs, focusing
on the relationship between the protein of origin and the
molecular target of the peptide (Table I). 

Targeting Molecules at the Cell Surface

A major component of the plasma membrane of a cell is the
phospholipid bilayer which contains several proteins (including
receptors) that are either integrated into the lipid bilayer or
bound to the membrane indirectly through protein–protein
interactions. Certain key receptors are more highly expressed
on cancer cells than normal cells and induce cancer cell
proliferation upon ligand binding (27). As such, many BPs that
bind to target receptors are hormone analogs, such as
somatostatin analog peptides (28-32) and gonadotropin-
releasing hormone (GnRH) analog peptides (33, 34). These
analogs share sequence homology and contain the almost same
number of amino acids as the parent peptides. Thus, hormonal
analogs were classically investigated for clinical application of
BPs in the field of oncology. These have been approved for
clinical use and provide great benefit for patients with cancer,
more specifically with prostate cancer (28-34). Fragments of
the parent protein have also reportedly been used (35-37).
Synthesized as fragment peptides, human epidermal growth
factor receptor (HER)2- and vascular endothelial growth factor
(VEGF)-mimicking peptides used in combination with
metronomic paclitaxel for treatment significantly reduced
tumor burden and prolonged survival rates in both transgenic
and inoculated tumor models of human breast cancer (35, 36).
The FOXY5, wingless-type MMTV integration site family
(WNT)-5A-derived hexapeptide, impaired the migration and
invasion of murine breast cancer cells without affecting their
apoptosis or proliferation. The peptide also inhibited metastasis
in a transplantable tumor model of murine breast cancer (37). 

The integrin family of proteins are usually expressed at
very low levels (or are even undetectable) in most normal
cells and their expression is often highly up-regulated in most
tumors (38). Integrins interact with the extracellular matrix
(ECM) glycoprotein and immunoglobulin superfamily
molecules. A wide variety of integrins support the
proliferation, survival and migration of cells within tumors.
Specific integrins preferentially bind to distinct ECM proteins
containing an adhesive arginine-glycine-aspartic acid (RGD)
sequence. Therefore, RGD peptides and RGD mimetic
peptides have been utilized as carriers to deliver biological
cargo such as DNA (39), small interfering (si) RNA (40),
saccharides (41), fatty acids (42), inhibitors (43) and drugs
(44) to tumors. RGD peptides have been shown to suppress
proliferation and induce apoptosis of cancer cells directly in
vitro (45). Such peptide was also found to reduce the density
of functional vessels within tumor, causing retardation of
tumor growth and inhibiting metastasis in vivo (46).

Targeting Intracellular Molecules

A key step in tumorigenesis is the evasion of growth
signaling and loss of tumor suppressors. Many oncogenes
have been identified (47-49), the aberrant activation of these
proteins can affect signaling cascades within cancer cells at
several different stages (50). Thus, a wide variety of
intracellular molecules have been investigated as potentially
promising therapeutic targets for cancer treatment. To access
the intracellular target molecules, anticancer drugs against
these molecules must be able to penetrate tumor tissue and
enter cancer cells. All AMPs have the capacity to interact
strongly with cell membranes, some are able to achieve this
interaction without membrane permeabilization (51). Certain
AMP-derived BPs are also able to penetrate cell membranes.
For example, the synthetic peptide LTX-315, derived from
bovine lactoferricin, was shown to be internalized by cells
and accumulate close to the mitochondria (52). The peptide
was found to kill the cells by permeabilizing the
mitochondrial membrane (53). The oncolytic property of
LTX-315 has been shown in several cancer lines (54), while
displaying low cytotoxicity against human red blood cells
(55). In an in vivo murine model of transplantable melanoma,
LTX-315 induced complete regression of tumors (55).
Recently, the peptide was also found to induce immunogenic
cell death and the induction was comparable with well-
known immunogenic cell death-inducible agents,
anthracyclines (56). LTX-315 is currently being investigated
in clinical phase I/IIa studies (57).

AMPs and some of their analogous BPs have the ability to
undergo cellular internalization. However, other peptides need
to be modified to improve their permeability through the
plasma membrane. One strategy to enhance their uptake into
cells is to use cell-penetrating peptides (CPPs). CPPs can
carry many different therapeutic agents into cells, including
small molecules, plasmid DNA, siRNA, proteins, viruses,
imaging agents, and other various nanoparticles (58). Several
studies have reported the use of CPP-conjugated BPs (59-63).
One example of this is the bcl-2-associated x protein (BAX)
segment peptide, R8-BAX [106-134] which was designed
from the α5 helices of BAX (residue Asn106 to Arg 134) and
conjugated to the cell-penetrating arginine octapeptide (R8)
(59). R8, a well-known CPP, is concentrated at the cell
surface by interacting with membrane-associated
proteoglycans which then induce macropinocytosis,
stimulating active and efficient cellular uptake (64, 65). The
BAX protein plays a key role in the mitochondrial apoptosis
pathway (66), and its α5 helices forms the mitochondrial
membrane insertion and pore formation domain of the protein
(67). R8-BAX induced caspase-dependent apoptotic cell
death in vitro and in a murine mammary carcinoma xenograft
model significantly reduced tumor volume by partially
mimicking the functions of BAX. In addition, BIM stabilized
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α-helix of bcl-2 domains (SAHB)A is a synthetic segment BP
derived from the BH3 domain of BIM (68). BIM SAHBA is
a stapled hydrocarbon α-helix that combines two distinct
conformational stabilization strategies previously found to
individually induce α-helical structures, namely, α,α-di-
substitution and macrocyclic bridge formation (69-71). Using
fluorescein isothiocyanate-conjugation, stapled peptides were
found to be able to enter the cell depending on certain factors,
such as charge, hydrophobicity and α-helical structure (70).
BIM SAHBA has also been shown to have membrane-
penetrating capability (72). Treatment of hematological
cancer cells with BIM SAHBA directly triggered pro-
apoptotic activity and induced BH3 sequence-specific cell
death in vitro and significantly reduced tumorigenesis in a
human xenograft model of acute myeloid leukemia (72).

Targeting the Tumor Microenvironment

Carcinomas are not only composed of tumor cells but are in
fact complex tissues, to which many other cells are recruited
that can be ‘corrupted’ by transformed cells within the tumor
(73). As evidence that cancer cells are able to communicate
with a wide range of cell types, ECM components and
soluble factors (e.g. cytokines/chemokines and growth
factors) has accumulated, the concept of the tumor

microenvironment (TME) has gradually been accepted. As a
result, recent studies have not only focused on the tumors
themselves but also on the TME and are currently targeting
tumor–TME interactions using BPs. Prosaposin (PSAP) is a
glycoprotein proteolytically cleaved in late endosomes/
lysosomes that functions as a regulator of lysosomal enzyme
and a secreted factor that exerts neuroprotective and
glioprotective effects (74). PSAP stimulates the expression
and production of the anti-tumorigenic protein
thrombospondin-1 (TSP1) in cluster of differentiation
(CD)11b+/granulocyte-differentiation antigen-1+/Ly6Chigh

monocytes and was found to inhibit tumor metastasis in lung
and breast tumor models (75, 76). On the basis of these
finding, quadropeptide DWLP and cyclic pentapeptide
DWLPK derived from PSAP (named PSAP peptide) were
developed to inhibit metastatic ovarian cancer (77). In fact,
PSAP peptide was found to induce tumor regression in a
patient-derived tumor xenograft model of metastatic ovarian
cancer (77). PSAP peptide has been shown to stimulate the
expression and production of TSP1 in bone-marrow cells.
Three distinct mechanisms of inhibiting ovarian cancer
progression by PSAP peptide-induced up-regulation of TSP1
have been proposed: TSP1 released from bone-marrow cells,
(i) directly kill ovarian cancer cells, (ii) acts as an
antiangiogenic effector, or (iii) blocks CD47-signal
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Table I. Representative biomimetic peptides with anticancer properties.

Name Sequences Protein of origin Anticancer mechanism References

Targeting cell-surface molecule
Octreotide fCFwKTCT-ol Somatostatin Mimics the actions of somatostatin 28-32
Leuprorelin pEHWSyLLRP-NHC2H5 GnRH Mimics the actions of GnRH 33, 34
Cyclized HER2-D- CH3CONH-VCSAGFTYRGEPNP- HER2 Blocks receptor–ligand interactions 35, 36
peptide mimetic MSEFTDTNYTVLAPCHL-CONH2
Cyclized VEGF-L- CH3CONH-FSMECIMRIKPHQG- VEGF Blocks receptor–ligand interactions 35, 36
peptide mimetic QHIGCQMTI-CONH2
FOXY5 formylMDGCEL WNT5A Mimics the actions of WNT5A 37

Targeting intracellular molecule
LTX-315 KKWWKKWDipK-NH2 Bovine Induces apoptosis through mitochondrial 52-54

lactoferricin membrane permeabilization 
and immunogenic cell death

R8-BAX[106-134] RRRRRRRRGNWGRVVALFY- BAX Partially mimics the functions of BAX 59
FASKLVLKALCTKVPELIR and induces apoptosis

BIM SAHBA IWIAQELR*IGD*FNAYYARR BIM Partially mimics the functions of BIM 70, 72
and induces apoptosis

Targeting the tumor microenvironment
PSAP peptide DWLP(K) Prosaposin Stimulates p53 and the protein 75-77

TSP1 in bone marrow-derived cells

pE: Pyroglutamic acid; Dip: diphenylalanine; GnRH: gonadotropin-releasing hormone; HER2: human epidermal growth factor receptor-2; VEGF:
vascular endothelial growth factor; WNT5A: wingless-type MMTV integration site family-5A; BAX: bcl-2-associated x protein; SAHB: stabilized
α-helix of BCL2 domains; PSAP: Prosaposin; *hydrocarbon staple site. Lower case letters in sequences indicate D amino acids.



regulatory protein α interaction by competitively binding to
CD47, thus disrupting the “do not eat me” signal within
CD47-expressing cells (77).

Conclusion

In this review, we mainly discussed the anticancer BPs
which imitate naturally-occurring molecules. Due to the
large body of evidence on the mechanisms governing
tumorigenesis and the potential application of novel
peptides, many anticancer BPs have been developed. Some
parent amino acid sequences have been modified to enhance
the efficacy of the BPs, while other peptides have been
modified to enhance their cell permeability. Due to their
efficacy and low toxicity, some peptides have already have
been approved as cancer therapies and are currently being
used in clinical practice. The safety and efficacy of several
other BPs are also currently being tested in clinical trials.
While further work is needed to develop this technology for
use in other clinical settings, BPs represent a promising
therapeutic strategy to treat cancer.
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