
Abstract. Osteosarcoma is one of the most malignant bone
tumors of childhood and adolescence. Interestingly, the
presence of estrogen receptors α and β has been reported in
human bone cells, including osteosarcoma. Thus, inhibitors
of estrogens such as fulvestrant, are considered candidates
for novel endocrine therapy in treatment of osteosarcoma.
Another anticancer agent that seems to be very effective in
treatment of osteosarcoma is a derivative of 17β-estradiol,
2-methoxyestradiol. The aim of this study was to determine
the anticancer activities of pure anti-estrogen, fulvestrant
and combined treatment of fulvestrant and 2-
methoxyestradiol towards highly metastatic osteosarcoma
143B cells. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-
tetrazolium bromide assay was used in order to determine
the antiproliferative potential of the compounds, and western
blotting for estrogen receptors α and β. Flow cytometry was
used in order to determine induction of cell death, cell-cycle
arrest, mitochondrial depolarization, and DNA damage.
Herein, we showed that fulvestrant has anticancer activity
only at high concentrations. We were able to find and
expression of estrogen receptor β, while we did not detect
estrogen receptor α in osteosarcoma 143B cells. Moreover,
fulvestrant down-regulated the expression of estrogen
receptor β, and this effect was reversed by 2-
methoxyestradiol. Thus, the obtained data suggest that 2-
methoxyestradiol may exert part of its anticancer activity
through modulation of expression of estrogen receptor β.

Bone tumors are heterogeneous groups of tumors, with
osteosarcoma (OS) being the most common. OS is one of the
most malignant bone tumors of childhood and adolescence

(1). It has its origin in mesenchymal bone tissues and usually
arises around the knees and in the regions of long bones (2-
4). Bone tumors commonly develop during maximal somatic
growth, correlating with the peak of incidence among
patients aged 14-18 years (5). There has been no significant
progress in OS therapy since 1970; the 5-year survival rate is
75-80% (2-6). 

It has been demonstrated that estrogens exert a significant
impact on the skeleton during growth and adulthood (7).
Moreover, sex steroids, particularly 17β-estradiol (Figure 1),
play an important role in the regulation of cell proliferation
of human OS (8). Sex steroids act on their target cells by
binding to members of the nuclear hormone receptor
superfamily of estrogen receptors (ER) α or β (7, 9-11). ERs
are encoded on different chromosomes, and have distinct
patterns of distribution, differences in structure and in ligand-
binding affinity (12). A high ERα:ERβ ratio leads to
enhanced cellular proliferation, while a predominance of
ERβ over ERα leads to decreased proliferation (13-15).
Moreover, the ratio of ERs in normal and malignant tissues
is important for the long-term success of chemoprevention
(7). Interestingly, the presence of ERs has been reported in
human bone cells, including OS (8, 16). 

The role of 17β-estradiol in stimulating poorly metastatic
MG-63 OS cells has been reported (8). This pro-cancerogenic
effect was suppressed by the addition of fulvestrant (ICI
182.780, Faslodex; Figure 1) (8). Fulvestrant binds
competitively to the ER, with high affinity, and down-
regulates ER by functional blockade and increased turnover
(17, 18). Fulvestrant has been evaluated in extensive pre-
clinical and clinical trials, that demonstrated its unique
features (17-22). Its unique mode of action and the absence of
partial agonist activity made it a candidate for the treatment
of advanced breast cancer (17-19, 43). Moreover, fulvestrant
was found to reduce the size of lung metastases in OS (44). 

Another potent anticancer agent evaluated in ongoing
clinical trials is 2-methoxyestradiol (2-ME), a natural 17β-
estradiol derivative (Figure 1) (29, 30). In vitro studies
reported that 2-ME inhibited the growth of various cancer
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cells, including those of the colon, ovarian, kidney, pancreas,
breast, lung and stomach, as well as OS (23-28). Moreover,
2-ME (branded as PANZEM) has been evaluated in clinical
trials, and is believed to possess potential therapeutic activity
against breast, ovarian, and prostate cancer, as well as
multiple myeloma (29-33). Serum levels of 2-ME range from
3 pM in men to >30 nM in pregnant women. Previously, we
demonstrated that 2-ME at physiologically and
pharmacologically-relevant concentrations led to death of
143B OS cells (26), while pharmacological concentrations
of 2-ME (1-10 μM) inhibited cancer in various experimental
models (25, 26, 28, 41, 42). Moreover, 2-ME may be
effectively applied in monotherapy as well as in combination
therapies with popular chemotherapeutics including
bevacizumab (30), docetaxel (31), paclitaxel (32) and other
anticancer agents (33).

It is believed that 2-ME lacks significant affinity for ER
and is therefore non-estrogenic (25, 34). However, in contrast
to physiological levels, pharmacologically active levels of 2-
ME are predicted to have significant levels of binding to ER,
given the overlap in the concentration ranges for
antiproliferative effects and ER binding (35). However, it is
not known whether 2-ME has agonistic or antagonistic
properties, or tissue dependency (35). 

Thus, the aim of this study was to determine the
anticancer effects of co-treatment with 2-ME and
fulvestrant on highly metastatic OS 143B cells. We also
aimed to determine whether 2-ME at pharmacologically-
relevant concentrations exerts anticancer activity in an ER-
dependent manner.

Materials and Methods 

Materials. 2-ME, fulvestrant, tissue culture media, antibiotic
cocktail, fetal bovine serum (FBS), trypsin:EDTA, dimethyl
sulfoxide, and antibodies to ERα and ERβ were purchased from
Sigma-Aldrich (Poznan, Poland). Cell viability, mitochondrial
potential, annexin V-propidium iodide, cell-cycle, and DNA-damage
assay kits were obtained from Merck Millipore (Warsaw, Poland). 

Cell line and culture conditions. The human OS 143B cell line
(ATTC-8303) was purchased from the American Tissue Type
Collection (Wesel, Germany. The cells were maintained in
monolayer culture using Eagle’s minimum essential medium
(EMEM) supplemented with 10% heat-inactivated FBS, 2 mM L-
glutamine, penicillin (100 U/ml)/streptomycin (100 μg/ml) cocktail
and 15 μg/ml bromo-deoxyuridine (BrdU) (Sigma Aldrich). Cells
were cultured at 37˚C in a humidified atmosphere saturated with 5%
CO2. Twenty-four hours after seeding the medium was aspirated. 

Cell treatment. Before each experiment, the cells were prepared as
previously described (26, 27). The OS 143B cells were treated with
different concentrations of fulvestrant, with/without 2-ME
depending on the design of experiments. The cells treated with the
combination of fulvestrant and 2-ME were first pre-treated for 2 h
with fulvestrant in order to block ER. Subsequently, the cells were

treated with combination of fulvestrant and 2-ME according to the
experimental design (Materials and Methods). The cells were treated
in EMEM with antibiotic cocktail, without L-glutamine and without
FBS. The stock solutions of 2-ME and fulvestrant were prepared in
dimethyl sulfoxide (DMSO). The final concentration of DMSO in
experiments was less than 0.1%. 

Cell viability assay [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-
tetrazolium bromide (MTT assay)]. OS 143B cells were treated with
serial dilutions of fulvestrant, 2-ME, or a combination of both
(within the range of 1 pM-1 mM) for 24 h. The cells treated with
the combination of fulvestrant and 2-ME were first pre-treated for 
2 h with fulvestrant in order to block ER. The MTT assay was
performed as previously described (27). The results are presented
as a percentage of that of the control cells (untreated cells). Each
experiment was performed at least three times.

Western blotting. OS 143B cells were seeded at a density of 2×106

cells/dish. After 24 h of culture in standard medium, the medium
was exchanged for FBS-free medium. OS 143B cells were treated
with fulvestrant (10 nM), with/without 2-ME (10 μM) for 24 h.
The cells treated with the combination of fulvestrant and 2-ME
were first pre-treated for 2 h with fulvestrant in order to block ER.
Equal amounts of total OS 143B cell lysates were resolved by
12% sodium dodecyl sulfate–polyacrylamide gel electrophoresis.
The membranes were then incubated with primary antibodies to
ERα and -β (Sigma Aldrich) (1:1000) overnight at 4˚C and an
analysis was performed as previously described (34).
Chemiluminescence was detected using ImageQuant LAS 500 (GE
Healthcare, Warsaw, Poland). The protein level was quantified by
densitometry using Quantity one 4.5.2 software (Bio-Rad, Warsaw,
Poland). The protein levels of ERs, as determined by
chemiluminescent signal quantification, were normalized relative
to the level of β-actin found in the samples. Each experiment was
performed at least three times.

Induction of cell death. Assessment of apoptosis with double
annexin V-propidium iodide (PI) staining was carried using Muse™
Cell Analyzer with Muse® annexin V (Merck Millipore, Darmstadt,
Germany) and dead cell assay kit. OS 143B cells were seeded at a
density of 0.3×106 cells/well. After 24 h of culture in standard
medium, the medium was exchanged for FBS-free medium. Cells
were treated with fulvestrant (10 nM, 1 μM and 50 μM) 2-ME 
(10 μM), or a combination of both for 24 h. The cells treated with
the combination of fulvestrant and 2-ME were first pre-treated for 
2 h with fulvestrant in order to block ER. After that time, cells were
trypsinized and collected. Staining assay was performed to
determine the proportion of apoptotic cells in samples. Each
experiment was performed at least three times. Untreated OS 143B
cells were used as negative and 2-ME-treated cells as positive
controls (26,27). 

Phosphorylation of histone H2A variant H2AX (H2AX) at serine
139. Assessments of phosphor-specific ataxia telangiectasia mutated
(ATM-PE) and a phosphor-specific histone H2A.x-PECy5 staining
was carried out using Muse™ Cell Analyzer using Muse®

multicolor DNA damage kit (Merck Millipore). OS 143B cells were
seeded at a density of 2×106 cells/dish. After 24 h of culture, in
standard medium, the medium was exchanged for FBS-free
medium. OS 143B cells were treated with fulvestrant (10 nM, 1

ANTICANCER RESEARCH 36: 2217-2226 (2016)

2218



μM), with/without 2-ME (10 μM) for 2 h. The cells treated with the
combination of fulvestrant and 2-ME were first pre-treated for 2 h
with fulvestrant in order to block ER. Untreated OS 143B cells were
used as negative and 2-ME-treated cells as positive controls (26).
Each experiment was performed at least three times.

Inhibition of cell cycle. Assessments were prepared by Muse™ Cell
Analyzer using Muse® cell-cycle assay kit. OS 143B cells were
seeded at a density of 2×106 cells/dish. After 24 h of culture in
standard medium, the medium was exchanged for FBS-free
medium. Cells were treated with fulvestrant, 2-ME, or combination
of both for 24 h. The cells treated with the combination of
fulvestrant and 2-ME were first pre-treated for 2 h with fulvestrant
in order to block ER. Each experiment was performed at least three
times. Untreated OS 143B cells were used as negative and 2-ME-
treated cells as positive control (26).

Statistical analysis. The results were analyzed with the MuseSoft
Analysis (version 1.4.0.0; Merck Millipore). Experimental results
are presented as the mean±SD values from at least three
independent experiments. Data were analyzed using GraphPad
Prism (version 6.03; GraphPad Software, Inc., La Jolla, CA, USA).
Significant differences between groups were determined by one-way
ANOVA combined with Dunett’s multiple comparison test.

Results

Impact of 2-ME and fulvestrant on protein expression of ER
in 143B cells. Our first goal was to determine the protein
levels of ERα and -β in 143B cells by western blotting. The
concentrations used were based on our previous research and
literature data (7, 36-39). We used pharmacologically-
relevant concentrations of 2-ME, namely 10 μM, at which
anticancer efficiency was confirmed in 143B cells (26, 27).
We chose to use 10 nM of fulvestrant as at this concentration
it was shown to effectively inhibit and down-regulate ER (36,
38, 39). We observed that 143B cells expressed ERβ, while
we failed to detect ERα. As shown in Figure 2A, 24-h
treatment with fulvestrant down-regulated the protein
expression of ERβ by 30%. 2-ME used separately increased
the protein level of ERβ by 10%. Interestingly, 2-ME
reversed also the down-regulation of ERβ induced by
fulvestrant (Figure 2A). 

Antiproliferative impact of fulvestrant and 2-ME on 143B
cells. We next determined the antiproliferative potential of
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Figure 1. Chemical structures of 17β-estradiol (A), 2-methoxyestradiol (B), and fulvestrant (C).



fulvestrant and the effect of combined treatment with
fulvestrant and 2-ME. Our previous study showed that 2-ME
reduced cell viability in a time-dependent manner (26, 27).
Herein, the viability of 143B cells significantly diminished
from 100% to 81% and 70% in the presence of 10 μM and 
1 mM fulvestrant, respectively (Figure 2B). As previously
described, we observed-significant decrease in 143B cell
proliferation at all concentrations of 2-ME used (1 nM–1 mM)
(Figure 2C) (26). Treatment with fulvestrant significantly
diminished the antiproliferative effect of 2-ME (Figure 2D).
Interestingly, we observed an antagonistic effect of fulvestrant
and 2-ME, however, significantly starting from concentrations
of approximately 10 μM (Figure 2D). 

Impact of fulvestrant and 2-ME on 143B cell death
induction. Next, we aimed to determine the impact of
fulvestrant and combined treatment with fulvestrant and 2-
ME on induction of 143B cell death. In order to determine
concentration dependency, in the next studies, we chose
concentrations of fulvestrant of 10 nM, 1 μM and 50 μM. As
demonstrated in Figure 3A, there were no significant
changes in the level of the apoptotic population after 24-h

treatment with fulvestrant compared to control cells. We
previously demonstrated that the number of apoptotic cells
after 24 h incubation with 10 μM 2-ME was significantly
increased by up to 31% (27). Moreover, as shown,
pretreatment and further treatment with 50 μM fulvestrant
significantly reduced 2-ME-induced cell death to
approximately 18%, while we did not observe any significant
impact of lower concentrations of fulvestrant (10 nM, 1 μM)
(Figure 3A). These data are consistent with the
antiproliferative potential of separate and combined
treatment with fulvestrant and 2-ME (Figure 2B-D).

Impact of fulvestrant and 2-ME on inhibition of cell-cycle
progression in 143B cells. Next, we aimed to determine
whether fulvestrant and combined treatment with fulvestrant
and 2-ME influenced 143B cell-cycle distribution. OS 143B
cells were incubated with fulvestrant and combinations of
fulvestrant and 2-ME for 24 h. As demonstrated in Figure 3,
no significant changes in cell-cycle distribution were observed
after treatment with fulvestrant alone (Figure 3B). After 24 h
incubation with 10 μM of 2-ME, 66% of the 143B cells were
in the G2 and M phases compared to control cells (16.38%).
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Figure 2. A: The modulation of estrogen receptor β (ERβ) expression in 143B OS cells by fulvestrant, 2-methoxyestradiol (2-ME), and combined
treatment of fulvestrant and 2-ME in osteosarcoma 143B cells. The cells were treated with 10 nM fulvestrant, 10 μM 2-ME, and combined treatment
of both for 24 h, the expression of ERβ was subsequently determined by western blotting. B-D: Inhibition of 143B cell proliferation by fulvestrant,
2-ME (27) and combined treatment of 2-ME and fulvestrant. 143B cells were treated with serial dilutions of fulvestrant, 2-ME, and their combination
(within the range of 1 pM-1 mM) for 24 h. Cell proliferation was determined by the MTT assay. Data are presented as the mean±SE values from at
least three independent experiments. Data were analyzed performing one-way ANOVA combined with Dunnett’s multiple comparison test;
*significantly different at p<0.01 versus the control. A representative experiment out of three performed is shown.



Interestingly, co-treatment with lower concentrations of
fulvestrant (1 μM, 10 nM) and 10 μM 2-ME did not
significantly change the cell-cycle distribution induced by 2-
ME. Co-treatment with 50 μM fulvestrant and 10 μM 2-ME
resulted in increased cell-cycle arrest in G2/M phase (84%) as
compared to 2-ME used separately (Figure 3B). 

Impact of fulvestrant and 2-ME on mitochondrial
depolarization in 143B cells. Our next goal was to determine
if separate and combined treatment with fulvestrant and 2-
ME influenced the status of the mitochondrial membrane
potential. We did not observe any significant changes in
mitochondrial potential after 24-h incubation with 1 μM and
10 nM fulvestrant (Figure 4A). However, 24 h treatment with
50 μM fulvestrant or 10 μM 2-ME resulted in a significant
increase in the proportion of mitochondrial depolarized cells
as compared to the control. Increase in cells with
mitochondrial membrane depolarization to 60% and 86%
was also observed after 24 h combined treatment with 50 μM
fulvestrant with 10 μM 2-ME, and 10 nM μM fulvestrant
with 10 μM 2-ME, respectively (Figure 4A). 

Impact of fulvestrant and 2-ME on histone H2AX
phosphorylation in 143B cells. Previously, we demonstrated
that 2-ME used at physiological and pharmacological

concentrations led to OS cell death as a result of DNA
damage (26). Herein, we determined the impact of
fulvestrant and 2-ME used together and separately on H2AX
phosphorylation. We recently showed that 2 h incubation is
sufficient to observe the induction of double-strand breaks
after treatment with 2-ME at physiologically and
pharmacologically relevant concentrations (26). Herein, we
observed increased phosphorylation of H2AX after 2 h
treatment with 10 μM 2-ME (Figure 4B), in agreement with
our previous research (26). Interestingly, fulvestrant did not
exert any significant effect when used separately nor in
combination with 2-ME (Figure 4B).

Discussion

OS is one of the most clinically important sarcomas arising
in the osteoskeletal system. The disease has a peak
incidence in the first and second decades of life (1-6).
Therefore, the possible involvement of sex steroids in the
incidence and development of OS has been suggested. The
present study was concerned with the determination of the
anticancer activity of two potent anticancer agents, pure
antiestrogen, fulvestrant, and a derivative of 17β-estradiol,
2-ME, in separate and combined treatments of highly
metastatic OS 143B cells.
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Figure 3. Impact of treatment with fulvestrant, 2-methoxyestradiol (2-ME), and their combination on osteosarcoma 143B cell death (A) and cell-cycle
arrest (B). 143B OS cells were incubated with fulvestrant (50 μM, 1 μM and 10 nM), 2-ME (10 μM), and combination of fulvestrant and 2-ME (50
μM+10 μM, 1 μM+10 μM, 10 nM+10 μM) for 24 h. The cells were harvested and the percentage of apoptotic cells (A) and cell cycle (B) were
determined. Values are the mean±SE of three independent experiments (N=6 replicate cultures). Data were analyzed performing one-way ANOVA
combined with Dunnett’s multiple comparison test; significantly different at: *p<0.01, **p<0.001, ****p<0.00001 versus control; ##p<0.001,
###p<0.0001, ####p<0.00001 versus 2-ME at 10 μM.



In light of the many studies, 2-ME and fulvestrant could
be potent and relatively safe agents for treatment of patients
with OS (40-42). Although the antiestrogenic activity of
fulvestrant is well established, the estrogenic action of 2-ME
is still controversial. Fulvestrant is a novel, steroidal, 'pure'
antiestrogen and ER down-regulator (17, 18, 19, 43).
Previously, Sutherland and co-workers stated that there is
little likelihood that endogenous 2-ME has significant
physiological actions through binding to ER. In contrast to
physiological levels, pharmacologically-active levels of 2-
ME are predicted to have significant effects on binding to
ER, given the overlap in the concentration ranges for
antiproliferative effects and ER binding (35). Thus, in our
experimental model we used 2-ME at a pharmacologically
relevant concentration (10 μM) (25, 28). 

ERs are considered important regulators of human non-
neoplastic osteoblast proliferation. Both ERα and -β have
been reported to be expressed in human osteoblasts.
However, ERα and -β mRNAs have also been detected in OS
tissues and cell lines (MG63, SAOS-2) (8, 38). We
demonstrated the expression of ERβ in 143B OS cells, while
we were not able to detect ERα. However, these data are

consistent with previous studies where ERβ was visualized
in the great majority of OS cases (44, 47) but ERα was not
detected in all the cases (8).

In the present work, consistently with previous studies
(19-22), we observed the down-regulation of ERβ
expression by fulvestrant. It has been well-established that
fulvestrant, after binding to the ER, induces its
conformational change which disrupts signaling pathways
and accelerates receptor degradation (17, 18, 22). In our
experimental model, fulvestrant did exert antiproliferative
activity on 143B cells at high concentrations (1 μM-1 mM).
As demonstrated by Maran et al., 20 μM fulvestrant reduced
cell survival to 71% (41). We observed a slightly decreased
inhibition of proliferation by fulvestrant as compared with
cited work (41). However, this may be explained by the fact
MG63 is poorly metastatic cell line in contrast to highly
metastatic 143B OS cells (50, 51). Furthermore, OS MG63
express both ERα and -β, while we have shown expression
of only ERβ in OS 143B cells. Both ERα and -β may
regulate cancer proliferation and cell death (13, 14, 56, 57).
However, inhibition of ERα mainly results in cancer cell
death (13, 14).
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Figure 4. A: Impact of treatment with fulvestrant, 2-methoxyestradiol (2-ME), and their combination on mitochondria depolarization of
osteosarcoma143B cells. 143B cells were incubated with fulvestrant (50 μM, 1 μM and 10 nM), 2-ME (10 μM), and combination of fulvestrant and
2-ME (50 μM+10 μM, 1 μM+10 μM, 10 nM+10 μM) for 24 h. The cells were then harvested and the percentage of depolarized cells was determined.
B: Impact of treatment with fulvestrant, 2-ME, and their combination on histone H2A version H2AX (H2AX) phosphorylation in 143B cells. 143B
cells were incubated with fulvestrant (1 μM and 10 nM), 2-ME (10 μM), and combination of fulvestrant and 2-ME (1 μM+10 μM, 10 nM+10 μM)
for 24 h. The cells were harvested and the percentage of cells with H2AX phosphorylation was determined. Values are the mean±SE of three
independent experiments (N=6 replicate cultures). Data were analyzed performing one-way ANOVA combined with Dunnett’s multiple comparison
test; significantly different at: *p<0.01, **p<0.001, ****p<0.00001 versus control; #p<0.01, ##p<0.001, ####p<0.00001 versus 2-ME at 10 μM.



Fulvestrant did not induce cell-cycle arrest or death of 143B
cells at any concentration, while we observed mitochondrial
depolarization after treatment at high concentration (50 μM)
of fulvestrant. Indeed, mitochondrial dysfunction has been
shown to participate in the induction of apoptosis. The
opening of the mitochondrial permeability transition pore has
been demonstrated to induce depolarization of the
transmembrane potential, release of apoptogenic factors and
loss of oxidative phosphorylation (58). Moreover, in some
apoptotic systems, loss of mitochondrial transmembrane
potential may be an early event in the apoptotic process (58).
However, mitochondrial depolarization may not always result
in induction of cell death due to the various mitochondrial
defense systems including uncoupling proteins (UCP) (61). In
particular, UCP2 has been shown to protect OS cells from the
cytotoxic actions of chemotherapeutic drugs (61). Fulvestrant
is an alkylosulfonian derivative of estradiol (19, 22) (Figure
1), thus, we might expect that fulvestrant at high
concentrations may enter the mitochondria and results in
mitochondrial uncoupling. Indeed, 17β-estradiol was reported
to promote intrinsic uncoupling of ATP synthase (62).
Moreover, it may increase the mitochondrial reactive oxygen
species formation by repressing uncoupling proteins (63).

We did not observe any impact of fulvestrant on
phosphorylation of H2AX. DNA-damaging chemotherapeutic
agents are well known for inducing double-stranded breaks,
which rapidly results in the phosphorylation of histone H2A
variant H2AX (60). Phosphorylation of H2AX at serine 139
(γ-H2AX) correlates well with double-strand breaks and is
the most sensitive marker of DNA damage and subsequent
repair of the DNA lesion (60). The mechanisms of protection
of ER-positive cancer cells from DNA damage-induced cell
death by ER has been reported (59). 

Herein, we confirmed also the anticancer activity of 2-ME
at pharmacological concentrations towards OS 143B cells
(26, 27). We found a decrease in mitochondrial membrane
potential induced by 2-ME, consistent with previous studies
(64, 65). In our experimental model, 2-ME-induced
membrane depolarization was strictly correlated with
induction of cell-cycle arrest and cell death. Moreover, the
phosphorylation of H2AX, strictly correlated to 2-ME-
induced DNA damage, by 2-ME in OS G143B cells was also
shown. In previous work, we demonstrated potent anticancer
activity of 2-ME towards 143B cells even at low
physiologically relevant concentrations due to DNA damage
as a result of selective induction of neuronal nitric oxide
synthase (nNOS) and nitric oxide generation in nuclei of
143B cells (26, 27). 

Interestingly, for the first time, we show that 2-ME may
modulate down-regulation of ERβ, which may be a new
anticancer mechanism of action for this agent. Yun and co-
workers suggested that treatment with 2-ME can activate
epigenetically silenced ERβ, leading to prostate cancer cell

death (49). The role of ERβ in regulation of apoptosis of
malignant cells has recently drawn attention (45, 48, 49). The
interaction of ERβ with 17β-estradiol is able to block
apoptosis in neurons and promote apoptosis of cancer cells
(68). The localization of ERβ was reported in the
mitochondria in various types of cells, including OS,
suggesting that ERβ may function as a mitochondrial
component (45, 48), and its function as such is not cell-
specific. Interestingly, in both prostate cancer and breast
cancer cells, the introduction of ERβ was shown to induce
strong inhibition of cell proliferation (48). It was suggested
that down-regulation of ERβ in cancer cells could reduce
vulnerability of mitochondria to various oxidative insults and
hence reduce apoptosis and promote cancer progression (48).

The impact of 2-ME on ERβ may also result in regulation
of mitochondrial biogenesis. Previously, we demonstrated that
2-ME at pharmacological concentrations reduces
mitochondrial DNA and regulates mitochondrial mass per cell,
a marker of mitochondrial biogenesis (66). ERβ may directly
and indirectly regulate mitochondrial biogenesis in response
to energy demand (67). From the above, the effect of 2-ME
on fulvestrant-induced down-regulation of ERβ probably
results in their negative interaction, considering the induction
of cell death and inhibition of 143B cell growth. Moreover,
one of the reasons 2-ME anticancer activity is counteracted by
high concentrations of fulvestrant may be due to the down-
regulation of ERβ and perturbation in 2-ME-induced nNOS
signaling pathways. It was demonstrated that nNOS may be
regulated via an ER-dependent manner (52); ERβ in particular
is associated with the regulation of nNOS (53). 

Interaction between 2-ME and fulvestrant was also
presented for human breast tumor cells (54). Fulvestrant
counteracted the positive response of vascular endothelial
growth factor to 2-ME, suggesting that ER was involved. The
study demonstrated a biphasic impact of 2-ME on vascular
endothelial growth factor genes mediated through classical
ER (54). In other experimental models, co-treatment of
MG63 OS cells with 2-ME and fulvestrant did not reduce 2-
ME-induced cell death (41). Thus, Maran and co-workers
suggested that the anticancer activity of 2-ME is not
mediated by conventional ER. It was also reported that 2-
ME-mediated inhibition of proliferation and induction of
apoptosis in breast cancer cells involves ER-independent
pathways (34). However, these claims are based on studies
examining the potential for endogenous levels of 2-ME to
bind to ER at physiological concentrations (35). Herein, we
suggest that 2-ME may regulate the expression of ERβ and
thus exert a significant biological anticancer impact.

Conclusion

A combined chemotherapy with well-characterized drugs
with distinct mechanisms of action is an important
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therapeutic strategy. In addition, combined treatments
improve efficacy, allow reduced dosage, and finally result in
lowered toxicity and less adverse effects of anticancer
therapy. Both 2-ME and fulvestrant are being evaluated in
ongoing clinical trials and are considered in the treatment of
OS. Fulvestrant might not be effective in treatment of highly
metastatic OS. We also found that fulvestrant may have an
impact on the mitochondrial chain resulting in mitochondrial
uncoupling. The obtained data suggest that fulvestrant and
2-ME should not be used in combined therapy. One reason
for interaction between 2-ME and fulvestrant is their
opposite effects on the expression of ERβ. We also propose
a new mechanism of action of 2-ME, namely the restoration
of ERβ expression in OS 143B cells.
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