
Abstract. Ceramide and sphingosine 1-phosphate (S1P) are
sphingolipid metabolites with important signaling functions.
Ceramides promote apoptosis, whereas S1P favors proliferation,
angiogenesis and cell survival. The balance between these
opposing signaling functions is referred to as the sphingolipid
rheostat. A shift in this balance toward S1P is seen in
glioblastoma (GBM) and other cancers, and results in tumor cell
survival and resistance to chemotherapy. Sphingosine kinase
(SK), the enzyme responsible for transforming sphingosine into
S1P, plays the critical role in modulating the balance between
S1P and ceramides. Chemotherapeutic agents or radiation
therapy may induce short-term responses in GBM patients by
increasing ceramide levels. However, we believe that the enzyme
SK may cause the increased ceramide to be metabolized to S1P,
restoring the abnormally high S1P to ceramide balance, and that
this may be part of the reason for the near-100% recurrence rate
of GBM. The use of maintenance therapy with an SK inhibitor, in
patients with GBM who have tumor reduction or stable disease
after therapy, should be investigated.

Background

Glioblastoma multiforme (GBM) is an aggressive primary
brain neoplasm with a median patient survival of only 14.6
months (1, 2). Presenting symptoms include nausea,
vomiting, blurred vision, headaches, and drowsiness. The
tumor is particularly resistant to therapy. Standard initial
treatment is maximal tumor resection followed by radiation

therapy, with simultaneous administration of temozolomide
(TMZ), an oral alkylating agent and imidazotetrazine
derivative of dacarbazine (3-9). Recurrent GBMs are most
commonly treated with bevacizumab (avastin), which
suppresses angiogenesis, or lomustine, a lipid-soluble,
alkylating nitrosourea which crosses the blood-brain barrier
(10-12). However, these agents are only effective in a small
minority of patients, and then only for a few months. Even
with newer chemotherapy drugs and advances in surgical
methods, overall patient survival rates continue to be
extremely poor, and no cure for GBM exists (13-18).
Alternative approaches, such as immunotherapy, oncogene
therapy or molecular targeting agents, are being investigated,
but so far none have been shown to have a significant impact
on response rate or survival (19-22). 

Ceramide and Sphingosine-1-Phosphate 

Sphingolipids are components of the eukaryotic membrane.
The major sphingolipid, sphingomyelin, is particularly found
in the membranes of nerve cells. Sphingomyelins can be
hydrolized by sphingomyelinases to ceramides and
phosphorylcholine (23). Ceramides are an extremely
important group of molecules consisting of sphingosine
bases linked to fatty acids of different chain lengths.

There are three major pathways for the generation of ceramide,
the de novo, the sphingomyelinase and the salvage pathways (24-
25) (Figure 1). In the de novo pathway, ceramides are generated
from palmitate and serine in a series of steps initiated by the key
enzyme serine palmitoyltransferase (24-26). In the
sphingomyelinase pathway, sphingomyelin is hydrolyzed by
sphingomyelinase (SMase) (27, 28). In the salvage pathway,
ceramides are formed from the sphingolipid metabolite
sphingosine by ceramide synthase (29). Sphingosine-1-phosphate
(S1P) is formed when ceramide is broken down by ceramidase,
and the resulting sphingosine molecule is phosphorylated by the
enzyme sphingosine kinase (30) (Figure 2). 

Historically, ceramide and S1P were thought merely as
components of the cell membrane. In the 1990s, however,
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Obeid et al. showed that cell death could be caused by
increases in ceramide, and Zhang et al. reported on the role
of S1P in modulating cellular proliferation (31, 32). It is now
known that ceramide possesses pro-apoptotic signaling
functions, whereas S1P plays an important role in
proliferation, angiogenesis and cell survival (33-40). S1P is
also responsible for T-cell maturation (41, 42). The pro-
apoptotic functions of ceramides can occur through
numerous mechanisms, including increasing protein
phosphatase 2A (PP2A), a tumor suppressor, through
interaction with microtubule-associated protein 1 light chain
3 beta lipidation (LC3B-II) autophagolysosomes, through
activation of protein kinase C, and by down-modulation of
the gene c-myc (43-45). Ceramide-increasing agents have
been shown to cause destruction of GBM stem cells, the
persistence of which are a major cause of GBM recurrence
after therapy (46-49).

Sphingosine Kinase 

Sphingosine kinase (SK), the signaling enzyme responsible
for transforming sphingosine into S1P, plays a critical role
in maintaining the balance between ceramides and S1P (50,
51). In humans, there are two forms of SK. SK1 is prominent
in the cytoplasm and has been studied extensively. Cancer
cell growth and survival are stimulated by up-regulation of
SK1 (52-58). For example, increased amounts of SK1 in
fibroblasts can cause their malignant transformation to
fibrosarcoma cells (54). Over-expression of SK1 has been
detected in carcinomas of the breast, prostate, colon,
esophagus and lung, as well as in other cancers (59-71).
Bektas et al. showed that melanoma cells resistant to therapy
have a much higher S1P to ceramide ratio and express more
SK1 than sensitive melanoma cells, and that increased SK1
levels correlated with overexpression of anti-apoptotic
protein, B-cell lymphoma 2 (Bcl-2) (68). Benign adenomas
of the colon express more SK1 than normal colon cells, and
more aggressive metastatic cancers express more SK1 than
cancers that have not metastasized (54). SK2 is localized in
the nucleus and plasma membrane, and much less in the
cytoplasm, and occurs predominantly in the liver and the
kidneys. SK2 appears to have both cell-protective and pro-
apoptotic functions (72-74). For example, Maceyka et al.
reported that, unlike SK1, SK2 may also cause an increase
in the activity of ceramide synthase and the salvage pathway,
thus at least partially counter-acting its ceramide-reducing
effect. They speculated that this may be due to the different
locations where SK1 and SK2 predominate (74). Despite
this, some studies have shown that depletion of SK2 has
greater apoptotic effects against cancer cells than depletion
of SK1 (50).

Both SK1 and SK2 play important roles in GBM
development, progression and resistance to treatment. It has

been reported that S1P stimulates invasiveness in human
GBM cell lines and tissues through the receptors S1P1-5 (75-
79). On the other hand, Yoshida et al. demonstrated that
while S1P2 and S1P3 were increased in patients with GBM,
S1P1 levels were decreased, and lower levels in S1P1
correlated with poor patient survival (80). Other studies have
shown that SK levels are markedly increased in patients with
GBM (81-83). Van Brocklyn et al. reported that patients with
GBM and lower SK1 expression in their cancers survived
three times longer than patients with high SK1 (78). Anelli et
al. showed that SK1 is over-expressed during hypoxia in
U87MG glioma cells (83). Quint et al. investigated the role
of SK1, SK2, and of S1P receptors in primary, secondary,
and recurrent GBM tissue samples, and showed that SK1 and
S1P receptors were overexpressed as much as 44 fold
compared to normal brain tissue (84). With a 25-fold
increase, SK2 was highest in primary tumors. Abuhussain et
al. showed that S1P levels are favored over ceramide levels
in patients with glioma, and that increased S1P correlates
with increased histological tumor grade (85). In that study,
S1P levels were also nine times higher in areas of tumor
compared to areas of normal gray matter, whereas ceramides,
in particular C18-ceramide, were five-fold lower.

SK Inhibitors

Two sphingosine kinases inhibitors, D,L-threodihydro-
sphingosine (safingol) and N,N,N-trimethylsphingosine, have
been investigated for a number of years as possible anti-
cancer agents (86-92). While these agents did not appear to
have significant anti-tumor activity alone, there was evidence
that they might potentiate the anticancer effects of known
chemotherapy drugs. These inhibitors are not specific to SK,
and can affect many protein and lipid kinases (93). An
important SK inhibitor, fingolimod (FTY720, gilenya), has
been studied in numerous diseases for more than 20 years,
and is now an approved treatment for patients with multiple
sclerosis. Fingolimod is phosphorylated by SK2 to
fingolimod-phosphate, which binds to S1P receptors and, in
turn, inhibits both SK1 and SK2. Among its actions,
fingolimod-phosphate is a superagonist of the S1P receptor
on lymphocytes, and can prevent these cells from leaving the
lymph node (87, 94-96). It is lipophilic and crosses the
blood-brain barrier, and also binds to S1P receptors on neural
and other cells. There is evidence for anticancer activity of
this agent in experimental models, which may be secondary
to its suppressant effects on SK (87, 97-98). However, not
only does fingolimod act on SK, it also affects multiple other
enzymes that can alter ceramide/S1P balance, including
SMase, ceramide synthase, acid ceramidase, S1P lyase and
S1P phosphatases (97, 99-100). For example, fingolimod
inhibits both SMase and ceramide synthase, thus partially
counteracting the ceramide-increasing effect of SK inhibition
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(99). In addition, because fingolimod has many “off-target”
actions, it has been shown to cause occasional side-effects.
Severe infections, skin cancers, cardiac rhythm disturbances,
macula edema, and, in rarer cases, neurological
abnormalities such as opthalmoplegia, ataxia and, dysarthria,
have been reported (94, 96, 100). A number of other
commonly-used FDA approved agents, including
antihistamines, antimalarials, antineoplastics and cardiac
medications have “off-target” effects and can affect SK; all
of these agents have also been shown to act on multiple other
enzymes involved in sphingolipid metabolism (Table I). 

More recently, numerous, newer and purer, inhibitors have
emerged (90, 118-121). Many of these agents have been
shown not to affect the broad range of enzymes that the
earlier-studied SK inhibitors do. French et al. reported anti-
tumor activity with three SK1 inhibitors (SKI-I: 5-
naphthalen-2-yl-2H-pyrazole-3-carboxylic acid (2-hydroxy-
naphthalen-1-ylmethylene)-hydrazide; SKI-II: 4-[4-(4-
chloro-phenyl)-thiazol-2-ylamino]-phenol; SKI-V: 2-(3,4-
dihydroxy-benzylidene)-benzofuran-3-one)) in a JC mouse
mammary adenocarcinoma cell line and in a syngeneic

BALB/c mouse solid tumor model of JC mammary
adenocarcinoma cells (86). SKI-II was found to be especially
effective in this model. Paugh et al. studied a SK1 specific
inhibitor ((2R,3S,4E)-N-methyl-5-(4’-pentylphenyl)-2-
aminopent-4-ene-1,3-diol (SK1-I) in human leukemic cell
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Figure 1. Three major pathways for the generation of ceramide.

Figure 2. Sphingosine-1-phosphate is generated from sphingosine by
way of ceramide.



lines and acute myelogenous leukemia xenografts, and
showed that SK1-I blocked tumor growth and induced
apoptosis. Unlike early SK inhibitors, SK1-I does not inhibit
SK2, protein kinase B, protein kinase C or other
serine/threonine kinases (122). The selective SK2 inhibitor,
ABC294640 (yeliva), has been studied in prostate cancer cell
lines and TRAMP-C2 xenografts, and found to cause
reduced cell viability and decreased expression of c-myc.
This agent is currently part of a phase I clinical trial in
advanced solid tumors (123). Neubauer et al. showed that
selective targeting of SK2, instead of SK1, could provide
additional therapeutic benefits (124). Schrecengost et al.
used ABC294640 in xenograft prostate cancer models, and
reported that it significantly blocked cancer growth (125). 

A few studies of SK inhibitors have been performed in
GBM. Van Brocklyn et al. have shown that SK isoforms play
a critical role in the growth and aggressiveness of GBM cells
in vitro (78). They reported that the SK1 inhibitor (2-(p-
Hydroxyanilino)-4-(p-chlorophenyl)thiazole) significantly
decreased the rate of proliferation in the GBM cell lines U-
87 MG, U-1242 MG and M059K (78, 89). Similarly, Bektas
et al. used the SK1 inhibitor 2-(p-hydroxyanilino)-4-(p-
chlorophenyl)thiazole to promote cancer cell death in the
TMZ-resistant GBM cell lines U251 and D54MG (89, 126).
Kapitonov et al. used the inhibitor SK1-I against LN229 and
U373 GBM cell lines, non-established human GBM6 cells,
and GBM xenografts, and showed that targeting SK1 inhibits
protein kinase B (Akt) signaling, prompts apoptosis, and
suppresses tumor development in human GBM cell lines and
GBM xenografts (127). Inhibition of S1P resulted in blocked
angiogenesis. Other investigators have reported similar
results (128-134) (Table II).

Preventing loss of ceramide-induced tumor response. As
noted, though ceramides and S1P have opposing signaling
functions, they are closely connected. S1P may be
dephosphorylated to form sphingosine, and sphingosine then
re-acylated to form ceramide. Similarly, sphingosine can be
phosphorylated by SK to produce S1P. Cuvillier et al. were
the first to use the term “sphingolipid rheostat” to describe
the balance between ceramide and S1P, and concluded that
a shift in this balance plays a role in the determination of the
cell’s fate (135). An increase in ceramides predisposes to cell
death, whereas an excess of S1P is protective. A number of
diseases or disease conditions are associated with
abnormalities of the rheostat (136-140). SK determines
whether S1P or ceramide will dominate, and the fate of the
cell is determined by the greater relative content of these
opposing signaling molecules. Cancer is associated with an
increase in S1P within the cell, and with decreases in
ceramide (141-145). 

SK inhibitors alone will increase ceramide levels, but not
as much as when given in combination with an agent which
stimulates SMase or ceramide synthase. SK inhibitors have
been used in combination with cytotoxic chemotherapy with
the goal of increasing ceramides (146-149), and we have
previously suggested that increased apoptosis of GBM cells
may be achieved using combinations of agents which each
increase ceramides (150). Noack et al. used SKI-II with TMZ
against the human GBM cell line NCH82, and found that the
combination enhanced caspase-3 dependent cell death and
autophagy (151). Similarly, Riccitelli et al. showed that an
SK1 inhibitor increased chemo-sensitivity to TMZ in a human
GBM cell line (152). Estrada-Bernal et al. used FTY720 in
combination with TMZ in xenografts of GBM stem cells, and
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Table I. Commonly used agents with SK activity.

Drug Type Sphingolipid enzymes affected Reference

Fingolimod ↓ SK, ↓ SMase, 97, 99, 100
↓Cer Syn, ↓ Acid Cer,
↓ S1PL, ↓ SPP1, ↓ SPP2

Tyrosine Kinase Inhibitors (Nilotinib, Dasatinib and Imatinib) ↓ SK, ↓ SMase, ↑ Cer Syn, 65, 154-156
Antimalarials (Chloroquine, Mefloquine) ↓ SK, ↑↓ SMase, ↓SM Syn 101-104

↓ Acid Cer, ↑ GCS
Antihistamines ↓ SK, ↑↓ SMase 105, 106
Calcium Channel Blockers ↓ SK, ↓ GCS 105, 107-109
Curcumin ↓ SK, ↑↓ SMase, ↓SM Syn, 110-113 

↑ SPT, ↑ Cer Syn, ↓ GCS
Resveratrol ↓ SK, ↑↓ SMase, ↑ SPT 114, 115

↑ Cer Syn 
Opioids ↑ SK, ↑ SMase 116, 117

↑ Cer Syn, ↑ SPT

Acid Cer: Acid ceramidase; Cer Syn: ceramide synthase; GCS: glucosylceramide synthase; SMase: sphingomyelinase; SM Syn: sphingomyelin
synthase; SK: sphingosine kinase; SPP1, SPP2: S1P phosphatases; SPT: serine palmitoyltransferase. S1PL: S1P lyase.



found that tumor volume significantly decreased and mouse
survival times increased (130). Treatment with FTY720 with
TMZ resulted in longer survival times compared to FTY720
or TMZ alone. However, we believe that the optimal use of
SK inhibitors is not as ceramide-inducing agents, but rather
in preventing the increased ceramides that are produced after
chemotherapy or radiation therapy from being later
metabolized to S1P. For example, if this theory is correct,
maintenance therapy with SK inhibitors could extend survival
of patients with GBM who have first been treated with
radiation therapy and temozolomide and have achieved a
response or stable disease.

In conclusion, there is, we believe, an important mechanism
by which tumor progression can occur after response to
therapy. Over time, the ceramides that are induced by
chemotherapy or radiation therapy are converted to S1P
through the actions of SK. Then the excess of S1P over

ceramide in the tumor, which was in effect before treatment, is
restored. This results in loss of response, as is typically seen
after a short period of time in GBM and other solid tumors.
Loss of response to ceramide-inducing agents has been seen in
patients who tumors express high levels of SK. For example,
patients with estrogen receptor-positive breast carcinoma
treated with tamoxifen, an agent which decreases acid
ceramidase (138), had shorter recurrence times if their cancers
had higher SK levels (87). Likewise, patients with head and
neck carcinoma with high levels of SK had a much shorter time
to progression after radiation therapy (153). An SK inhibitor
might prevent the ceramide from being later converted to S1P,
reducing the chance of loss of response. Indeed, one of the
reasons that patients with chronic myelogenous leukemia
(CML) treated with tyrosine kinase inhibitors (TKIs) have a
much lower recurrence rate than do patients with solid tumors
or CML patients treated with chemotherapy or interferon, may

Sordillo et al: Maintenance Therapy with an SK Inhibitor in GBM Patients (Review)

2089

Table II. SK inhibitors as single agents in GBM.

Sphingosine Kinase Inhibitor Model Comments Ref.

2-(p-Hydroxyanilino)-4- U87MG, U1242MG, M059K cell lines Decreased cellular proliferation in all three lines. 78
(p-chlorophenyl)thiazole
2-(p-Hydroxyanilino)-4- U251MG, D54MG cell lines Active in cell lines made resistant to TMZ. 126
(p-chlorophenyl)thiazole
N,N-dimethylsphingosine C6 glioma cell line Suppressed tumor necrosis factor-α induced 128
(DMS) GTP cyclohydrolase (GTPCH) activity.
FTY720 (Fingolimod) T98G, A172, U87MG, Induced apoptosis. Activated caspase-6. 98

U373MG glioma cell lines Caused tyrosine dephosphorylation of 
focal adhesion kinase (FAK).

FTY720 (Fingolimod) Brain tumor stem cells (BTSCs) from human GBM Caused BTSC apoptosis. Inactivation of 130
tissue (cell lines BTSC9, STSC44 and BTSC57) extracellular signal- regulated kinases.

FTY720 (Fingolimod) BTSC xenografts Reduced tumor size. Increased mouse survival. 130
Augmented efficacy of TMZ.

FTY720 (Fingolimod) U251MG, SHG44, A172 and Caused apoptosis through FAK pathway. 131
U87MG cell lines Reduced cell viability.

FTY720 (Fingolimod) U251MG xenografts Inhibited tumor growth. Induced autophagy, 131
apoptosis and necroptosis in vivo.

FTY720 (Fingolimod) U87MG and U251MG cell lines Decreased invasiveness. Down-regulation of 132
matrix metalloproteinase-2 (MMP-2) and MMP-9

FTY720 (Fingolimod) A172, G28 and U87MG cell lines Much greater anti-proliferative effect than TMZ. 133
SK1-I ((2R,3S,4E)--methyl-5- LN229, U373 cell lines Inhibited cell growth and migration. 127
(4’-pentylphenyl)-2-aminopent- No effect on extracellular signal-regulated kinases.
4-ene-1,3-diol (BML-258))
SK1-I ((2R,3S,4E)--methyl-5- GBM6 cell lines Reduced cell growth. Reduced epidermal growth 127
(4’-pentylphenyl)-2-aminopent- factor-stimulated phosphorylation of Akt.
4-ene-1,3-diol (BML-258))
SK1-I ((2R,3S,4E)--methyl-5- LN229 intracranial xenografts Reduced tumor growth rate. 127
(4’-pentylphenyl)-2-aminopent- Caused apoptosis. Reduced angiogenesis.
4-ene-1,3-diol (BML-258))
SKI-Ia (N-terminal variant of SK1) U87MG cell line Blocked angiogenesis. No effect on cell survival. 85
SKI-II T98G cell line Decreased proliferation. 92

Caused accumulation of cells at G1.
SKI-II U118MG cell line Decreased invasiveness. Blocked expression of 134

urokinase plasminogen activator.



be because TKIs not only increase ceramide by stimulating
ceramide synthase, but also inhibit SK (65, 154-156). In view
of the near-universal tendency of GBM to recur, long-term
maintenance therapy with an SK inhibitor may be needed to
prevent relapse and progression of disease.
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