
Abstract. Background/Aim: This in vitro study analyzed the
impact of heparins on expression of chemokines in human
endometrial adenocarcinoma cell lines. Materials and
Methods: Cell lines were incubated with unfractionated
heparin (UFH), low molecular weight heparins (LMWH) and
fondparinux under hypoxic and normoxic conditions.
Chemokine (C-X-C motif) ligand 8 (CXCL8), CC-chemokine
ligand 2 (CCL2) and CCL5 were detected by enzyme-linked
immunosorbent assays and real-time reverse transcriptase-
polymerase chain reaction and cell viability by fluorometric
assay. Results: Different adenocarcinoma cell lines had
distinct patterns of chemokine expression. UFH attenuated the
secretion of CXCL8 and CCL2, and enhanced that of CCL5.
The observed effects of heparin were in addition to the anti-
coagulatory properties of heparin and dependent on molecular
size and charge. Conclusion: UFH has selective modulating
effects on the secretion of CXCL8, CCL2 and CCL5 in
different endometrial adenocarcinoma cell lines. Molecular
size and charge are relevant for these observed effects. By
influencing the expression of these inflammatory mediators
and thereby affecting the tumour microenvironment, heparins
and related agents might play an essential role in the
development of new therapeutic strategies. 

With an estimated incidence of 54,870 cases per year for
2015, endometrial adenocarcinoma is the most common
gynaecological malignancy in the United States and in

developed Western countries (1). The main hypothesis for
endometrial carcinogenesis implicates an increase of
mitogenic activity of endometrial cells triggered by excessive
oestrogen exposure (2). However, there is accumulating
evidence for other mechanisms involved in the development
of endometrial cancer, mediated by inflammation and
hypoxia (3, 4). Inflammation seems to influence
carcinogenesis by altering the tumour microenvironment,
especially the levels of cytokines and chemokines. The
regular and cyclical episodes of inflammation in the human
cycling endometrium can be enhanced by hormonal and
genetic changes in the early development of endometrial
adenocarcinoma, and thus the resulting exacerbated local
inflammation contributes to the initiation and progression of
endometrial adenocarcinoma (4). 

The chemokines chemokine (C-X-C motif) ligand 8
(CXCL8), CC-chemokine ligand 2 (CCL2) and CCL5 are
typical representatives of the tumour-supporting arm of
inflammatory chemokines (4, 5). Due to its initiation of
leucocyte infiltration and neovascularization, CXCL8 is a
potent promotor of invasion and metastasis (6). CCL2 is also
described as a very potent angiogenic chemokine. Together
with CCL5, CCL2 seems to promote the migratory and
invasion-related properties of tumour cells and thus might
play an essential role in the metastatic process (7).

The anti-coagulatory activity of the classical anticoagulant
unfractionated heparin (UFH) is based on its inhibition of
factor Xa and thrombin (8). Being a mixture of polysulphated
glycosaminoclycans (GAGs) with molecular weights ranging
from 5 to 30 kDa, UFH has an average molecular weight of
13 kDa (9). Low-molecular-weight heparins (LMWHs) are
commonly used in clinical practice. Derived from UFH by
enzymatic or chemical depolymerisation, they primarily
inhibit factor Xa (10). UFH can interact with many proteins
containing positively charged amino acids due to their high
charge density, which results in various biological activities
in addition to anti-coagulatory activity (11, 12). Many in vitro
studies showed several molecular and cellular actions of
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heparins, suggesting their beneficial effects, not only those
already widely reported on inflammatory diseases but also on
malignant diseases (12-14). Li et al. recently determined that
pre-treatment with UFH significantly inhibited
lipopolysaccharide (LPS)-stimulated CXCL8 production in
human pulmonary microvascular endothelial cells (15).
Heparin was also shown to inhibit CCL5-mediated migration
and invasion of human hepatoma cells (16).

In contrast to these convincing data in vitro, there is much
speculation on the potential benefit of heparin administration
(mainly LMWH) in vivo with regard to the prolongation of
survival for many patients with solid malignancies (17).
Today there is no recommendation for the routine use of
heparin (especially LMWH) in patients with cancer, mainly
due to the fact that no sufficiently powered studies have been
undertaken so far to support its routine use for improving the
survival of patients with cancer (18). 

Since cyclical episodes of inflammation in the human
cycling endometrium may contribute to carcinogenesis of
endometrial adenocarcinoma (4, 19), we examined the
impact of heparin on secretion and production of chemokines
in endometrial adenocarcinoma cells. Additionally, we
characterized the effects we observed under normoxic and
hypoxic conditions.

Materials and Methods

Cell culture and experimental conditions. Endometrial cancer cell
lines (ECC-1, RL95-2, HEC-1A, KLE and AN3CA) were obtained
from the American Type Culture Collection (Manassas, VA, USA).
ECC-1 is a well-differentiated cell line of an endometrial
adenocarcinoma; HEC-1 A and RL95-2 are moderately differentiated
cell lines. KLE and AN3CA are poorly differentiated cell lines. ECC-
1 cells were maintained in RPMI-1640 (Biochrom, Berlin,
Germany), RL95-2 as well as KLE cells were maintained in phenol
red-free Dulbecco’s modified Eagle’s medium: Nutrient Mixture F-
12 (Gibco/Life Technologies, Karlsruhe, Germany). HEC-1 A cells
were maintained in McCoy’s 5A (Gibco) and AN3CA cells in MEM
Earle’s (Biochrom). All media were supplemented with 10% foetal
bovine serum (Biochrom) and 50 μg/ml gentamycin (Ratiopharm,
Ulm, Germany). For our experiments, cells were seeded in different
microplates. For each cell line, a specific cell count was used:
AN3CA 0.2×106/ml, ECC 1 0.2×106/ml, HEC-1 A 0.3×106/ml, KLE
0.15×106/ml and RL95-2 0.5×106/ml. The cells were incubated with
the following agents: UFH (Sigma-Aldrich, St Louis, MO, USA);
LMWHs dalteparin (FragminP®; Pharmacia, Berlin, Germany),
enoxaparin (Clexane®; Sanofi-Aventis, Frankfurt, Germany),
reviparin (Clivarin®; Abbot arzneimittel, Hannover, Germany) and
fondaparinux (Arixtra®; Galaxo, Notre Dame de Bondeville, France).
Cells were cultured under normoxic and hypoxic conditions. To
create hypoxic conditions, cells were placed in a tissue culture
incubator (MCO-18M Sanyo, Moriguchi, Japan) in an atmosphere of
1% O2 and 5% CO2 at 37˚C.

For the detection of the stimulated chemokines at the protein
level, different endometrial cell lines were incubated with 0.05-51.2
IU/ml UFH for 48 h. Thereafter, the protein levels of chemokines in
the cell-culture supernatant of stimulated and untreated cells were

determined by enzyme-linked immunosorbent assay (ELISA). For
the detection of the mRNA of the specific chemokines, different
endometrial cell lines were incubated with 0.05 IU/ml (KLE) and 3.2
IU/ml (other cell lines) UFH alone for 4 h. Thereafter, mRNA levels
of chemokines in the cell-culture supernatant of stimulated cells were
determined by semiquantitative real-time reverse transcriptase-
polymerase chain reaction. Untreated cells served as controls.

For the experiments concerning molecular size and charge of the
heparins, cells of KLE and RL95-2 cell lines were incubated with
UFH, dalteparin, enoxaparin, reviparin and fondaparinux at 5 IU/ml
(KLE) or 50 IU/ml (RL95-2) or at 2.5 μg/ml (KLE) or 250 μg/ml
(RL95-2) for 48 h under normoxic and hypoxic conditions. The
levels of chemokines in the cell-culture supernatants were then
determined by means of ELISA.

The different dosages and incubation times of the mentioned
agents are also indicated in detail in the corresponding figures.

Cell viability assay. The relative number of viable cells was
measured using the CellTiter-Blue® assay (Promega, Madison, WI,
USA) following the manufacturer’s instructions. Fluorescence was
recorded using a FLUOstar OPTIMA system (BMG Labtech,
Offenburg, Germany).

Enzyme-linked immunosorbent assays (ELISA). Treated and
untreated cell-culture supernatants were collected and analysed for
CCL2, CXCL8 and CCL5 by commercially available ELISA kits
(DY279 and DY278, by R&D Systems, Minneapolis, MN, USA and
BMS204/3MST by Bender MedSystems GmbH Vienna, Austria).
All assays were performed according to the manufacturer’s
instructions and as recently shown elsewhere (20). 

Real-time reverse transcriptase-polymerase chain reaction (RT-
PCR). Isolation of ribonucleic acid (RNA) using PeqGOLD
TriFast™ reagent (PeqLab, Erlangen, Germany), reverse-
transcription using the High Capacity complementary (c)DNA
Reverse Transcription Kit from Applied Biosystems (Foster City,
CA, USA) and semi-quantitative real-time PCR using Power
SYBR® Green PCR-Master Mix (Applied Biosystems) were
performed according to the manufacturers’ instruction. The primers
(Table I) (Life Technologies) were designed using Primer Express®

Primer Design Software v2.0 (Applied Biosystems) with the
resulting amplicons having an intron-overlapping sequence. PCR
amplification was performed as recently described in (20).
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Table I. Sequences of polymerase chain reaction primers used in this
study.

Gene Primer Sequence

CCL2 Forward 5’-AAAGTCTCTGCCGCCCTTCT -3’
Reverse 5’-GATTGCATCTGGCTGAGCG -3’ 

CXCL8 Forward 5’-TCTTGGCAGCCTTCCTGATT -3’ 
Reverse 5’-TTAGCACTCCTTGGCAAAACTG -3’ 

CCL5 Forward 5’-CTCGCTGTCATCCTCATTGCT -3’ 
Reverse 5’-TGTGGTGTCCGAGGAATATGG -3’ 

β-Actin Forward 5’-CCTGGCACCCAGCACAAT-3’
Reverse 5’-GCCGATCCACACGGAGTACT-3’

CXCL: Chemokine (C-X-C motif) ligand, CCL: CC-chemokine ligand.



Statistical analysis. Each experiment was performed in triplicates
or quadruplicates and repeated three times. Statistical analysis was
carried out with one-way ANOVA, followed by Dunnett’s and
Bonferroni multiple comparison tests using GraphPad PRISM
version 5 software (GraphPad, San Diego, CA, USA). The results
are expressed as mean±standard error of the mean (SEM).
Differences were considered to be significant when p<0.05.

Results

Secretion of the chemokines CXCL8, CCL2 and CCL5 is
differentially influenced by UFH. To investigate whether
UFH has an influence on CXCL8, CCL2 and CCL5 in
human endometrial cancer cells, all cell lines were tested for
their basal secretion of chemokines under hypoxic and
normoxic conditions. HEC-1-A, RL95-2 and KLE cells
exhibited basal secretion of all three chemokines under both
normoxic and hypoxic conditions, whereas AN3CA and
ECC-1 only basally secreted CCL5. ECC-1 cells secreted
CCL5 only under normoxic conditions. Incubation with
UFH, led to attenuation of CCL2 expression only in KLE
cells, whilst in all other cell lines, no effect on CCL2
secretion was detected. The basal secretion of CXCL8 was
enhanced in RL95-2 cells and attenuated in KLE cells after
stimulation with UFH. CCL5 secretion, however, was
enhanced after incubation with UFH in HEC-1A, RL95-2
and AN3-CA cells. These results are summarized in Table II. 

In order to determine whether the observed effects of
heparin were dose-dependent, cells were incubated with
increasing dosages of UFH (0.05 IU/ml-51.2 IU/ml). CCL2
was only released by HEC-1-A, KLE and RL95-2 cells at
measurable concentrations. After incubation with UFH,
significant attenuation of CCL2 level under normoxic, as
well as hypoxic (data not shown) conditions was observed in
KLE cells: A dose of 0.05 U/ml UFH reduced the
concentration of CCL2 by about 40% (Figure 1C). 

CXCL8 was not detected in the supernatants of AN3CA
and ECC-1 cells by ELISA, whereas HEC-1-A cells secreted
this chemokine at measurable concentrations, although no

influence of UFH was detected (data not shown). In KLE
cells, secretion of CXCL8 was attenuated by all dosages of
UFH under both normoxic and hypoxic conditions; UFH at
0.05 U/ml almost halved the concentration of CXCL8.

The secretion of CXCL8 in RL95-2 cells was influenced
in a dose-dependent way by UFH: only under the influence
of 0.8 to 6.4 U/ml of UFH was CXCL8 expression
significantly increased in RL95-2 cells, no other dosage had
any significant influence. 

CCL5 was secreted by all five cell lines at detectable
concentrations. The secretion of this chemokine by ECC-1
and KLE cells was not influenced by UFH (data not shown).
However, stimulation of HEC-1-A, RL95-2 and AN3CA
cells by UFH significantly increased the secretion of CCL5
in a dose-dependent manner. These results were observed
under normoxic as well as hypoxic conditions (data not
shown). 

Secretion of chemokines CXCL8, CCL2 and CCL5 at the
mRNA level is differentially influenced by UFH. In addition,
the detected effects of UFH on chemokine secretion were
based on changes at the mRNA level. In accordance with the
results for protein expression (Figure 1), we observed that
UFH exerted its effects (cell line- and dose-specific) on
expression of the particular chemokine at the mRNA level
(Figure 2). Similar results were obtained under normoxic as
well as hypoxic conditions (data not shown).

Molecular size and charge are relevant for the effects of
heparin on chemokine expression. To clarify the role of anti-
coagulatory properties, molecular size and the amount of
negative charge for the observed heparin-mediated effects,
we tested LMWHs for different characteristics: In contrast
to UFH, which has a molecular size of 5-30 kDa, that of
dalteparin is 6 kDa, enoxaparin 3.8-5 kDa, reviparin 3.9 kDa
and the pentasaccharide fondaparinux, a selective factor Xa
inhibitor, only 1.7 kDa. The charge relative to size is high
for UFH, dalteparin and enoxaparin, whereas for reviparin
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Table II. Impact of unfractionated heparin on chemokine expression in the different endometrial carcinoma cell lines under normoxic conditions.

CXCL8 CCL2 CCL5

Cell line Basal secretion Addition of heparin Basal secretion Addition of heparin Basal secretion Addition of heparin

ECC-1 No No effect No No effect Yes No effect
HEC-1A Yes No effect Yes No effect Yes Enhancement
RL95-2 Yes Enhancement Yes No effect Yes Enhancement
AN3-CA No No effect No No effect Yes Enhancement*
KLE Yes Attenuation Yes Attenuation Yes No effect

CXCL: Chemokine (C-X-C motif) ligand, CCL: CC-chemokine ligand. *Attenuation under low heparin dosage.



and fondaparinux, it is low. For these experiments, we
evaluated the alterations in the concentration of CXCL8 in
KLE cells and CCL5 in RL95-2 cells. We chose these two
chemokines and cell lines because they exhibited the
strongest effects of heparin (Figure 1). These cells were first
incubated with the different LMWHs, dosed at the same

anticoagulatory potency as UFH (0.5 IU/ml; Figure 3A and
B) and (50IU/ml; Figure 3 C and D). In a second step, they
were stimulated at LMHW dose adapted to the molecular
size of UFH (2.5 μg/ml; Figure 4 A and B) and (250 μg/ml;
Figure 4 C and D). Stimulation was performed under
normoxic and hypoxic conditions. 
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Figure 1. Different endometrial cell lines were incubated with 0.05–51.2 IU/ml unfractionated heparin (UFH) for 48 h. Thereafter, the protein levels
of chemokines chemokine (C-X-C motif) ligand 8 (CXCL8) (A, B), CC-chemokine ligand 2 (CCL2) (C) and CCL5 (D-F) in the cell-culture
supernatant of stimulated and untreated cells were determined by enzyme-linked immunosorbent assays and related to the relative cell count of the
cell viability assay. Results are standardized relative to the values for untreated cells (0 IU/ml UFH), which are set to 1 arbitrary unit (AU). Bars
represent the mean±SEM; *p<0.05 compared to untreated cells.



Doster et al: Heparin Modulates CXCL8, CCL2 and CCL5 Expression in Endometrial Carcinoma Cells

1539

Figure 2. Different endometrial cell lines were incubated with 0.05 IU/ml (B, C) and 3.2 IU/ml (A, D-F) unfractionated heparin (UFH) alone for 
4 h. Thereafter, mRNA levels of chemokines chemokine (C-X-C motif) ligand 8 (CXCL8) (A, B), CC-chemokine ligand 2 (CCL2) (C) and CCL5 (D-F)
in the cell culture supernatant of stimulated and untreated cells were determined by semiquantitative real-time reverse transcriptase-polymerase chain
reaction. Results are standardized relative to the values of untreated cells, which are set to 100% expression. Bars represent the mean±SEM; *p<0.05
compared to untreated cells.



As shown in Figure 3 B, when dosed at the same anti-
coagulatory potency as UFH, comparable effects regarding
the attenuation of CXCL8 concentration after stimulation
with LMWH or fondaparinux under hypoxic conditions were
detected. In addition, as shown in Figure 3A, under normoxic
conditions, only UFH, dalteparin and reviparin had a
reducing impact on CXCL8 concentration.

CCL5 concentration in culture supernatant from RL95-
2 cells was increased after stimulation with all of the
LMWHs. However, stimulation with fondaparinux had no
detectable effect on CCL5 concentration. Similar results
regarding CCL5 concentrations were obtained under
normoxic and hypoxic conditions as shown in Figure 3C
and D. 
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Figure 3. Cells of KLE (A, B) and RL95-2 (C, D) cell lines were incubated with unfractionated heparin (UFH), dalteparin, enoxaparin, reviparin
and fondaparinux at 5 IU/ml (A, B) or 50 IU/ml (C, D) for 48 h under normoxic (A, C) and hypoxic (B, D) conditions. The levels of chemokines
chemokine (C-X-C motif) ligand 8 (CXCL8) (A, B) and CC-chemokine ligand 5 (CCL5) (C, D) in the cell-culture supernatants were then determined
by means of enzyme-linked immunosorbent assays. Results are standardized relative to the values of UFH-treated cells, which are set to 1 arbitrary
unit. Bars represent the mean±SEM. *p<0.05 compared to no treatment; #p<0.05 compared to UFH.



Using LMWHs and fondaparinux, adapted to the same
molecular weight as that of UFH, comparable effects on the
CXCL8 concentration under hypoxic conditions were found
in stimulated KLE cells as in UFH-stimulated cells.
However, under normoxic conditions, only dalteparin
significantly reduced CXCL8 concentration similarly to UFH
(Figure 4A and B).

An enhancement of CCL5 after stimulation of RL95-2
cells with LMWHs adapted to the same molecular weight as
that of UFH was detected under hypoxic and normoxic
conditions. Thereby the strongest impact was seen for UFH
and dalteparin and these effects decreased with decreasing
size of the molecules (enoxaparin, reviparin, fondaparinux)
(Figure 4C and D).
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Figure 4. Cells of KLE (A, B) and RL95-2 (C, D) cell lines were incubated with unfractionated heparin (UFH), dalteparin, enoxaparin, reviparin
and fondaparinux at 2.5 μg/ml (A, B) or 250 μg/ml (C, D) for 48 h under normoxic (A, C) and hypoxic (B, D) conditions. The levels of chemokines
chemokine (C-X-C motif) ligand 8 (CXCL8) (A, B) and CC-chemokine ligand 5 (CCL5) (C, D) in the cell-culture supernatants were then determined
by means of enzyme-linked immunosorbent assays. Results are standardized relative to the values of UFH-treated cells, which are set to 1 arbitrary
unit. Bars represent the mean±SEM. *p<0.05 compared to no treatment; #p<0.05 compared with UFH.



Discussion

In the present study, we demonstrated selective modulating
effects of heparin on the expression of the chemokines
CXCL8, CCL2 and CCL5 in different human endometrial
cancer cell line cells. The observed effects were detected at
the mRNA as well as at the protein level and are beyond the
anti-coagulant effects of heparin.

As demonstrated in animal studies and clinical trials,
heparin has both anticoagulant properties and anti-
inflammatory effects (21, 22). Whilst the benefit of heparin
administered, for example, in cases of bronchial asthma and
ulcerative colitis was caused by the competition for binding
sites of L- and P-selectins, in other in vivo and in vitro
studies, an effect of heparin on chemokine levels was also
detected (23). Ding and co-workers observed in rat models
of sepsis that pre-treatment of rats with UFH strongly
reduced the levels of tumor necrosis factor-α (TNFα), and
interleukin 1b and showed clearly that UFH can ameliorate
inflammation (24). Li et al. detected that pre-treatment of
human pulmonary microvascular endothelial cells with UFH
significantly inhibited LPS-stimulated IL6 and CXCL8
production (15). Similar observations were recently reported
by our group. We demonstrated that heparin plays an
inhibitory role in TNFα-mediated effects in normal
endometrial stromal cells as seen for CXCL8. Additionally,
we detected that heparin enhanced the stimulation of
CXCL5, CCL2, and CCL5 induced by TNFα (20). In the
present study, we also observed selective modulating effects
of heparin on chemokines, having either attenuating or
enhancing effects depending on particular cell line and
chemokine expression. 

Many studies have underlined the importance of the
tumour microenvironment and its soluble inflammatory
mediators, including chemokines and cytokines. Such
mediators affect all steps required for tumour growth and
progression (7, 25). Chemokines CCL2, CCL5 and CXCL8
are believed to be typical representatives of the tumour-
supporting group of inflammatory chemokines. Therefore,
the effects observed in the present study of heparin on the
level of secretion of these chemokines may be of anti-
tumourigenic relevance (4, 5). Tumour cells are said to
secrete more chemokines compared with cells of the original
healthy tissue (4, 26, 27). In accordance with these reports,
we observed that the well-differentiated cell line ECC-1,
often used as a model for normal endometrial epithelium,
secreted only CCL5 in measurable concentrations, in contrast
to almost all the other cell lines studied that secreted
CXCL8, CCL2 and CCL5 in measurable concentrations. The
levels of chemokines secreted by the poorly differentiated
KLE cell line were the highest of all these cell lines. 

CXCL8, one of the most potent angiogenic chemokines
(5), is secreted by three of the five examined cell lines: HEC-

1A, RL 95-2 and KLE. The most poorly differentiated cell
line KLE expressed the highest level of CXCL8 (data not
shown). Interestingly, serum levels of CXCL8 were increased
in about two-thirds of patients with advanced breast cancer
and found to be associated with an accelerated clinical
progression, a higher tumour load, and the presence of lymph
node and liver metastases (28). In breast cancer, tumour-
derived CXCL8 was also shown to induce blood-vessel
formation in vivo, demonstrating the essential effect of
CXCL8 in the context of tumour progression. However, little
is known about the role of CXCL8 in endometrial carcinoma. 

In the present study, the addition of UFH had no effect on
the basal secretion of CXCL8 in HEC-1A cells, whereas
RL95-2 cells exhibited a UFH-dose-dependent enhancement
of the secretion of CXCL8, resulting in a bell-shaped
response curve. In contrast, even minimal dosages of UFH
in KLE cells sufficed to diminish the secretion of CXCL8
significantly. This diminishment was enhanced under
hypoxic conditions. 

Li et al. showed that UFH attenuates LPS-induced CXCL8
secretion via the phosphatidylinositol-3-kinase/protein kinase
B/nuclear factor kappa B (NFĸB) signaling pathway in human
endothelial cells (15). Recently, our research group
demonstrated an inhibitory impact of heparin on the TNFα-
mediated effects on CXCL8 in human endometrial stromal
cells by interference with NFĸB (29). This mechanism might
also be responsible for the attenuation of CXCL8 expression
in KLE cells by heparin. The enhancement of CXCL8 in RL
95-2 cells after stimulation with UFH, however, was detected
to have a bell-shaped response curve, thus leading to the
hypothesis that the effects of heparin in these cells are mediated
by forming complexes with interacting molecules (30, 31). 

Expression of CCL2, an important chemokine for
chemotaxis of monocytes and associated with tumour
progression and metastasis, is attenuated in KLE cells after
stimulation with UFH (32, 33). KLE, being the most poorly
differentiated cell line, had the highest basal level of CCL2
secretion, that is in line with the observation that the
expression of CCL2 and CCL5 is enhanced during breast
cancer progression (26, 34). 

In contrast to CXCL8 and CCL2, CCL5 is the only
chemokine that is expressed in all five cell lines. Its secretion
by AN3CA, HEC-1-A and RL95-2 cells after UFH
stimulation was found increased at both protein and mRNA
levels. An enhanced expression of CCL5 was also detected
in different solid tumours, for example, in breast, prostate
and endometrial cancer (4, 7, 35, 36). High levels of CCL5
are suspected to promote proliferation and invasion of
carcinoma cells and seem to correlate with the stage of
tumour progression in breast and cervical cancer (26, 34, 37,
38). In contrast, proliferation of the endometrial carcinoma
cell lines HEC-1-A and ISHIKAWA were shown to depend
on the dosage-level of CCL5 (35). 
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Different CCL5 functions were described to be dosage-
dependent: at low concentrations, CCL5 mediates chemotaxis
as a monomer or dimer; at higher concentrations, CCL5 acts
as a multimer through interactions with cell surface GAGs.
This complex of CCL5 and GAGs is oligosaccharide size-
dependent and leads to amplification of intracellular signal
transduction pathways (39). In accordance with these
observations, we detected molecular size- and molecular
charge-dependent effects of heparin on the expression of
CCL5. Thus, we hypothesise that enhancement of CCL5
secretion after stimulation with UFH as a potent GAG might
be a result of the complexation of heparin with CCL5.

In contrast to CCL2 and CXCL8, the role of CCL5 and its
exact functions in tumour biology are still unclear (40). On
the one hand, acting as a potent chemoattractant, it is able to
favour tumour development, mainly by modulating the
extracellular matrix and taking part in immune evasion
mechanisms (41); on the other hand, CCL5 production is
relevant to inducing a proper immune response to tumours
(42). As we observed an enhancing effect of heparin on
CCL5 expression, it is of great interest to examine the
possible consequences of this effect in further studies. 

In conclusion, UFH has a selective modulatory impact on
the expression of chemokines CXCL8, CCL2 and CCL5 in
human endometrial cancer cell lines. The observed effects of
heparin were independent of its classical anti-coagulatory
properties, but were influenced by molecular size and charge.
By influencing the expression of soluble inflammatory
mediators, heparin may affect the tumour microenvironment.
Considering the crucial role of the tumour environment in
tumour growth and progression, heparins and related agents
might be of interest for the development of new
antitumourigenic strategies.
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