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Optimization of Chemical Syntheses of Vitamin D C3-Epimers
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Abstract. Due to the widespread impact of vitamin D on
human health, the development of appropriate assays to
detect deficiency of all vitamin D metabolites of
pharmacological interest is being continuously improved.
Although over 50 naturally-occurring metabolites of vitamin
D are known to date, only very few are routinely detected in
commercially available assays. This is particularly true
regarding C3-epimers of vitamin D3 and D,, which not only
may interfere in analytical measurements with other
metabolites of interest, but also have controversial and not
yet fully understood physiological functions. In this study we
optimized a synthetic method to obtain various vitamin Dj
and D, C3-epimers in order to make them available in gram
quantities for further evaluation and for their use in assay
development or drug discovery. Particularly, the inversion
of the C3-OH group at the A-ring of vitamin D,, which, in
turn, serves as a suitable starting material for most of
chemical syntheses of vitamin D metabolites, can be
converted to the corresponding C3-epimer under so-called
“Mitsunobu conditions”. Thus, the C3-OH group is
converted into the corresponding ester by treatment with an
aromatic acid, subsequent addition of an azodicarboxlate
and triphenylphoshine, leading to the corresponding ester,
concomitant to the inversion of the stereogenic center at C3.
Reduction or saponification of the resulting ester finally
leads to the corresponding C3-epimer, that may serve as
starting material for a wide variety of vitamin D3 and D,
C3-epimers.

Due to the widespread impact of vitamin D on human
health, the development of appropriate assays to measure the
status of vitamin D metabolites in human serum/plasma or
relevant tissue is continuously being improved, mainly with
the aim to detect and thus prevent vitamin D deficiency, that
is considered to cause a wide variety of diseases, including
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cancer of the breast, colon and pancreas (1-3). Additionally,
vitamin D metabolites may serve as starting points for the
development of novel therapeutic rationales (4-6). Although
over 50 natural metabolites of vitamin D are known to date
(7, 8), only very few are routinely measured in
commercially available assays (9-13), thus neglecting the
impact of most other metabolites of potential relevance (14-
16). Regarding its metabolism, vitamin D5 (1) (Figure 1),
generated mainly by UV irradiation of 7-dehydrocholesterol
in the skin, is hydroxylated in the liver to 25-
hydroxyvitamin D5 (2), which is subsequently hydroxylated
in the kidney to 1a,25-dihydroxyvitamin D5 (3, calcitriol),
in turn apparently the medicinally most relevant metabolite.
2 is metabolized to other oxidative products, such as
24(R),25-dihydroxyvitamin D5 (4), mediated by the enzyme
CYP24, followed by subsequent enzymatic degradation of
the carbon side chain. 3 is degradated analogously in a
parallel metabolism pathway. Additionally, presumably all
vitamin D metabolites can be metabolized separately
through a C3 epimerization pathway, leading to C3-epi-
metabolites such as 5-7 with an inversion of the stereogenic
center at position C3 of the respective molecule (17-22).
Additionally, the corresponding metabolites of vitamin D,
(8) have to be recognized, because food from plant origin
and food supplements may contain vitamin D,, and its
metabolites are considered to have similar physiological
functions comparing to their corresponding vitamin Dy
counterparts (23), although the metabolism products slightly
vary due to an additional methyl group at C24 and a double
bond at C22-23 (8), and their potency seems apparently
lower. Interestingly, C3-epi-dihydroxyvitamin D, has been
identified along with elevated concentrations of C3-epi-
hydroxyvitamin D3 in serum of young children (22, 24).
Consequently, all naturally-occurring C3-epimers of vitamin
D5 and D, deserve attention, because some of them may not
only interfere in analytical measurements with other
metabolites of interest, but also have controversial and not
yet fully understood physiological functions. Thus, a
flexible approach towards the chemical synthesis of all
relevant vitamin D C3 epimers is highly desirable in order
to make them available in sufficient quantities for their
evaluation.
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Table 1. Starting materials, reagents, reaction conditions, yields and products.

Entry Starting material Reagents, reaction conditions, yield Product A Reagents, reaction conditions, yield Product B
; benzoic acid, DIAD, PPh;, lithium aluminium hydride,
- toluene, RT, 19% diethyl ether, 48%
1
Wy
8
! 4-nitrobenzoic acid , DIAD, PPh;, -~ ! lithium aluminium hydride,
" v | THF, RT, 18%-33% | diethyl ether, 74%
2
3-chlorobenzoic acid, DEAD, PPh;, KOH, methanol-diethyl ether (1:1), hoy,
toluene -THF (4:1), RT, 28%; 88% /57% [ 75% ~L Y
3-chlorobenzoic acid, DEAD, PPh;, /
3 toluene, RT, 30%;
3-chlorobenzoic acid, DIAD, PPh;,
toluene, RT, 30%
e 2-picolinic acid, DIAD, PPh;, toluene, Cu(OAc)s, chloroform-methanol
B : RT, 47% (95:5), 22% over 2 steps
4 ;
o
2-picolinic acid, DIAD, PPh;, toluene, Cu(OAc)s, chloroform-methanol
RT, 64% (95:5), 64% over 2 steps
5 !
o
11

DEAD: diethyl azodicarboxylate, PPh;: triphenylphosphine, RT: room temperature, THF: tetrahydrofurane, DIAD: diisopropyl azodicarboxylate,

KOH: potassium hydroxide, Cu(OAc),: copper(II) acetate.

Materials and Methods

Most routine assays, particularly RIA and ELISA, are competitive
assays, where the metabolite of interest competes with a
corresponding labeled metabolite for binding to assay specific
antibodies or DBP. Although these techniques are suitable for
automated high-throughput analysis of samples, they are often
restricted to measure only one metabolite, i.e. 25-hydroxyvitamin
D5 (2) suffering from cross-reactivity (low specificity) and lacking
sensitivity. For instance, the presence of 3-epi-25-hydroxyvitamin
D3 (6) in the sample may either not be detected at all, or lead to
overestimated concentrations of 25-hydroxyvitamin D5 (18), Low-
abundant metabolites are widely neglected. By contrast, mass
spectrometry, particularly liquid chromatography-tandem mass
spectrometry (LC-MS/MS), which is currently considered the “gold
standard”, allows measurement of various metabolites, including
C3-epimers and other low-abundant metabolites, in one sample at
the same time with high accuracy (11-16). Usually, chemically
synthesized stable metabolites, in turn labeled with isotopes (2H or
I13C) are used as internal standards for this purpose. However,
advanced LC equipment and material is needed for accurate
separation of all relevant metabolites.
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In this study we explored several synthetic methods to invert the
configuration of the stereogenic center at C3 of the intact vitamin
D skeleton with the aim to apply the most efficient method to the
synthesis of various vitamin D3 and D, C3-epimers (Table I).

It has already been explored previously, that readily-available
vitamin D, (8) is a most suitable starting material for the chemical
synthesis of many vitamin D metabolites of interest (6, 7, 25) (Figure
2). The inversion of the configuration of the C3-OH group (from f3 to
a) at the A-ring of vitamin D, leading to the corresponding C3-epimer,
can be accomplished most appropriately under so-called “Mitsunobu
conditions” (26). Thus, vitamin D, or a related derivative thereof is
treated with an aromatic acid, an azodicarboxlate and
triphenylphoshine, leading to formation of a corresponding ester,
concomitant to the inversion of the configuration of the stereogenic
center at C3. Reduction or saponification of the resulting ester finally
leads to the corresponding C3-epimer, which may serve as starting
material for a wide variety of other vitamin D3 and D, C3-epimers.
Two alternative strategies can be applied, either by leaving the vitamin
D skeleton intact and proceed with 9 in the synthesis, or by conversion
of 8 to bishydroxylated 10, followed by inversion of C3 configuration
leading to 11, cleavage of the molecule in an A-ring 12 and CD ring
13, appropriate chemical modification of these both building blocks,
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1) azodicarboxylate, PPhj,
aromatic acid

2) LiAIH, or KOH

or Cu{OAc),

(Table I, entry 1-3)

HO™

8 9

Vitamin Dy 3-epi-Vitamin Dz

KMnO,

"y
=~

1) DIAD, PPhy,
2-picolinic acid
2) Cu{OAc),

(Table 1, entry 5)

HO™" 10 HO'

11

e e
Ret. (25) |
—_——
HO' R R=H,
OH
5-7 1
”.' \ :: - H'
Ref. (25) n-Buli
+
OH P(O)Phz
1) TBDMSCI
2) Pb(OAc),
3)CeClyNaBH, | |
1) NCS
2) LiPPh,
3) H0
TBDMSO _AnEL o
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Figure 2. General strategies for the synthesis of vitamin D C3-epimers. PPhy: Triphenylphosphine, LiAlH  : lithium aluminium hydride, KOH:
potassium hydroxide, Cu(OAc),: copper(Il) acetate, KMnO,: potassium permanganate, DIAD: diisopropyl azodicarboxylate, TBDMSCI: tert-
butyldimethylsilyl chloride, Pb(OAc),: lead tetraacetate, CeCly: Cer(Ill)-chloride, NaBH 4: sodium borohydride, NCS: N-chlorosuccinimide, LiPPhy:
lithium diphenylphosphide, H,O,: hydrogen peroxide, n-BuLi: n-butyllithium.

and connection of the A-ring as a phosphine oxide 14 with an
appropriate CD-ring ketone 15.

Results and Discussion

The results of exploration of various starting materials, reagents
and reaction conditions towards the synthesis of C3-¢pi-vitamin
D derivatives are shown in Table I.

Vitamin D, (8), vitamin D3 (1), and 7,8-bishydroxylated
vitamin D, (10) served as starting material. Different acids
(benzoic acid, 3-chlorobenzoic acid, 4-nitrobenzoic acid, 2-
picolinic acid), various azodicarboxylates, such as diethyl- and
diisopropyl-azodicarboxlate (DEAD, DIAD), as well as
different solvents were employed. Additionally, reaction time
and temperature were optimized.

Reaction of Vitamin D, (8) with benzoic acid, 3-
chlorobenzoic acid and 4-nitrobenzoic acid (Table I, entries 1-3)
gave just moderate yields (18%-33%) of the corresponding
esters, mainly due to elimination reaction, leading to a
presumably favored product containing a conjugated 3.4-5.,6-
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7.8-all-trans-triene system. Although, cleavage of the esters by
reduction with lithium aluminium hydride (Table I, entries 1-2)
or saponification with potassium hydroxide (Table I, entry 3)
could be carried out in reasonable yields (48%-88%). The most
suitable acid for ester formation was picolinic acid, which gave
the corresponding ester of vitamin D5 (1) as a starting material
in 47% yield (Table I, entry 4). In order to avoid the formation
of a triene system by elimination in the course of esterification,
7 8-bishydroxylated vitamin D, (10) was employed as a starting
material for the reaction with picolinic acid (27). Indeed, the
corresponding ester could be obtained in good yield (64%)
(Table I, entry 5). The cleavage of the ester with copper(Il)
acetate was optimized to yield 64% of the corresponding
alcohol 11. It has to be recognized that these conditions are
quite mild, making them suitable for highly sensitive substrates.
This approach is favored to proceed in a connective synthesis
using building blocks 12-15 (Figure 2). By contrast, the use of
vitamin D, (8) as a starting material, 4-nitro benzoic acid for
esterification, and saponification with potassium hydroxide for
ester cleavage appeared as most suitable for practical reasons to



Kattner and Rauch et al: Synthesis of Vitamin D C3-Epimers

obtain C3-epi derivatives to proceed in a non-connective
synthesis via 9, leaving the vitamin skeleton intact.

Conclusion

Inversion of the configuration at the C3 stereogenic center of
vitamin D, or another appropriate vitamin D derivative under
“Mitsunobu conditions” was optimized and can finally be
carried out in gram scale, leading to products suitable for the
synthesis of a wide variety of natural 3-epi vitamin D
metabolites and analogs. Measurement of these low-abundant
metabolites, favorably by LC-MS/MS, and thus assessment of
their distribution in human blood or relevant tissue may open
up a new avenue for physicians and clinicians for diagnosis,
treatment and risk prediction of vitamin D-dependent diseases.
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