
Abstract. In this review the basic principles of UV-induced
carcinogenesis are summarized and the state of the art diagnosis
and therapeutic strategies are discussed. The prevalent
keratinocyte-derived neoplasms of the skin are basal cell and
squamous cell carcinomas. Cutaneous melanoma is less frequent
but associated with high mortality. Common risk factors for all
three tumor entities include sun exposure and DNA-repair
deficiencies. Photocarcinogenesis follows a multistep model of
cancer development in which ultraviolet-induced DNA damage
leads to mutations resulting in activation of oncogenes or
silencing of tumor-suppressor genes. This ends in a cellular
mutator phenotype even more prone to mutation acquisition.
DNA repair, especially the nucleotide excision repair (NER)
pathway, counteracts mutation formation and skin cancer
development. This is vividly demonstrated by the NER-defective
disorder xeroderma pigmentosum. Primary skin cancer
preventative strategies, therefore, include reduction of DNA
photodamage by protection from the sun. Secondary preventative
strategies include skin cancer screening. This implies standard
examination techniques with the naked eye, an epiluminescence
microscope, or digital epiluminescence microscopy. More
advanced techniques include confocal laser scan microscopy. 

Carcinogenesis of UV-induced Skin Tumors

The electromagnetic spectrum encompasses a wide range of all
possible electromagnetic fields, and is conventionally
categorized into an ionizing and a non-ionizing part. Ionizing

radiation carries enough energy to break chemical bonds in
molecules, thereby creating ions. In contrast, non-ionizing
radiation does not offer sufficient energy to form charged ions
but can lead to excitation of molecules. Non-ionizing radiation
is known to cause potential health risks and is especially
associated with a number of skin disorders, such as cancer
[reviewed in (1)].

The non-ionizing spectrum is divided into two main regions,
optical radiation and electromagnetic fields, the latter being
further divided by radiofrequency (microwave, very high
frequency and low frequency radiowave). The optical region
can be further subdivided into ultraviolet (UV), visible, and
infra-red. In this review, we focus primarily on the effects of
UV radiation in photocarcinogenesis. 

UV Spectrum

The UV spectrum ranges from 100 nm to 400 nm, whereas
100 nm has been defined as the boundary between non-
ionizing and ionizing radiation (UV photons fall between
the wavelengths of visible light and gamma radiation) (2).
Solar UV radiation can further be subdivided into UVA
(315-400 nm), UVB (280-315 nm) and UVC (100-280 nm).
UVC has the shortest wavelength of visible light and the
highest energy, while UVA has the longest wavelength
accompanied by the least energy and UVB falls between
[reviewed in (3)]. The optimal absorption of UV light by
DNA is 254 nm (4, 5). Despite representing only a fraction
of the solar spectrum, UV radiation has a high carcinogenic
activity and gives rise to a long-term risk of skin cancer.

Skin Penetration

UVC is strongly mutagenic but does not reach the earth’s
surface because it is almost completely blocked by the
stratospheric ozone layer. Therefore, the UV light reaching
the earth’s surface is predominantly UVA (90-95%) and to a
minor extent UVB (5-10%), with UVA penetrating the ozone
layer, while this layer absorbs most UVB radiation (6).
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UV light penetrates the skin in a wavelength-dependent
manner, with longer wavelengths reaching deeper skin layers
[reviewed in (3)]. Concordantly, the less energetic UVA rays
penetrate deeper into the dermal compartments compared to
UVB, which is almost completely absorbed by the epidermis
(7) (Figure 1). 

Although UVA is the most prevalent component of solar
UV radiation reaching the earth’s surface, it mainly causes
skin photoaging (solar elastosis) by dermal fiber
deterioration, and it is far less carcinogenic compared to
UVB radiation [reviewed in (8)]. In contrast, although UVB
radiation only constitutes a minor part of the solar radiation
it is far more carcinogenic at significantly lower doses than
UVA radiation. UVB has a direct mutagenic effect on DNA
as it is maximally absorbed by this primary chromophore
[reviewed in (9)]. UV photon energy absorption by DNA
decreases constantly at longer wavelengths (in the UVA
range); therefore, UVB radiation is considered the major
cause of skin cancer. However, UVA radiation also has a
particular significance in photocarcinogenesis, leading to
DNA lesions through indirect effects (10, 11). 

In conclusion, UV radiation can give rise to cellular DNA
damage by either direct excitation of DNA (dimer formation)
or by the indirect excitation of other endogenous non-DNA
chromophores (endogenous photosensitizers), both
contributing to a long-term skin cancer risk [reviewed in (12)].

UVA Photocarcinogenesis

At the molecular level, low-energy UVA radiation is not
directly absorbed by DNA but leads to indirect photo-
oxidative DNA damage. UVA is absorbed by other
endogenous non-DNA chromophores, contributing to
generation of reactive oxygen species (ROS) through an
indirect photosensitizing reaction [reviewed in (13)]. The
main target of ROS within DNA is guanine, and 8-oxo-7,8-
dihydro-2’-deoxyguanosine has been considered as the most
frequent oxidative UVA-induced DNA lesion (14). More
recently, it was shown that UVA also induces pyrimidine
dimer-type DNA damage, as well as immunosuppressive
effects and reduced cell-cycle arrest. Such inhibition of the
DNA damage response may render UVA-induced dimers
more mutagenic than UVB-induced dimers (15, 16).

UVB  Photocarcinogenesis

UVB radiation is directly absorbed by DNA, leading to the
formation of DNA photoproducts, such as cyclobutane
pyrimidine dimers (CPDs) and 6-pyrimidine-4-pyrimidone
photoproducts (6-4 PPs), which are of principal importance for
the cancerogenic effect of UVB (Figure 2) (17, 18). CPDs are
formed between two adjacent thymine (T) or cytosine (C)
residues forming a cyclobutane ring, whereas 6-4 PPs are

produced by a single non-cyclic bond between carbon 6 of the
5’ pyrimidine and carbon 4 of the 3’ pyrimidine residues (19,
20). CPDs are formed in higher proportions (66%) compared to
6-4 PPs (33%) [reviewed in (21)] and both lesions cause bulky
distortion of the DNA backbone. These distortions inhibit
polymerases during transcription or DNA replication during
cell division because they cannot pass these lesions. When
unrepaired, these lesions can lead to characteristic mutations in
DNA sequences, namely C to T base changes and CC to TT
tandem mutations, the so-called UV-signature mutations as
virtually no other mutagen induces such mutations.

Notably, it is now generally acknowledged that UVA
radiation can also induce CPDs to a similar extent to
oxidative DNA damage, as indicated above (15, 22). 

Signature Mutations

If the cell encounters unrepaired UV-induced lesions in DNA
during the S-phase of the cell cycle, mutations may occur.
Most commonly pyrimidine dimers lead to single C-T
transitions which represent signature mutations of exposure
to UVB irradiation. The so-called A-rule (23) predicts that
DNA polymerase-eta (a translesion polymerase) is error-
prone because of a lack of proofreading ability and mainly
substitutes non-informative bases (bulky lesions such as
dimers) on the template strand by two adenines on the
opposite strand (24). This means that photoproducts (CPDs
and 6-4 PPs) generate a characteristic C-T transition
mutation, including the CC-TT tandem mutation, by
misincorporation of adenine opposite cytosine. These
signature mutations are found almost exclusively in UVB-
induced skin cancer and can, therefore, be called UVB-
fingerprint or -signature mutations (5, 17, 25). 

Mutations typically found in UVA-induced tumors are
comparable to the mutation spectrum of UVB (C to T
transitions) arising from photodimers. Only a very minor
proportion (8%) of UVA-generated mutations include G-T
transversions, presumably arising through mechanisms
involving oxidized DNA bases (8-oxo guanine) and indirect
energy transfer (15). Hence, UVA-induced CPDs are much
more carcinogenic than oxidative DNA damages. 

Multistep Skin Cancer Development

Skin cancer development is a multistep process involving
tumor initiation, tumor promotion, and tumor progression,
ultimately resulting in visible skin cancer. Damage to DNA
lead to mutations in key cellular regulators such as the p53
tumor-suppressor gene, which is commonly referred to as the
guardian of the genome (26). However, other essential genes
may also be mutated as early events in tumorigenesis including
rat sarcoma (RAS), p16INK4A, epithelial growth factor
(EGFR), and the proto-oncogene FYN [reviewed in (27)].
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Subsequently due to failure of key regulatory genes, a cellular
mutator phenotype may occur with even more mutations
accumulating. These events then lead to uncontrolled cell
differentiation and growth, finally resulting in skin cancer. 

The unique features of UV-induced mutations can be
exploited for the analyses of different skin cancer types, e.g.
basal cell (BCC) and squamous cell (SCC). Mutations in the
tumor-suppressor gene p53 have been found in more than
90% of all SCCs and in approximately 50% of all BCCs,
representing early events in non-melanoma tumorigenesis
(27-29). Most of these mutations exhibit the UV-typical
mutation pattern C-T (17, 30-34).

During multistep carcinogenesis of white skin cancer,
multiple cell functions are gained or lost. Other genes
besides p53, such as RAS, p16INK4A, epithelial growth
factor receptor (EGFR) and FYN, with important cell
regulatory functions in signaling pathways are also involved
in early cancer development [reviewed in (27)]. p53
mutations confer a survival benefit on cells during tumor
promotion (reduced apoptosis) and resistance to further UV
exposure (mutator phenotype) (34). 

Nucleotide Excision Repair and Associated Disease

UV-induced pyrimidine dimers are almost exclusively
repaired by the NER pathway, which removes bulky DNA
damage and protects from skin cancer. Malfunctions in this
repair pathway lead to the rare human autosomal recessive
disorder xeroderma pigmentosum (XP) [reviewed in (35)].
XP is very rare with an estimated incidence of 1 in 1,000,000
in North America and Europe (36). Clinical signs of XP
usually appear in early infancy or childhood, with patients
exhibiting sun sensitivity, freckling in sun-exposed skin, and
development of skin cancer early in life. Patients with XP
exhibit a >1,000-fold increased skin cancer risk in
comparison to the general population (37, 38). This risk
extends to all forms of UV-induced skin cancers, including
BCC and SCC, as well as melanoma. 

Seven NER complementation groups (XP-A to XP-G) exist
corresponding to the affected gene (XPA to XPG) and a
variant form (XP-V) with mutations in DNA polymerase eta
(POLH) (38). With these defects in NER, XP presents a
model disease for skin tumorigenesis, showing accelerated
generation of skin tumors compared to the normal population.

Skin Cancer Entities

Skin cancer development represents a multistep process in
which cellular events lead to accumulation of DNA
mutations, resulting in loss of cellular growth control
[reviewed in (39)]. Mutations in the DNA result in different
skin cancer entities which can be divided into cutaneous
melanoma (malignant transformation of melanocytes) and

non-melanoma skin cancer. The latter is further subdivided
into BCC and SCC of the skin, both resulting from
malignant transformation of keratinocytes [reviewed in (40)]. 

BCC is the most common type of skin cancer (ratio
between BCC and SCC is about 4:1) (41), being a cancer of
the elderly, as the risk increases with age (60-70 years) (42).
However, a tendency towards a younger age for first tumor
manifestation has been observed. In Germany, the incidence
of BCC is estimated as 100 per 100,000 inhabitants (43).
BCCs are subdivided according to their different
morphological growth pattern (44, 45) (nodular, sclerosing
and multicentric-superficial) and several rare growth forms
are described (e.g. metatypic BCC, ulcus rodens). BCCs
rarely metastasize and the local growth pattern results in a
rather benign course of the disease (27, 46).

An early warning sign of skin cancer is the development of
actinic keratosis (AK), which is in situ SCC. It presents the
earliest clinically recognizable manifestation of cutaneous
SCC. Approximately 0.025-16% of AKs transform into
invasive SCCs within one year (47, 48); however, about 26% of
AKs spontaneously regress within one year (48). In general,
AKs are a typical phenomenon of aging skin, with a prevalence
of 11-25 per 100 in patients over 40 years of age, compared to
a higher prevalence (18-34 per 100) in patients over 70 years of
age. Notably, AKs are not covered in tumor registries.
Treatment of AKs can prevent the development of SCC, which
comprise the second most common human cancer following
BCCs, with an incidence of approximately 20-30 per 100,000
inhabitants in Europe. SCC prevalence also increases with age
and the mean age of first occurrence is 70 years, accompanied
by a preponderance of men [reviewed in (27)]. Compared to
BCCs, SCCs can be highly invasive and have a higher potential
to metastasize. However, only about 5% of SCCs metastasize,
particularly to local lymph nodes (49, 50). Both non-melanoma
skin cancer entities (BCC and SCC) develop predominantly in
sun areas of the skin exposed to the sun, particularly on the
face, lips and ears. In contrast, cutaneous melanomas are rather
homogeneously distributed all over the body (51). 

Epidemiological studies have demonstrated that the
incidence of non-melanoma skin cancer has been increasing
alarmingly. Professor Alexander Katalinic (Institute for
Cancer Epidemiology e.V. University Luebeck) estimated the
number of new cases to approximately 180,000 per year in
Germany (52). However, the number is not precisely known
since the incidences of BCC and SCC are not usually
reported to cancer registries (53). 

In contrast, melanomas only account for 2% of all skin
cancer; however, they are the most deadly type of skin
cancer because they often metastasize [reviewed in (54)].
Clinically, cutaneous melanoma can be divided into four
growth subtypes: superficial spreading melanoma, nodular
melanoma, lentigo maligna melanoma and acro-lentiginous
melanoma (55). The growth pattern of melanoma is divided
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into a radial growth phase and a vertical growth phase, which
is prognostically unfavorable because of the infiltration of
tumor cells into the dermis (56). Therefore, diagnosis of
early stages of melanoma significantly improves the relative
survival rate of patients. In Germany (80 million inhabitants),
the incidence of melanoma for 2014 was estimated at 15,000,
and approximately 2,500 deaths were recorded (57). In
contrast to non-melanoma skin cancer, melanoma is more
common in young adults, referred to as the cancer of the
young (58). However, the incidence of non-melanoma skin
cancer is also rising in the younger population (59). 

Skin Cancer Prevention

As mentioned above, skin cancer incidences have been
increasing dramatically over the past few years; therefore
primary prevention has become highly important. Since solar
UV irradiation represents the most important environmental

risk factor for the development of skin cancer (60), skin
protection against UV exposure is a fundamental part of
cancer prevention. Approaches commonly used in order to
prevent skin cancer include avoiding direct exposure to
midday sun (between the hours of 10 am and 2 pm), textile
protection with appropriate clothing and the use of
sunscreens with a minimum sun protection factor of 15-20,
collectively leading to a reduced UV exposure (61).
Currently, a broad spectrum of sunscreen products protects
against both UVA and UVB radiation. Furthermore, regularly
performed self-examinations increase the likelihood of
detecting any skin changes, e.g. AK or other skin tumors.
Complemented by an annual full-body skin examination
performed by a dermatologist, skin changes can be
diagnosed at an early and curable stage. Given that almost
80% of all skin cancers can be prevented by reasonable
behavior, the American Cancer Society promoted an
awareness campaign with the slogan “Slip! Slop! Slap! and
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Figure 1. A histological skin section (hematoxylin and eosin staining, magnification ×40) is depicted on the left and the corresponding penetration
depth of the different UV wavelengths on the right. UVC, although highly mutagenic to DNA, only reaches the corneal layer consisting of dead
keratinocytes. UVB reaches the stratum basale of the epidermis, i.e. the epidermal stem cell layer. Due to its shorter wavelength, higher energy and
smaller depth of penetration, the energy deposition per cell volume and, thus, mutagenicity of UVB is the highest. UVA can reach dermal structures
including elastic and collagen fibers and leads to skin aging, as well as DNA damage. 
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Figure 3. The detection head (A) and a complete digital epiluminescence microscopic device (B) are depicted (Fotofinder®). Images of moles can
be stored at 20-fold or higher magnification and then compared to each other over time, adding dynamic criteria to mole assessment. 

Figure 2. DNA molecules can directly absorb UV photon energy at UVC and UVB wavelengths, which induces the formation of cyclobutane-
pyrimidine dimers (CPDs) or 6-pyrimidine-4-pyrimidone photoproducts (6-4 PPs) at a constant ratio of about 2:1. 



Wrap”, reminding people of the four easy ways to protect
themselves against UV radiation: to slip on a shirt, to slop
on sunscreen, to slap on a hat and to wrap on sunglasses.

Skin Cancer Diagnosis and Screening 

Generally, the gold standard for the treatment of skin cancer
is still the surgical excision of all tumor cells with
histological control of the margins. The survival prognosis
of patients with skin cancer, especially with melanoma, is
inversely correlated with the tumor thickness. Early
diagnosis and treatment are pivotal in reducing morbidity
associated with these malignancies. 

Since the worldwide incidence of melanoma as well as
non-melanoma skin cancer has increased dramatically in
recent years, skin cancer screening plays an important role in
skin cancer treatment (healing by early detection) and the
prognosis of the patient improves substantially with early
detection (62). Accordingly, the evolution of new screening
techniques represents a weapon in the fight against skin
cancer. The development of optical techniques (63), such as
dermoscopes, is superior to naked-eye examinations and leads
to a higher efficacy in early skin cancer diagnosis [reviewed
in (64)]. Dermoscopy (also referred to as dermatoscopy,
epiluminescence microscopy, incident light microscopy, or
skin-surface microscopy) significantly improves the
diagnostic accuracy of discriminating melanoma from benign
melanocytic lesions compared to routine naked-eye
examinations (65, 66). A number of instruments are used in
the screening process, including widely applied, inexpensive,
handheld instruments such as an epiluminescence microscope
(e.g. Welch Allyn Inc., Skaneateles Falls, NY, USA), which
provides a high quality lens with a 12-fold magnification,
digital epiluminescence light microscopes (DELMs), and
more recently, confocal laser scan microscopy.

These devices represent a non-invasive diagnosis
technique, preventing excessive surgical excision of benign
skin lesions. Handheld dermoscopes are especially cost-
effective and easy to use. Nevertheless, diagnostic accuracy
is only guaranteed if performed by dermatologists
experienced in this technique (67, 68). 

DELM can also be used for a surveillance program
regarding patients at high melanoma risk, e.g. with a family
background of melanoma, lighter skin type, or an increased
number of dysplastic nevi. It was demonstrated that melanoma
detected by DELM had significantly thinner Breslow thickness
(better prognosis), therefore increasing the sensitivity for
detection of early cutaneous melanoma that has not yet
acquired melanoma-typical ELM features (69) compared to
other techniques (70). With this technique, images of a mole
can be compared sequentially over time, adding dynamic
features to the criteria of mole assessments (71). In
conclusion, DELM is valuable tool in improving early

detection of cutaneous melanoma, especially of atypical
melanocytic lesions primarily not suspicious for melanoma.

Applying up to 50-fold magnification, DELM images can
be recorded and saved (e.g. using the FotoFinder®;
TeachScreen Software GmbH, Bad Birnbach, Germany).
Automatic measurement of maximum lesion diameter can be
obtained. This has a great advantage for follow-up studies
regarding the sensitivity and specificity of melanoma
detection over time (72) (Figure 3).

More recently, the introduction of reflectance confocal
microscopy (RCM), also known as confocal laser scanning
microscopy, has been used as link between dermoscopy and
histopathological analysis (73) in order to provide more
accurate diagnosis and to reduce the number of benign
excised lesions (74). The most valuable advantage of RCM is
its high resolution, allowing the assessment of single cells
and cell nests, as well as its ability to monitor dynamic
changes in the architecture of the skin over time (75).

Taken together, avoidance of mutations due to UV-induced
DNA lesions is the best strategy for cancer prevention. One
can rely on DNA repair to reduce the number of lesions, but
it is wise to reduce lesion formation by sun protective
measures in the first place. As effective secondary
preventative measures, several techniques for early skin
cancer detection have been developed. 
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