
Abstract. Phosphoinositide 3-kinase enhancer (PIKE) belongs
to a family of GTP-binding proteins, including three isoforms,
PIKE-S, PIKE-L and PIKE-A. PIKE-S and PIKE-L interact
with PI3K to enhance the activity of PI3K, but PIKE-A directly
binds to AKT and up-regulates its activity. PIKEs also interacts
with a variety of signaling molecules in addition to PI3K and
AKT, to trigger multiple physiological functions. Overexpression
or mutation of PIKE has been observed in a variety of tumors,
especially PIKE-A, which acts as a proto-oncogene, promoting
cancer cell growth, transformation and invasion through AKT
signaling. Knockdown of PIKE-A or blocking of PIKE-A/AKT
interactions enhances apoptosis, inhibits cancer cell
proliferation, migration and invasion. Moreover, PIKE plays an
important role in tumorigenesis through other signaling
pathways, such as focal adhesion kinase, signal transducer and
activator of transcription 5A, and nuclear factor kappa-light-
chain-enhancer of activated B cells. The current review explores
the functional role of PIKE and its potential in cancer therapy. 

Phosphoinositide 3 kinase enhancer (PIKE) protein belongs
to the α1 subgroup of the centaurin superfamily (1). Three
members of the PIKE family have been discovered, PIKE-S,
PIKE-L, and PIKE-A, which originate, through alternative
splicing or initiation of differential transcription, from the
CENTG1 gene located at 12q14) (2, 3). PIKE is capable of
binding and activating phosphoinositide 3-kinase (PI3K) and
v-akt murine thymoma viral oncogene homolog 1 (AKT) and
hence can influence many different cellular functions.

Moreover, the PIKE-A isoform has been identified as being
amplified in a variety of human cancer cells (4). In the last
decade, growing evidence has suggested that PIKE proteins
are involved in multiple signaling pathways, in addition of
PI3K/AKT pathway and that PIKE-A plays an important role
in the occurrence and development of tumors. In this review,
we will discuss the functions of PIKE in normal tissues and
their links and significance in a variety of human cancers. 

Discovery and Expression Profile 
of the PIKE Family

Ye et al. used the C-terminal domain (678-879 amino acids) of
the band 4.1 family of cytoskeleton-associated proteins (4.1N)
as bait and observed interactions between the C-terminal
portion of 4.1N and a novel protein by yeast two-hybrid
analysis; they designated this protein as PIKE (5). This was
the first identified isoform of the PIKE family, consisting of
the short isoform, and was termed PIKE-S. PIKE-S has three
proline-rich domains (PRD) in the N-terminus, followed by a
GTPase domain and a partial plekstrin homology (PH) domain
in the C-terminus (5, 6). Northern blot analysis using various
human tissues revealed that PIKE-S was found in most tissues,
although the level of expression varied, and was highly
enriched in the brain. The intracellular location of PIKE-S was
identified as being nuclear (5, 7). 

In searching databases for sequences resembling PIKE-S,
Ye et al. also identified a longer isoform of the PIKE family,
PIKE-L. PIKE-L differs from PIKE-S by the addition of a
~40 kDa C-terminal extension containing ADP ribosylation
factor – GTPase activating protein (ARF-GAP) and two
ankyrin-repeat domains. In contrast to the exclusive nuclear
localization of PIKE-S, PIKE-L was observed in both the
nucleus and the cytoplasm. PIKE-S expression was observed
in all four brain regions examined, whereas PIKE-L occurred
in cortex, hippocampus and olfactory bulb (2). 
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The third isoform, PIKE-A, was identified in human brain
cancer, glioblastoma multiforme. PIKE-A shares identical
structure with PIKE-L at the C-terminal but differs at the N-
terminal, where PIKE-A has no PRD. Unlike PIKE-S and - L,
that activates PI3K directly, PIKE-A interacts with AKT via its
N-terminus and stimulates AKT activity in a GTP-dependent
manner (8). Unlike the brain-specific PIKE-L and PIKE-S
isoforms, PIKE-A distribution is seen in various tissues, with
enriched expression in skeletal muscle, brain, placenta, kidney,
spleen, thymus, small intestine, and peripheral blood leukocytes
(7, 9, 10). Both nuclear and cytoplasmic expression of PIKE-A
have been demonstrated (11). 

Physiological Function of PIKE Proteins

PI3K is a lipid kinase and generates phosphatidylinositol-
3,4,5-trisphosphate (PIP3). PIP3 is a second messenger,
essential for the translocation of AKT to the plasma
membrane, and which is subsequently phosphorylated and
activated by phosphoinositide-dependent kinase (PDK) 1 and
PDK2. Activation of AKT phosphorylates a variety of
substrates key in the regulation of fundamental cellular
functions, such as proliferation, metabolism and protein
synthesis, angiogenesis and apoptosis (12, 13). Through
enhancing the activation of the PI3K–AKT pathway, PIKE
proteins are involved in a range of functions, including anti-
apoptosis, tumor transformation, membrane trafficking, cell-
cycle progression, and nuclear transportation (12).

PIKE-S, as an upstream regulator of PI3K, mediates the
anti-apoptotic activity of nerve growth factor (NGF) in
isolated nuclei. PIKE-S contains a proline-rich region which
typically binds to SH3 domains of other proteins. Using
pull-down experiments, Ye et al. found that the SH3 domain
of phospholipase C gamma 1 (PLC-γ1) protein interacted
with PIKE-S (14). PIKE-S associated with PLC-γ1 in a
GDP-dependent way in the nucleus. The SH3 domain of
PLC-γ1 is required for the activation of PIKE and functions
as a nucleotide exchange factor for PIKE-S to display PIKE-
S enzymatic activity. Therefore, stimulus with NGF leads to
PIKE-S activation by triggering the nuclear translocation of
PLC-γ1 (14). PIKE-S also has mitogenic activity. NGF-
treated PC12 cells and epidermal growth factor (EGF)-
treated HEK293 cells resisted DNA fragmentation initiated
by activated cell-free apoptosome, this was abolished by
PI3K inhibitors, dominant-negative PI3K or PIKE. NGF-
stimulated PC12 cells show translocation of 4.1N protein to
the nucleus. Subsequently, 4.1N combines with PIKE-S, and
inhibits the activity of PI3K caused by PIKE-S. Knock-
down of PI3K or PIKE was found to diminish the anti-
apoptotic activity of NGF. In this way, PIKE-S regulates the
activity of PI3K stimulated by NGF in the nucleus (5).
These results established that PIKE/nuclear PI3K signaling
through nuclear PIP3 and AKT plays an essential role in

promoting cell survival (15). PIKE-S may be the nuclear
counterpart of rat sarcoma gene (RAS) (16), that belongs to
the GTPase family and regulates cell growth since
cytoplasmic PI3K activation requires activated receptor
tyrosine kinases or GTPase proteins such as RAS. However,
none of these known PI3K activators are present in the
nucleus except PIKE-S.

PIKE-L is a protector that is necessary for normal brain
development (17). Homer scaffolding proteins (HOMER)
serve as adaptors that functionally link metabotropic
glutamate (mGLu) receptors. The N-terminus of PIKE-L
binds to HOMER1 and forms the HOMER1–PIKE-L
complex. The formation of a group I mGlu receptor
(mGluRI)–HOMER1–PIKE-L complex is enhanced by
activation of mGluRI, leading to activation of the PI3K
pathway and prevention of neuronal apoptosis (2). PIKE-
L–HOMER–PI3K signaling might also be implicated in a
variety of mGluR-mediated cellular activities (11, 18). PIKE-
L can be phosphorylated on tyrosine residues by proto-
oncogene tyrosine-protein kinase Fyn (FYN), leading to
resistance to caspase cleavage (19). NETRIN1 mediated the
interaction between PIKE-L and NETRIN receptor UNC5B
(UNC5B) through FYN tyrosine kinase phosphorylation.
This interaction triggers activation of PI3K signaling,
preventing proapoptotic activity of UNC5B and enhancing
neuronal survival. Hence, PIKE also acts as a downstream
survival factor for NETRIN1 through UNC5B in the nervous
system (20). PIKE-L was found to partner with the DNase
inhibitor SET nuclear proto-oncogene (SET), and prevented
its cleavage by asparaginyl endopeptidase during
excitotoxicity and stroke (21). The investigation on PIKE
knockout mice indicated that PIKE protected neurons from
kainic acid damage (22). In both conventional PIKE
knockout and OL-specific PIKE knockout mice,
oligodendrocyte member was reduced in the corpus
callosum, and AKT–mammalian target of rapamycin
(mTOR) signaling was impaired in oligodendrocyte-enriched
tissues, leading to reduced expression of critical proteins for
myelin development, and hypomyelination. This suggests
that PIKE plays roles in oligodendrocyte development and
myelinogenesis through AKT–mTOR activation (23).
Trafficking of post-synaptic α-amino-3-hydroxy-5-methyl-
isoxazole-4-propionic acid receptor (AMPAR) is critical for
synaptic plasticity. Glutamate receptor interacting protein 1
(GRIP1) is a binding partner of AMPAR. PIKE-L is a
interacting partner with both GRIP1 and GluA2. In brain,
PIKE-L, GRIP1 and AMPAR form a functional complex to
enhance glycine-induced GluA2-associated PI3K activation
and promote GluA2 surface expression in neurons. In PIKE-
KNOCKOUT mice, glycine-induced PI3K activity is
abolished and AMPAR-mediated transmission is impaired.
PIKE-L is required for AMPAR surface expression (24).
Fragile X mental retardation (FMRP) is most commonly
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found in the brain. The loss of its coding gene leads to
fragile X syndrome, increased neuronal network activity, and
general neuronal hyper-excitability (25). As the target of
FMRP, overexpression of PIKE impaired mGlu1/5-dependent
neuronal plasticity in animal models of the inherited
intellectual disability fragile X syndrome. Reduction of PIKE
reduced the prolonged duration of bursts of spontaneous
neocortical activity, and rescued impaired nesting behaviour
and obsessive marble burying in mice with fragile X
syndrome. These results revealed a crucial role of increased
PIKE expression in exaggerated mGlu1/5 signalling causing
neuronal defects in fragile X syndrome (26).

Unlike PIKE-L/S, PIKE-A binds to active AKT rather than
PI3K (9). Overexpression of wild-type PIKE-A but not
dominant-negative mutants stimulates AKT activity and
prevents cancer cell apoptosis (8). However, the function of
PIKE-A is not restricted to enhancement of AKT activity
alone. Focal adhesion kinase (FAK) is a non-receptor protein
tyrosine kinase which serves as a fundamental intracellular
mediator of extracellular changes and it is known to have a
pivotal role in the regulation of cell adhesion, motility,
proliferation, and survival of many cell types (27, 28). Zhu et
al. showed that FAK binds the PH domain of PIKE-A, and
this binding was independent of FAK activation following
EGF receptor stimulation (6). Overexpression of PIKE-A
increased the activity of FAK and resulted in dissolution of the
focal adhesions, whereas knock-down of PIKE-A expression
reduced FAK activity and stabilized focal adhesions. PIKE-A-
induced dissolution of focal adhesions was independent of its
GTPase-activation protein activity but involved its N-terminal
G-protein-like domain (6). Dwane et al. demonstrated that
PIKE-A can bind receptor of activated protein kinase C1 and
is recruited to FAK, forming a complex, to regulate FAK
activity in response to differentiation. Suppression of PIKE-A
resulted in activation of FAK, (29) and thus is clearly involved
in this signaling pathway. 

The β2-adrenoreceptor (β2-AR) belongs to the G-protein-
coupled receptors, which transduce the effects of (nor)
epinephrine on a variety of cell types and act as key mediators
of the body’s reaction to stress. Activation of β2-ARs plays an
essential role in inflammation and immunoregulation (30, 31).
Wu et al. found that PIKE-A formed a complex with β-
ARRESTIN1 and β-ARRESTIN2. Knock-down of PIKE-A
expression reduced plasma membrane association of β-
ARRESTIN2 upon β2-AR activation, and overexpression of
PIKE-A slowed accumulation of β2-AR in perinuclear recycling
endosomes. In addition, PIKE-A formed a complex with
endogenous extracellular-signal-regulated kinase (ERK) and
overexpression of PIKE-A enhanced β2-AR-induced ERK
phosphorylation. Taken together, these observations suggests a
role for PIKE-A in the signalling and recycling of β2-ARs (32).

Signal transducer and activator of transcription 5A
(STAT5A) is a member of a family of cytoplasmic

transcription factors which regulate the expression of genes
controlling the cell cycle, angiogenesis and other key
processes (33). PIKE-A is also involved in the STAT5A
pathway in vitro and in vivo. FYN phosphorylates PIKE-A,
increasing its association with STAT5A. Phosphorylation of
PIKE-A is critical for its ability to bind to STAT5A, since
both inhibition of FYN kinase activity, and mutation of the
FYN phosphorylation sites in PIKE-A diminished the
association of PIKE-A with STAT5A activation. Ablating
FYN or its downstream effector PIKE-A caused a reduction
of STAT5A phosphorylation. PIKE-A directly associates
with both STAT5A and prolactin receptor, and regulates the
activity of STAT5A by prolactin-stimulated janus kinase 2
phosphorylation in mammary gland development (34, 35). 

Nie et al. found that the specific interaction between
PIKE-A and the clathrin adaptor protein activator protein 1
(AP1) inhibits PIKE-A activity. PIKE-A, co-localizing with
AP1, ras-related protein 4A (RAB4) and transferrin receptor
on endosomes, regulates the intracellular distribution of AP1
depending on its GAP activity, affects an AP1/RAB4
endosomal compartment, and transferrin accumulation by
accelerating the RAB4-dependent exit from the recycling
compartment (36, 37). Furthermore, PIKE-A was required in
membrane trafficking at the interface between early
endosomes and the trans-Golgi network and regulates
retrograde transport of several exogenous and endogenous
cargos. In PIKE-A-depleted cells, Shiga toxin accumulates
in co-localization with transferrin receptor in RAB-positive
endosomes that are close to clathrin patches, which leads to
an inhibition of retrograde transport of Shiga toxin. A
number of other intracellular trafficking pathways are not
affected by the depletion of PIKE-A. These results suggest
that PIKE-A has key functions in trafficking between early
endosomes and the trans-Golgi network (38).

In vitro, PIKE-A physically interacts with the insulin
receptor in a FYN-dependent manner. This interaction,
between PIKE-A and the insulin receptor suppresses the
phosphorylation of AMP-activated protein kinase (AMPK),
the master sensor of energy status, suggesting that PIKE-A is
implicated in obesity and associated diabetes development
by modulating AMPK activity. Thus, PIKE-A may represent
an additional regulatory point for insulin to suppress AMPK
phosphorylation (39, 40). 

Qi et al. delineated the physiological roles of PIKE
proteins using a whole-body PIKE-knockout (PIKE−/−)
mouse model. They showed that PIKE plays an important
role in neuronal survival, brain development, insulin
resistance, and cell transformation (17, 20, 23, 34, 39).
PIKE-L strongly bound SET (which is a substrate of
caspases, and cleaved by acidic cytosolic extract independent
of caspase activation) and prevented its degradation by
asparaginyl endopeptidase, leading to resistance of neuronal
cell death by neuroexcitotoxicity or ischaemia (21).
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Taken together, these findings show that PIKE plays a key
role in neuronal survival, brain development, cell
transformation, insulin resistance, obesity development and
mammary gland development. PIKE proteins are involved in
multiple signalling pathways in addition to the PI3K/AKT
pathway. 

PIKE in Human Cancer

In many types of cancer, the PI3K–AKT pathway is
overactive, reducing apoptosis and allowing proliferation,
and plays a key role in cancer progression. AKT is known as
the major downstream effector of PI3K, but both PI3K and
AKT can operate independently of each other in cancer (41).
PIKE-S and -L directly interact with PI3K and increase the
activity of PI3K, while PIKE-A specifically binds and
activates AKT. The gene for PIKE-A is amplified in many
cancer cell lines, such as human sarcomas, brain tumors, and
human glioblastoma (3, 8). 

The CENTG1 locus at 12q14 encoding PIKE is adjacent
to cyclin dependent kinase (CDK) 4, which promotes
proliferation by inhibiting the retinoblastoma-associated
protein (RB1) tumor suppressor and by sequestering
p27KIP1 and p21CIP1, thereby promoting E2F transcription
factor- and CDK2-dependent cell-cycle progression (42, 43).
As early as 20 years ago, CENTG1 was frequently observed
to be co-amplified with CDK4 (44). Co-amplification of
CDK4 and CENTG1 has been frequently found in various
cancer types (45-49). Liu et al. determined the PIKE-A
expression profile in human-matched normal and tumor
samples by complementary DNA array analysis. They found
that PIKE-A was significantly overexpressed in most human
tumors compared to normal tissue controls (50). Studies
have identified PIKE-A overexpression in a number of
tumor types, including breast, ovarian, colonic, stomach,
lung, kidney, bladder, vulval, prostatic, uterine, cervical,
rectal, thyroid, testicular, and skin cancer (8, 51). PIKE-S
has been found to be overexpressed in malignant human
keratinocytes (SSC4 and SCC12B2), but down-regulated in
normal tissue (7, 52). 

Knobbe et al. examined the gene copy number of PIKE
in glioblastomas and revealed 12% (12/97) of
glioblastomas displayed PIKE amplification. All tumors
identified with PIKE amplification had co-amplification of
the adjacent CDK4 gene. They investigated 72
glioblastomas without PIKE amplification, revealing
increased levels of PIKE-A transcripts (63%), but lower
levels of PIKE-S/-L transcript compared with non-
neoplastic brain tissue. Therefore, PIKE-A overexpression
is not restricted to tumors with PIKE amplification but is
present in more than 90% of all glioblastomas. These
results indicate an important role of PIKE-A in enhancing
AKT activity in glioblastomas (53). Mutation analysis of

36 novel candidate cancer genes in 96 breast cancer tissues
revealed somatic mutations of CENTG1 gene, which had a
potential impact on protein function. The non-synonymous
mutations observed in CENTG1 were predicted to be
disease-causing by MutationTaster. CENTG1 mutations
were non-randomly distributed among breast cancer
subtypes. The frequency of mutations of PIKE in human
epidermal growth factor receptor 2 (HER2)-positive or
triple-negative breast cancer was significantly higher than
that in luminal tumors (54). 

The role of PIKE-L in promoting tumorigenesis in human
glioblastoma cells has been well documented.
Overexpression of wild-type and dominant-negative PIKE-A
and PIKE-A knock-down showed that PIKE-A regulates
human cancer cell invasion, which is dependent upon AKT
(8). Functional analysis of the interaction between PIKE-A
and AKT demonstrates that PIKE-A mediates invasion of
cancer cells through AKT (16). Amplification of PIKE-A in
glioblastoma was found to up-regulate AKT activation,
enhance cell invasion, prevent cell apoptosis and promote
cell survival (3, 8, 55). Liu et al. found that PIKE-A was
overexpressed in U87MG glioblastoma and NIH3T3 cells,
which promoted cancer cell growth and NIH3T3 cell
transformation, enhancing cancer cell invasion. In contrast,
PIKE-A-inactive mutants antagonized cancer cell
proliferation, survival and invasion, and elicited NIH3T3 cell
transformation in a way that was coupled with the catalytic
effect they had on AKT activation. Moreover, wild-type
PIKE-A and its active mutants significantly elicited NIH3T3
cell transformation. Hence, the authors concluded that PIKE-
A acted as a proto-oncogene (50). In glioblastoma cells
treated with insulin-like growth factor-1, the level of
phosphorylated PIKE-A decreased in the cytoplasm and
increased in the nucleus. Insulin-like growth factor-1
activates CDK5, and CDK5 directly phosphorylates PIKE-A
at Ser-279 in its GTPase domain. Thus, PIKE-A was
identified as the first CDK5 target in cancer cells. This
phosphorylation event stimulates the activity of its
downstream effector AKT, and promotes migration and
invasion of human glioblastoma cells (56). He et al.
demonstrated that PIKE-A is a physiological substrate of
AKT, and AKT phosphorylation of PIKE-A enhances its
stimulatory effect on AKT kinase activity. A positive
feedback loop, therefore, exists between PIKE-A and AKT.
PIKE-A GTPase binds active AKT and stimulates its kinase
activity in a guanine-nucleotide-dependent way. AKT
feedback leads to phosphorylation of PIKE-A on Ser-472
and subsequently enhances its stimulatory effect on AKT
activity. Overexpresssion of PIKE-A was found to diminish
UNC5B expression through down-regulation of p53 and
inhibit UNC5B-induced apoptosis in glioblastoma cells (57).
PIKE-A up-regulates AKT through binding AKT. Disrupting
the interaction between PIKE-A and AKT was found to
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significantly reduce glioblastoma cell proliferation, colony
formation annul migration, and sensitized cells to clinical
drug for the treatment of glioblastoma (58). PIKE-L binds to
moesin-ezrin-radixin like protein (MERLIN), encoded by the
neurofibromatosis 2 (NF2) tumor-suppressor gene that
belongs to the 4.1N family. A single PIKE-L point-mutation
or knock-down of PIKE-L abrogated the tumor-suppressive
activity of MERLIN (59).

A recent study demonstrated that the amplicon at 12q13.3-
14.1 also contains an oncogenic microRNA, miR-26a. Has-
miR-26a, CDK4 and CENTG1 comprise a functionally
integrated oncomir–oncogene DNA cluster. The integrated
oncomir–oncogene DNA cluster was found to coordinate
antagonism of the c-Jun N-terminal kinases and RB1
pathways and activated the PI3K/AKT pathway, and was
associated with a poor prognosis among patients with
glioblastoma mutiforme (43). 

Another recent study also demonstrated that PIKE-A
was significantly up-regulated in the majority of human
prostate cancer cases. The expression of PIKE-A enhances
prostate cancer cell proliferation, focus formation in vitro
and tumor progression in vivo. Overexpression of PIKE-A
interacts with and activates AKT, and AKT also
phosphorylates PIKE-A at serine 629. Phosphorylated
PIKE-A interacts with the p50 subunit of nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-ĸB),
an important transcription factor that displays abnormal
activity in a variety of malignancies, and increases the
transcriptional activity of NF-ĸB (52, 61). Thus, PIKE-A
is implicated in prostate cancer progression through
directly activating signaling via both the AKT and NF-ĸB
pathways. Cai et al. analyzed 84 prostate cancer tissues
and 43 benign prostate tissues for somatic mutations in
PIKE-A by direct sequencing of individual clones derived
from the GAP and GTPase domains of normal and tumor
tissue. Mis-sense PIKE-A mutations were found in half the
cancer cases. The mutations were heterogeneous rather
than clonal, with multiple different mutations being present
in many tumors. PIKE-A mutations led to enhanced AP1
transcriptional activity. Furthermore, the presence of these
mutations was associated with aggressive clinical
behaviour (61). 

Xie et al. found that both PIKE-A and PIKE-L were not
expressed in SCC cell lines, PIKE-S was the only isoform
overexpressed in malignant human keratinocytes (SCC4 and
SCC12B2) but had low expression in normal human
keratinocytes. Treatment of SCC4 cells with EGF stimulated
PLC-γ1 translocation to the nucleus, where it bound to the
third PRD of PIKE-S and regulated the effect of PIKE on
PI3K. Knock-down of PLC-γ1 or PIKE-S blocked EGF-
induced activation of PI3K and SCC cell proliferation.
However, inhibition of the catalytic activity of PLC-γ1 had
little effect. These findings indicate that PIKE-S mediates

EGF receptor signalling to promote SCC cell proliferation
and functions as a proto-oncogene in SCC (52). 

Moreover, PIKE may play an important role in
tumorigenesis through other signaling pathways. FAK is a
multifunctional regulator of cell signalling within the
tumor microenvironment, and promotes invasive cell
phenotypes. An increased FAK mRNA level is observed in
many cancer types, and is correlated with poor overall
patient survival. Activated FAK plays an important role as
a key signal mediator in tumor progression and metastasis
(62, 63). NF-ĸB is a well-characterized transcription factor
that activates protein tyrosine kinase 2 promoter (64), and
PIKE-A increases the transcriptional activity of NFĸB. As
a transcription factor, activated or phosphorylated STAT
has been implicated in many cancer types (65, 66).
Unphosphorylated STAT5A stabilizes heterochromatin and
supresses tumor growth. STAT5A is down-regulated in
certain types of cancer. Both UNC5 and deleted in
colorectal cancer (DCC) are transmembrane receptors for
NETRIN-1, and are also considered to be tumor
suppressors (67). Association of PIKE-L with UNC5B
enhances cell survival through PI3K signalling (20). PIKE-
L and DCC have been co-precipitated from rat brain
lysates (57). These data support the notion that PIKE-L
may interact with UNC5B and DCC to drive
tumorigenesis. In addition, PIKE-A plays a role in the
oncolytic therapeutic of myxoma virus, and inhibits the
activation of virus-induced apoptosis following this
infection in human cancer cells. M-T5, a myxoma virus
ankyrin repeat, host range factor protein, is able to bind
and activate AKT, and can be functionally replaced by
PIKE-A (68). 

In summary, the role of PIKE GTPase in maintaining
neuronal survival and in tumorigenesis has been well
established over the past 10 years. The functions of PIKE rely
on different kinds of signaling pathways associated with
many binding partners. From these molecules, Qi et al.
proposed the regulation of PIKE in three directions for
targeting PIKE in cancer therapy, including regulating PIKE
GTPase activity, modulating PIKE phosphorylation and
disrupting protein–protein interactions (49). However, how
PIKE activities should be manipulated to contribute towards
cancer treatment is still not well clarified and the role of
PIKE as an initiator or promoter of tumorigenesis still needs
to be determined. Further studies focusing on PIKE signaling
in tumorigenesis will have significant implications for cancer
prevention and treatment. 
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