
Abstract. Background: 1α,25-Dihydroxyvitamin D3
[1,25(OH)2D3] and retinoic acid, such as all-trans
retinoic acid (ATRA) and 9-cis retinoic acid (9cRA), are
known to induce differentiation of myeloid leukemia cells.
Combined treatment effectively enhances the
differentiation effect, particularly in monocytic leukemia
cells. The underlying mechanism of this combined effect
remains unknown. Materials and Methods: THP-1
monocytic leukemia cells were treated with 1,25(OH)2D3
in combination with 9cRA, ATRA or selective synthetic
ligand for retinoic acid receptor (RAR) or retinoid X
receptor (RXR), and the nuclear expression and function
of vitamin D receptor (VDR) were examined. Results:
Combined treatment with 1,25(OH)2D3 and RAR ligand,
not RXR ligand, effectively increased nuclear VDR
expression and induced expression of the VDR target gene
cathelicidin antimicrobial peptide (CAMP) in a gene-
selective manner. Conclusion: Combination of
1,25(OH)2D3 plus RAR ligand is effective in induction of
nuclear VDR expression and of target gene.

The vitamin D receptor (VDR) belongs to the nuclear
receptor superfamily and mediates biological actions of the
active form of vitamin D, 1α,25-dihydroxyvitamin D3
[1,25(OH)2D3], in calcium and bone metabolism, cellular
growth and differentiation, immunity and cardiovascular
function (1, 2). 1,25(OH)2D3 and its derivatives have been
shown to inhibit the proliferation and induce the
differentiation of various types of malignant cells, including
myeloid leukemia cells (3). The administration of

1,25(OH)2D3 and its analogs was shown to have therapeutic
effects in a mouse model of myeloid leukemia (4), and VDR
ligands can induce the differentiation of various myeloid
leukemia cells (5). Upon ligand binding, VDR undergoes a
conformational change that results in interaction with the
retinoid X receptor (RXR) and exchange of cofactor
complexes (6). Ligand binding enhances nuclear localization
of VDR to exert its transcriptional regulatory activity on
specific target genes (7, 8). The VDR−RXR heterodimer
binds preferentially to a consensus element that consists of
a two-hexanucleotide (AGGTCA or a related sequence)
motif separated by three nucleotides, called the direct repeat
3 (9). Such response elements are located in the VDR target
gene promoters, including CYP24A1 and CAMP, which
encode vitamin D 24-hydroxylase and cathelicidin
antimicrobial peptide, respectively. Ligand-bound VDR also
mediates transrepression of genes, such as CYP27B1 and
TNF, which encode 25-hydroxyvitamin D 1α-hydroxylase
and tumor necrosis factor α, respectively, through a poorly
characterized mechanism. Although anti-leukemia effects of
1,25(OH)2D3 have been reported to be mediated by
transactivation and transrepression, non-genomic actions are
possible and the characterization of a detailed mechanism
remains unclear (3, 5).

While 1,25(OH)2D3 induces monocytic differentiation of
myeloid leukemia cells, all-trans retinoic acid (ATRA)
induces their granulocytic differentiation (4, 10-12). ATRA
also induces monocytic differentiation of monoblastic
leukemia cells (13, 14). Combined treatment with
1,25(OH)2D3 and ATRA, or another natural retinoid 9-cis
retinoic acid (9cRA), induces the differentiation of
monoblastic leukemia cells to the monocyte/macrophage-
lineage cells more effectively than does 1,25(OH)2D3 alone
(15, 16). Interestingly, 9cRA plus 1,25(OH)2D3 induces M2
macrophage markers in differentiated monocytic leukemia
cells (17). ATRA binds to the nuclear receptor retinoic acid
receptor (RAR), while 9cRA acts as a ligand for both RAR
and RXR (18). Although 1,25(OH)2D3 activates the
VDR−RXR heterodimer effectively, this heterodimer does
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not allow RXR ligand activation (19). The combination of
1,25(OH)2D3 with a selective RAR ligand induces
differentiation of myeloid leukemia cells more potently than
that with a selective RXR ligand (16). These findings
indicate that retinoid signaling enhances differentiation
induced by 1,25(OH)2D3 through a mechanism different
from activation of VDR−RXR heterodimer. In this study, we
examined the effect of 1,25(OH)2D3 in combination with
retinoids on nuclear VDR expression.

Materials and Methods
Compounds. 1,25(OH)2D3, ATRA and 9cRA were purchased from
Wako Pure Chemical Industries (Osaka, Japan). A synthetic RAR
agonist, Am80 (4-[(5,6,7,8-tetrahydro-5,5,8,8,-tetramethyl-2
naphthalenyl)]carbamoyl)benzoic acid), and a synthetic RXR
agonist, HX630 (4-[2,3-(2,5-dimethyl-2,5-hexano)dibenzo[b,f][1,4]-
thiazepin-11-y1] benzoic acid), were kindly provided by Dr. Koichi
Shudo of Research Foundation ITSUU Laboratory (Tokyo, Japan).

Cell culture. THP-1 human myeloid leukemia cells (RIKEN Cell
Bank, Tsukuba, Japan) were culture in RPMI-1640 medium containing
10% fetal bovine serum, 100 units/ml penicillin and 100 μg/ml
streptomycin at 37˚C in a humidified atmosphere with 5% CO2.
Suspensions of cells (105 cells/ml) were cultured with vehicle control
(ethanol), 1,25(OH)2D3, retinoid (9cRA, ATRA, Am80, or HX630), or
their combination for 24, 48, or 72 h.

Western blot analysis. Nuclear extracts from cells were prepared as
described previously (20). The proteins were electrophoresed on a
sodium dodecyl sulfate-polyacrylamide gel and transferred to a
membrane for immunoblotting. Western blot analysis was
performed using antibody to VDR and antibody to lamin (Santa
Cruz Biotechnology, Santa Cruz, CA, USA), visualized with an
alkaline phosphatase conjugate substrate system as reported
previously (21).

Reverse transcription and quantitative real-time polymerase chain
reaction. Total RNA from cells was prepared by the acid guanidine
thiocyanate-phenol/chloroform method (22). cDNAs were
synthesized using the ImProm-II Reverse Transcription system
(Promega Corporation, Madison, WI, USA). Real-time polymerase
chain reaction (PCR) was performed on the ABI PRISM 7000
Sequence Detection System (Life Technologies Corporation,
Rockville, MD, USA) with Power SYBR Green PCR Master Mix
(Life Technologies Corporation). Primers were as follows:
CYP24A1 (GenBank accession no. NM_009996), 5’-TGG AGA
CGA CCG CAA ACA G-3’ and 5’-AGG CAG CAC GCT CTG
GAT T-3’; CAMP (GenBank accession no. NM_009921), 5’-GGC
CGC TGA TTC TTT TGA C-3’ and 5’-CAC CAA TCT TCT CCC
CAC CTT-3’; VDR (GenBank accession no. NM_009504), 5’-CCG
CCA GAC CAG AGT TCT TTT-3’ and 5’-AGG CAC ATT CCG
GTC AAA GTC-3’. For relative mRNA expression, the mRNA
values were normalized to the mRNA levels of β-actin as reported
previously (17).

Statistics. All quantitative data were analyzed by one-way factorial
ANOVA followed by Tukey’s post hoc test using Prism 6 (Graphed
Software, La Jolla, CA, USA).

Results

Previous studies have shown that 9cRA is more potent than
ATRA in inducing differentiation of monocytic leukemia
cells (15-17, 23). We previously reported that 1,25(OH)2D3
treatment increases nuclear VDR expression at 24 hours but
levels decrease at 48 h in myeloid leukemia HL60 cells (21).
We examined the effect of 1,25(OH)2D3 with/without 9cRA
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Figure 1. Nuclear vitamin D receptor (VDR) expression in THP-1 cells
treated with 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) plus retinoic acid.
A: Effect of combined treatment with 1,25(OH)2D3 and 9-cis retinoic acid
(9cRA). B: Effect of combined treatment with 1,25(OH)2D3 and all-trans
retinoic acid (ATRA). Cells were treated with 100 nM 1,25(OH)2D3
with/without 100 nM 9cRA or ATRA for 24, 48 or 72 h. Nuclear proteins
were subjected to western blotting for VDR and lamin.

Figure 2. Effect of selective retinoic acid receptor (RAR) and retinoid X
receptor (RXR) ligands on 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3)-
induced nuclear vitamin D receptor (VDR) expression in THP-1 cells.
Cells were treated with 100 nM 1,25(OH)2D3 with/without 30 nM 9-cis
retinoic acid (9cRA), all-trans retinoic acid (ATRA), Am80 (synthetic
RAR agonist), or HX630 (synthetic RXR agonist) for 72 h. Western
blotting was performed for VDR and lamin.



on nuclear VDR expression in THP-1 monocytic leukemia
cells. Similar to the previous report (21), 1,25(OH)2D3
treatment increased nuclear VDR expression at 48 h (Figure
1A). Interestingly, combined treatment with 1,25(OH)2D3
and 9cRA markedly increased VDR expression, while 9cRA
alone had a weak effect. Nuclear VDR expression decreased
at 72 hours in cells treated with 1,25(OH)2D3, but was
maintained at a high level with the combination of
1,25(OH)2D3 plus 9cRA. A similar effect on nuclear VDR
expression was observed with the combination of
1,25(OH)2D3 and ATRA (Figure 1B).

9cRA is a ligand for both RAR and RXR. Although ATRA
is a ligand for RAR not for RXR, cells treated with ATRA
have RXR activity after conversion to 9cRA (24, 25). In order
to clarify which receptor is involved in increased nuclear
VDR expression, we compared the effects of synthetic RAR
agonist (Am80) and RXR agonist (HX630) in combination
with 1,25(OH)2D3. In the absence of 1,25(OH)2D3, 9cRA,
ATRA and Am80 slightly increased VDR expression (Figure
2). Combined treatment with 1,25(OH)2D3 and these retinoids
effectively increased nuclear VDR protein levels. The RXR
agonist HX630 was not effective in combination with
1,25(OH)2D3. Cytosolic VDR protein levels were not
changed under any of the treatment conditions (data not
shown). Thus, activation of RAR, not RXR, is involved in
increased nuclear VDR expression.

Finally, we examined whether increased VDR expression
affects VDR target-gene expression in cells treated with
1,25(OH)2D3 plus retinoic acid. We previously reported that
the combination of 1,25(OH)2D3 and RAR ligand effectively

induces mRNA expression of CD14, which is a VDR target
gene and is a marker of monocytic differentiation (17). We
examined the expression of other VDR target genes,
CYP24A1 and CAMP, which have a consensus direct repeat
3 element in the promoters. ATRA increased CAMP
expression but reduced CYP24A1 expression in cells treated
with 1,25(OH)2D3, while ATRA alone had no effect (Figure
3). The combined effect of 1,25(OH)2D3 and ATRA may be
gene selective. 1,25(OH)2D3 tended to increase VDR mRNA
levels but combined treatment with ATRA did not further
significantly increase its expression (Figure 3).

Discussion

We showed that combined treatment with 1,25(OH)2D3 and
RAR ligand effectively increases nuclear VDR protein
expression and expression of the VDR target gene CAMP in
human monocytic leukemia cells. RAR ligand alone did not
increase mRNA or protein expression of VDR, consistent
with previous reports (23, 26, 27). The combination of
1,25(OH)2D3 and RAR ligand increased nuclear VDR
protein expression but not VDR mRNA expression, as
reported previously (23). Thus, increased nuclear VDR
expression is mediated by a translational or post-translational
mechanism. The selective RAR agonist Am80 exhibited a
similar effect to ATRA and 9cRA on enhanced VDR
expression, while the selective RXR agonist HX630 did not,
indicating that the effect of retinoic acid on nuclear VDR
expression is not mediated by RXR activation in the
VDR−RXR heterodimer. Because treatment with RAR
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Figure 3. Effect of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) plus all-trans retinoic acid (ATRA) on mRNA expression of vitamin D 24-hydroxylase
(CYP24A1), cathelicidin antimicrobial peptide (CAMP) and vitamin D receptor (VDR). Cells were treated with 100 nM 1,25(OH)2D3 with/without
30 nM ATRA for 72 h. Expression of VDR target genes (CYP24A1 and CAMP) and VDR was evaluated with reverse transcription and quantitative
real-time polymerase chain reaction. *p<0.05, **p<0.01 and ***p<0.001. 



ligand alone was not effective, RAR activation does not
directly induce mRNA or protein expression of VDR. The
combination of 1,25(OH)2D3 and RAR ligand was not
effective in increasing VDR mRNA level or cytosolic VDR
protein level. A small proportion of VDR may translocate
from the cytosol to the nucleus in cells, and the change of
cytosolic VDR expression may be difficult to detect. Nuclear
VDR expression is regulated by several mechanisms,
including nuclear import and export (8, 28) and protein
degradation (21, 29). Protein modification, including
phosphorylation, is also involved in VDR expression (21,
30). RAR signaling may increase nuclear VDR expression
by enhancing its import or reducing its export or
degradation. Further studies are needed to elucidate the
detailed mechanism.

Combined treatment with 1,25(OH)2D3 and ATRA
increased CAMP mRNA expression. Vitamin D signaling
plays an important role in innate immune responses in
monocytes and keratinocytes through the VDR-dependent
induction of CAMP (31). Vitamin A is also essential in
immune homeostasis, particularly in gut mucosal immunity
(32). RAR ligands, ATRA and Am80, are used in the
treatment of acute promyelocytic leukemia (33). Since
application of 1,25(OH)2D3 and its derivatives in the
treatment of non-calcemic diseases, such as leukemia,
autoimmune/inflammatory disease, and infection, has a risk
of hypercalcemia, a principal physiological effect of vitamin
D, the combination of VDR ligand with other drugs, such as
retinoic acid, may be useful in reducing adverse effects (34).
ATRA treatment increased CAMP expression but not
CYP24A1 expression, indicating a gene-selective effect of
RAR signaling on VDR target-gene expression. Therefore,
combined treatment with VDR and RAR ligands may be
useful for enhancement of selective VDR function,
specifically in the immune response.
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