Impact of Interstitial Changes on Radiation Pneumonitis After Stereotactic Body Radiation Therapy for Lung Cancer

TADAMASA YOSHITAKE1, YOSHIYUKI SHIOYAMA2, KAORI ASAI3, KATSUMASA NAKAMURA3, TOMONARI SASAKI3, SAJJ OHGA3, TAKESHI KAMITANI1, TOSHIHIRO YAMAGUCHI1, KAORI OHSHIMA3, KEIJI MATSUMOTO3, SATOSHI KAWANAMI3 and HIROSHI HONDA3

Department of 1Comprehensive Clinical Oncology and 3Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan; 2Kyushu International Heavy Ion Beam Therapy Center, Tosu-shi, Saga, Japan

Abstract. Aim: The aim of the present study was to evaluate the impact of interstitial changes (IC) on radiation pneumonitis (RP) after stereotactic body radiation therapy (SBRT) for lung cancer. Patients and Methods: We analyzed 260 consecutive patients with primary lung cancer treated with SBRT. According to the presence or absence of IC on the pre-treatment computed tomography, patients were divided into two groups: an IC group (n=18) and a non-IC group (n=242). Results: RP of grade 2 or more was observed in 9 (50.0%) and 14 (6.7%) patients in the IC and non-IC group, respectively. All three patients with grade 5 RP were in the IC group. As indicated by multivariate analysis, the presence of IC was the only significant predictive factor of RP of grade 2 or more. Conclusion: The presence of IC was a significant indicator of grade 2 or more RP after SBRT for patients with lung cancer.

Stereotactic body radiation therapy (SBRT) has been widely used to safely treat primary or metastatic lung tumors (1-6). Radiation pneumonitis (RP) is one of the most important toxicities of SBRT. The reported rates of RP of grade 2 or more after SBRT range from 3% to 28% (1, 4, 7-10), and cases of grade 5 RP have also been reported in a small number of patients (3, 8, 10).

Pulmonary interstitial changes (IC) are occasionally observed on the pre-treatment, thin-slice computed tomography (CT) scans of patients with lung cancer without clinical symptoms or diagnostic confirmation of interstitial pneumonia (IP). Severe IP is a contraindication for radiotherapy since radiotherapy can result in acute exacerbation of IP (11). The incidence of RP after SBRT for lung cancer patients with IC is not known. In addition, the influence of clinical and treatment factors on the incidence of RP after SBRT in patients with IC remains unknown. The purpose of the study was to evaluate the impact of IC on RP after SBRT for lung cancer.

Patients and Methods

Patient's and tumor characteristics. Between April 2003 and April 2012, we selected 260 consecutive patients with primary lung cancer treated with SBRT at Kyushu University Hospital, Fukuoka, Japan. Patients who had received irradiation to the lung in the preceding 2 years were excluded. The 260 patients consisted of 164 male and 96 female patients. The median age was 77 years (range=51-92 years). The clinical T stage was T1a in 104, T1b in 92, and T2a in 64 patients. The histological types of lung cancer were squamous cell carcinoma in 46, adenocarcinoma in 77, large cell carcinoma in three, bronchioloalveolar carcinoma in two, small cell carcinoma in two, non-small cell carcinoma not otherwise specified in nine, and unknown in 121.

Evaluation of IC. A board-certified radiologist evaluated the pre-treatment thin-slice CT (≤2 mm slice thickness) to categorize patients into the IC group and non-IC group. We defined distribution along the subpleural region or bronchovascular bundle, reticular opacity, honeycombing, traction bronchiectasis, and ground-glass opacity as the CT findings of IC. According to the presence or absence of IC, patients were divided into two groups: an IC group (n=18) and a non-IC group (n=242). The clinical factors of these two groups are shown in Table I. The pretreatment Krebs von den Lungen-6 (KL-6) value of the IC group was significantly higher than that of the non-IC group (p=0.001).

Evaluation of CT. A board-certified radiologist evaluated the pre-treatment thin-slice CT (≤2 mm slice thickness) to categorize patients into the IC group and non-IC group. We defined distribution along the subpleural region or bronchovascular bundle, reticular opacity, honeycombing, traction bronchiectasis, and ground-glass opacity as the CT findings of IC. According to the presence or absence of IC, patients were divided into two groups: an IC group (n=18) and a non-IC group (n=242). The clinical factors of these two groups are shown in Table I. The pretreatment Krebs von den Lungen-6 (KL-6) value of the IC group was significantly higher than that of the non-IC group as evidenced by the Mann-Whitney U-test.

Stereotactic body radiation therapy. The SBRT technique has been described previously (12). All patients were fixed with a Body Cast System composed of a thermoplastic body cast, a vacuum pillow, arm and leg support, and a carbon plate (Engineering Systems Co.,
IC, Interstitial change; PS, Performance status; CRP, C-reactive protein; LDH, lactate dehydrogenase; KL-6, Krebs von den Lungen-6; Lung Vx, lung volume receiving ≥x Gy. *According to χ²-test, between the IC and non-IC group. †According to Mann–Whitney U test, between the IC and non-IC group.

Table II. Incidence of radiation pneumonitis (RP).

<table>
<thead>
<tr>
<th>RP grade</th>
<th>IC group (n=18)</th>
<th>Non-IC group (n=242)</th>
<th>Total (n=260)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 2</td>
<td>2 (11.1%)</td>
<td>11 (4.5%)</td>
<td>13 (5.0%)</td>
</tr>
<tr>
<td>Grade 3</td>
<td>3 (16.7%)</td>
<td>3 (1.2%)</td>
<td>6 (2.3%)</td>
</tr>
<tr>
<td>Grade 4</td>
<td>1 (5.6%)</td>
<td>0 (0%)</td>
<td>1 (0.4%)</td>
</tr>
<tr>
<td>Grade 5</td>
<td>3 (16.7%)</td>
<td>0 (0%)</td>
<td>3 (1.2%)</td>
</tr>
<tr>
<td>Grade ≥2</td>
<td>9 (50.0%)</td>
<td>14 (6.7%)</td>
<td>23 (8.8%)</td>
</tr>
</tbody>
</table>

*In the IC and non-IC groups, respectively. The incidence of RP is shown in Table II. The cumulative incidence of grade 2 or more RP at 6 months were 44.4% and 4.1% in the IC and non-IC groups, respectively (Figure 1). The incidence of grade 2 or more RP in the IC group was significantly higher than that of the non-IC group. OS rates at 2 years in the IC and non-IC groups were 49.6% and 86.7%, respectively (Figure 2). The OS of the non-IC group was significantly longer than that of the IC group.

Tables III and IV show the results of analyses of predictive factors of RP of grade 2 or more for the whole patient cohort and for the IC group, respectively. In all cases, the predictive factors were presence of IC, KL-6, lung V5, V10, V20, and MLD by univariate analysis, while the presence of IC was the only predictive factor by multivariate analysis. In the IC group, KL-6, lung V5 and V10, and MLD were significant predictive factors by univariate analysis.

In the IC group, the cumulative incidence of grade 2 or more RP at 6 months was 83.3% and 25.0% in patients with a KL-6 level ≥600 and <600 U/ml, respectively. The incidence of grade 2 or more RP at 6 months in patients with a KL-6 level of ≥600 U/ml in the non-IC group experienced grade 2 or more RP.

Discussion

In the present study, the incidence of grade 2 or more RP was significantly higher in the IC group than the non-IC group, and all three patients with grade 5 RP were from the IC group. A high incidence of RP after thoracic radiotherapy for patients...
with IC has been described in a few previous reports (15-18). Yamaguchi et al. described that grade 2-5 RP was observed in three (19%) out of 16 patients with sub-clinical interstitial lung disease (ILD) treated with SBRT for primary and metastatic lung cancer. Although sub-clinical ILD was not found to be a significant factor for grade 2 or more RP or clinical outcomes in their study, all three patients with extensive RP beyond the irradiated field had sub-clinical ILD. Therefore, they concluded that uncommon extensive RP can occur in patients with subclinical ILD (17). Yamashita et al. evaluated the incidence and the risk factors for grade 4-5 RP in 117 patients with primary and metastatic lung cancer after SBRT. The 1-year cumulative incidence of grade 4-5 RP was 57% in 13 patients with IC, and IC was found to be a significant risk factor for grade 4-5 RP (15). Sanuki et al. evaluated the association of IC with RP for 106 patients treated with conventional thoracic radiotherapy of 40 Gy or more for lung cancer or thymic tumors, and the incidence of grade 3 or more RP was significantly increased from 3% (2/79) to 26% (7/27) (16). Therefore, severe and potentially fatal RP may occur on SBRT for patients with IC on the pretreatment CT.

It has been well-established that there is a dose–response relationship between the incidence of RP after SBRT and dosimetric factors such as lung V5, V20, or MLD (7, 9, 19-21). Ong et al. described that the contralateral lung V5 was the best predictor of grade 2 or more RP in 18 patients with lung tumors and PTV exceeding 80 cm3 after SBRT using volumetric-modulated arc therapy (21). Barriger et al. reported that high MLD (≥4 Gy) and lung V20 (≥4%) were significant risk factors of grade 2 or more RP in 143 patients with lung cancer treated by SBRT (19). It is still controversial which of these dosimetric parameters is the better predictor. Following a univariate analysis in the present study, all lung parameters were found to be significant risk factors of grade 2 or more RP in the whole patient group, but lung V20 was not significantly related to the incidence of RP grade or more in the IC group. Yamashita et al. reported that the incidence of RP was not related to lung V20 or V40 in 117 patients with IC, but they did not evaluate lung V5, V10, or MLD (15). Patients with IC are thought to be a risk for IP, because IC is one of the major criteria of idiopathic pulmonary fibrosis. Therefore, it is speculated that patients with IC may develop RP on exposure to low-dose radiation more easily than patients without IC. Based on the present findings, it may be advisable to reduce both the low-dose and the high-dose irradiation areas in order to reduce the risk of RP in patients with IC. However, a further prospective study will be required to confirm this, since the present study was somewhat limited by its retrospective nature and the small number of patients with IC.

Serum KL-6 is one of the most reliable biomarkers for ILD (22, 23). Previous studies reported that KL-6 is increased in RP and would help to predict the occurrence of severe RP (16, 24, 25). Yamashita et al. evaluated 117 patients with primary and metastatic lung cancer who were treated with SBRT and reported that a correlation was found between the incidence of grade 4-5 RP and higher serum KL-6 levels (≥500 U/ml) (15). In the present study, the pretreatment serum KL-6 level was a significant predictive factor of grade 2 or more RP by univariate analysis. In particular, of the 13 patients with IC and high serum KL-6 levels (≥600 U/ml), three (23%) died of RP.

Yamashita et al. evaluated 117 patients with primary and metastatic lung cancer...
Therefore, we strongly recommend avoiding SBRT for patients with IC and high levels of KL-6. However, even in patients with IC with a low KL-6 level and low lung dosimetric indices, the indication for SBRT remains unclear.

Conclusion

The presence of IC on a pre-treatment CT was an indicator of grade 2 or more RP and poor prognosis after SBRT for patients with lung cancer. SBRT should not be performed for patients with lung cancer with IC and pretreatment KL-6 level of ≥600 U/ml.

Acknowledgements

This work was supported in part by JSPS KAKENHI grants number 26461894.

References

prospective phase II trial of medically inoperable stage I non-
small-cell lung cancer patients treated with stereotactic body

3 Fakiris AJ, McGarry RC, Yiannoutsos CT, Papiez L, Williams
M, Henderson MA and Timmerman R: Stereotactic body
radiotherapy for early-stage non-small-cell lung carcinoma:
four-year results of a prospective phase II study. Int J Radiat

4 Wulf J, Haedinger U, Oppitz U, Thiele W, Mueller G and Flentje
M: Stereotactic radiotherapy for primary lung cancer and
pulmonary metastases: a noninvasive treatment approach in
medically inoperable patients. Int J Radiat Oncol Biol Phys 60:

5 Nuyttens JJ, van der Voort van Zyp NC, Verhoef C, Maat A, van
Klaveren RJ, van der Holt B, Aerts J and Hoogeman M:
Stereotactic body radiation therapy for oligometastases to the
lung: a phase 2 study. Int J Radiat Oncol Biol Phys 91:
337-343, 2015.

6 Chang JY, Senan S, Paul MA, Mehran RJ, Louie AV, Balter P,
Groen HJ, McAree SE, Widdar J, Feng L, van den Borne BE,
Munsell MF, Hurkmans C, Berry DA, van WERkhoven E, Kresl
JJ, Dingemans AM, Dawood O, Haasebeek CJ, Carpenter LS, De
Jaeger K, Komaki R, Slotman BJ, Smit EF and Roth JA:
Stereotactic ablative radiotherapy versus lobectomy for operable
stage I non-small-cell lung cancer: a pooled analysis of two

7 Borst GR, Ishikawa M, Nijkamp J, Hauptmann M, Shirato H,
Onimaru R, van den Heuvel MM, Belderbos J, Lebesque JV and
Sonke JJ: Radiation pneumonitis in patients treated for
malignant pulmonary lesions with hypofractionated radiation

8 Yamashita H, Nakagawa K, Nakamura N, Koyanagi H, Tago M,
Igaki H, Shiraiishi K, Sasano N and Ohtomo K: Exceptionally
high incidence of symptomatic grade 2-5 radiation pneumonitis
after stereotactic radiotherapy for lung tumors. Radiat Oncol

J, Mueller G and Flentje M: Dose-response relationship for
radiation-induced pneumonitis after pulmonary stereotactic body

10 Stauder MC, Macdonald OK, Olivier KR, Call JA, Lafata F,
Mayo CS, Miller RC, Brown PD, Bauer HJ and Garces VI: Early
pulmonary toxicity following lung stereotactic body radiation therapy
delivered in consecutive daily fractions. Radiother Oncol

11 Song JW, Hong SB, Lim CM, Koh Y and Kim DS: Acute
exacerbation of idiopathic pulmonary fibrosis: incidence, risk

12 Shiyo Yama Y, Nakamura K, Anai S, Sasaki T, Ooga S, Saku M,
Urashima Y, Yoshitake T, Toba T, Teras Hi H and Honda H:
Stereotactic radiotherapy for lung and liver tumors using a body
cast system: setup accuracy and preliminary clinical outcome.

13 Yoshitake T, Nakamura K, Shiyo Yama Y, Nomoto S, Ohga S,
Toba T, Shino k i T, Anai S, Teras Hi H, Kishimoto J and
Honda H: Breath-hold monitoring and visual feedback for
radiotherapy using a charge-coupled device camera and a
head-mounted display: system development and feasibility.

14 National Cancer Institute: Common Terminology Criteria for
Adverse Events v4.0. NCI, NIH, DHHS. NIH publication
09-7473, 2009.

15 Yamashita H, Kobayashi-Shibata S, Terahara A, Okuma K, Haga
A, Waku R, Ohtomo K and Nakagawa K: Prescreening based
on the presence of CT-scan abnormalities and biomarkers (KL-
6 and SP-D) may reduce severe radiation pneumonitis after

16 Sanuki N, Ono A, Komatsu E, Kamei N, Akamine S, Yamazaki
T, Mizuno M and Maeda T: Association of computed
tomography-detected pulmonary interstitial changes with severe
radiation pneumonitis for patients treated with thoracic

17 Yamaguchi S, Oguri T, Ide S, Aoki T, Imada H, Yahara K,
Narisd H and Kurog Y: Stereotactic body radiotherapy for lung
tumors in patients with subclinical interstitial lung disease:
the potential risk of extensive radiation pneumonitis. Lung

18 Ueki N, Matsu Y, Togashi Y, Kubo T, Shibuya K, Iizuka Y,
Mizowaki T, Togashi K, Mishima M and Hiraoka M: Impact of
pretreatment interstitial lung disease on radiation pneumonitis
and survival after stereotactic body radiation therapy for lung

19 Barriger RB, Forquer JA, Brabham DG, Andolino DL, Shapiro
RH, Henderson MA, Johnstone PA and Fakiris AJ: A
dose-volume analysis of radiation pneumonitis in non-small-cell
lung cancer patients treated with stereotactic body radiation

20 Yamashita H, Takahashi W, Haga A and Nakagawa K: Radiation
pneumonitis after stereotactic radiotherapy for lung cancer.

21 Ong CL, Palma D, Verbakel WF, Slotman BJ and Senan S:
Treatment of large stage I-II lung tumors using stereotactic body
radiotherapy (SBRT): planning considerations and early toxicity.

22 van den Blink B, Wijsgenbeek MS and Hoogsteden HC: Serum
bio markers in idiopathic pulmonary fibrosis. Pulm Pharmacol

23 Ohnishi H, Yokoyama A, Kondo K, Hamada H, Abe M,
Nishimura K, Hiwada K and Kohno N: Comparative study of
KL-6, surfactant protein-A, surfactant protein-D, and monocyte
chemoattractant protein-1 as serum markers for interstitial lung

24 Hara R, Itami J, Komiyama T, Katoh D and Kondo T: Serum
levels of KL-6 for predicting the occurrence of radiation
pneumonitis after stereotactic radiotherapy for lung tumors.

25 Iwata H, Shihamoto Y, Baba F, Sugie C, Ogino H, Murata R,
Yanagi T, Otsuka S, Kosaki K, Murai T and Miyakawa A:
Correlation between the serum KL-6 level and the grade of
radiation pneumonitis after stereotactic body radiotherapy for
stage I lung cancer or small lung metastasis. Radiother Oncol

Received May 6, 2015
Revised June 12, 2015
Accepted June 15, 2015