
Abstract. Background/Aim: Prostate cancer (PCa) shows
disproportionately higher incidence and disease-associated
mortality in African Americans. The human crystallin beta
B2 (CRYBB2) gene has been reported as one tumor
signature gene differentially expressed between African
American and European American cancer patients. We
investigated the role of CRYBB2 genetic variants in PCa in
African Americans. Materials and Methods: Subjects
comprised of 233 PCa cases and 294 controls. Nine
haplotype-tagged single nucleotide polymorphisms (SNPs) in
and around the CRYBB2 gene were genotyped by
pyrosequencing. Association analyses were performed for
PCa with adjustment for age and prostate-specific antigen
(PSA), under an additive genetic model. Results: Out of the
nine SNPs examined, rs9608380 was found to be nominally
associated with PCa (odds ratio (OR)=2.619 (95%
confidence interval (CI)=1.156-5.935), p=0.021). rs9306412
was in strong linkage disequilibrium with rs9608380 that
showed an association p-value of 0.077. Using ENCODE
data, we found rs9608380 mapped to a region annotated
with regulatory motifs, such as DNase hypersensitive sites
and histone modifications. Conclusion: This is the first study
to analyze the association between genetic variations in the
CRYBB2 gene with PCa. rs9608380, associated with PCa, is
a potentially functional variant.

Prostate cancer (PCa) is the most commonly diagnosed
cancer in American men following only skin cancer and is
the second leading cause of death from cancer in men of all

ages in the US (1, 2). It is estimated that in the US in the
year 2015, about 220,800 new cases of PCa will be
diagnosed with about 27,540 projected deaths from this
disease (2). The incidence and mortality rates of PCa vary
substantially among different ethnic groups, with African
Americans showing evidence of disease-associated disparity
(2, 3). While the role of genetics in PCa is well-recognized
(4) and disease susceptibility alleles have been shown to
overlap between populations of different ethnic backgrounds
(5), accumulating data point to genetic markers of risk for
PCa that appear specific to men of African descent (6).
Studies of the pathology and recurrence of tumors in African
American and European American men have suggested that
population differences in the biology of PCa tumors may
explain observed differences in outcome (7).

The human crystallin, beta B2 (CRYBB2) gene is located
on chromosomal locus 22q11.23. CRYBB2 encodes for the
βB2-crystallin, the most abundant and water-soluble β-
crystallin in the lens (8). Mutations in the CRYBB2 gene
have been reported to be associated with cataracts in several
independent studies (9, 10). Recent reports have observed a
relationship of CRYBB2 expression with cancer. CRYBB2
expression was reported to be significantly up-regulated in
African American vs. European American patients with
colorectal cancer (11). CRYBB2 was also found to be
differentially expressed between African American and
European American breast cancer patients (12, 13). In a
recent study examining the differences in tumor biology
contributing to the disparity observed in the incidences and
mortality from PCa by gene expression profiling, CRYBB2
was found significantly differently expressed in prostate
tumors between African Americans and European Americans
(14). The authors described CRYBB2 as one of the two tumor
signature genes that accurately differentiated between
African American and European American patients (14).

We, therefore, examined the association of CRYBB2
genetic variants with PCa in African Americans. Nine single
nucleotide polymorphisms (SNPs) spanning the CRYBB2
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gene were chosen for genotyping to examine their
association with PCa in a cohort of African Americans by
performing a case-control association study.

Materials and Methods

Study sample. Individuals studied were unrelated, self-reported
African American men from the Washington, DC area. Participants
were between 40-85 years old and recruited either from the Urology
Clinic at Howard University Hospital or from a PCa screening
program conducted at the Howard University Cancer Center. The
screening program was demographically similar to the patient
population seen in the Urology Clinic. Ethical approval for the study
was obtained from the Howard University’s Institutional Review
Board. All individuals provided their written informed consent for
the collection of data and samples, as well as subsequent analyses.
The participants for this study comprised of 233 PCa cases and 294
controls. PCa cases were diagnosed by an urologist, initially by
clinical examination followed by transrectal ultrasound-guided
biopsy using standard saturation technique (15). Biopsy cores were
reviewed by members of the Department of Pathology of Howard
University Hospital. PCa cases were classified according to the
well-established parameters of the Gleason Scoring System (16).
Controls included men of the same age group with a prostate-
specific antigen (PSA) value of ≤4.0 ng/ml and a normal finding by
digital rectal examination (DRE) and, in selected cases, by biopsies.
Individuals who were ever diagnosed with benign prostatic
hyperplasia (BPH) were not included as controls. During a clinical
examination, demographic and medical information were collected
by interview. Blood samples were collected from each subject from
which genomic DNA was obtained. Clinical characteristics,
including Gleason grade, PSA, age at diagnosis and relevant clinical
data were obtained from medical records.

Genotyping and quality control. Using the International HapMap
Project YRI data as a reference, nine tag SNPs spanning the
CRYBB2 genomic locus at a pairwise r2 value of at least 0.8 were
selected for genotyping. Genotyping was performed by
pyrosequencing (Qiagen, Germantown, MD, USA) according to the
manufacturer’s recommendations. Briefly, primers were designed
using the PSQ Assay Design Software (Qiagen, Germantown, MD,

USA) and polymerase chain reaction (PCR) amplification was
performed using 20 pico moles of forward unlabeled and a reverse
biotin labeled primer (or vice versa), MgCl2, deoxynucleotide
triphosphates and platinum Taq DNA polymerase (Life Tech,
Carlsbad, CA, USA). Biotinylated single-stranded DNA fragments
were separated using Streptavidin Sepharose™ High Performance
(GE Healthcare, Piscataway, NJ, USA) and pyrosequenced. Results
were analyzed with the PyroMark Q24 software (Qiagen,
Germantown, MD, USA). Duplicate test samples and negative
controls were included in each of the 96-well plates.

Statistical analyses. Power calculations were performed using
QUANTO (17). Assuming an additive genetic model and with a
minor allele frequency (MAF) of 0.05, this study had a power of
43% to 78% to detect associations with a genetic relative risk of 1.6
to 2.0, respectively. The Fisher’s exact test was performed to
determine deviations of genotype distributions from the expected
Hardy-Weinberg equilibrium (HWE). Linkage disequilibrium (LD)
was visualized using Haploview (18). PCa was analyzed as a binary
trait (cases versus controls) and odds ratios (OR), 95% confidence
intervals (CI) and p-values were calculated using logistic regression
under an additive genetic model. Genetic effects were adjusted for
age (at time of diagnosis for cases and at time of ascertainment for
controls) and PSA value. Two-sided p-values ≤0.05 were considered
as statistically significant. All association analyses were performed
using the SPSS statistical package, version 22.0 (IBM Corporation,
Armonk, NY, USA). 

Expression analysis and functional annotation. To search for
prostate tissue-specific expression of CRYBB2, we queried the
Gene Expression Atlas (19). We examined the regulatory role of the
disease-associated non-coding SNPs by querying the ENCODE data
using HaploReg version 2 (20) and RegulomeDB (21).

Results

The frequencies of clinical characteristics of our study
population are shown in Table I. The mean age (±SD) was
64.88±9.18 years for the cancer patients and 58.28±10.72
years for the controls, with significant difference between the
two groups (p<0.0001). Similarly, PSA level was found
significantly higher in the case group (11.12±14.64)
compared to the controls (3.35±7.59). The cancer group had
a higher percent of family history of PCa (18.45%)
compared to the controls (11.56%).

Nine SNPs from about 20 kb genomic sequences spanning
the CRYBB2 gene were selected for examination. Table II
shows the list of the SNPs with their corresponding
chromosomal location. Genotype distribution of the
examined SNPs conformed to HWE (p>0.001). MAFs of the
examined SNPs ranged from 5-46% in our population
sample. Detailed results of association testing are presented
in Table II. Out of the nine SNPs tested, rs9608380 was
found associated with PCa at nominal significance (p=0.021)
under an additive genetic model. The A allele of the SNP had
a frequency of about 6% and was found to increase PCa risk
(OR=2.619) (CI=1.156-5.935) (Table II). rs9608380 is
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Table I. Clinical characteristics of the study population (n=527).

Characteristic Cases Controls p-Value

No. of participants 233 294
Age, years 64.88 (9.18) 58.28 (10.72) <0.0001
Age group, number (%)

<50 years 12 (5.15) 64 (21.77)
50-59 59 (25.32) 99 (33.67)
60-69 88 (37.77) 75 (25.51)
≥70 74 (31.76) 56 (19.05)

PSA (ng/ml) 11.12 (14.64) 3.35 (7.59) < 0.0001
Family history of PCa (%) 43 (18.45) 34 (11.56)

PSA, Prostate-specific antigen; PCa, prostate cancer. Data are shown as
number (percent) or mean (SD). 



located in the intronic region of CRYBB2 gene. Figure 1
shows the pattern of LD of the genomic region of the
CRYBB2 gene spanning the examined SNPs in our tested
samples. rs9306412, another intronic SNP, showed an
association p-value of 0.077 and was in strong LD with
rs9608380 (Figure 1). 

We queried the Gene Expression Atlas for tissue-specific
baseline expression of CRYBB2 and found it to be expressed
at a low level in normal prostate tissue. We also performed in
silico lookup for DNA feature and potential regulatory
elements spanning the associated locus. rs9608380 was
predicted from ENCODE data as a functional SNP with a
regulatory role. The rs9608380 locus maps to several
regulatory motifs, including Barx1 in the LNCaP cell line as
revealed by DNase footprinting, and Lhx4 as well. 

As determined by ENCODE ChIP-seq data, the variant locus
was annotated with two histone marks, H3k79me2 and
H3k27me3, localized in a short chromosomal region
(chromosomal location: 25622304-25622496 and 25622330-
25622518, respectively).

Discussion

In the present study, we examined the association of genetic
variants in the CRYBB2 gene with PCa in an African
American population. We chose the CRYBB2 gene based on
recent reports regarding its differential expression between
African American and European American men in different

cancers (11-13), including PCa patients (14). Regional
deletion distal to CRYBB2 on 22q has been reported in a
retroperitoneal rhabdoid malignant tumor (22). At least
eleven missense, one splicing and one insertion/deletion
mutation in the CRYBB2 gene have been associated with
congenital cataracts (23, 24). To our knowledge, this is the
first report examining the association of genetic variants in
CRYBB2 with PCa. As our study included only self-reported
African Americans, population stratification is not expected
to be an issue. Many candidate gene studies rely on self-
reported ancestry to control for population stratification, an
approach that has been shown to be reliable in genetic
studies (25, 26). 

Using nominal significance (p<0.05) for association, we
found one SNP, rs9608380, associated with PCa. However,
the significance was lost when corrected for multiple testing
using the Bonferroni method. A limitation of genetic studies,
such as ours, which evaluate many SNPs, is the potential for
false positive findings as a result of multiple testing (type I
error). Due to the multiple testing burden associated with the
number of SNPs tested, it is possible that this study did not
have enough power to see an association after Bonferroni
correction. Our observed frequency of the associated allele
A (5.78%) is somewhat less than what was found in the
HapMap-ASW data (10.2%). We did not find any report of
genetic association of rs9608380 with any other phenotype. 

An important issue in many association studies, including
ours, is that significantly associated variants are often located
in non-coding regions, thus raising the question of their
functionality and possible role in disease predisposition. An
intronic SNP may alter the function of a nearby regulatory
element or be in LD with another causative variant that is
directly involved in PCa susceptibility. Introns also contain
several short sequences of cis-splicing motifs that are
important for efficient splicing, such as acceptor and donor
sites at either end of the intron and a branch point site, which
are required for proper splicing by the spliceosome.
Additionally, about 40% of the miRNA genes that are short
non-coding RNAs and known to regulate gene expression by
binding to sequences on the target mRNA (27) are often
embedded within introns (28). Another possible mechanism of
action is thought to be via the influence of SNPs on distal
enhancer elements that regulate the expression of critical target
genes involved in the etiopathogenesis of disease (29, 30).

The potential binding motifs spanning the rs9608380 locus
warrant special mention. BARX1 is a homeobox transcription
factor whose promoter region has been reported to be
hypermethylated in colorectal cancer (31) and in gastric
cancer (GC) cell lines and patient samples, with BARX1
mRNA expression in GC tissues and cell lines being reduced
(32). A genome-wide association study has identified
rs11789015, an intronic SNP in BARX1 associated with
esophageal adenocarcinoma and Barrett’s esophagus (33).
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Figure 1. Schematic diagram of the location of 9 tag SNPs in the
CRYBB2 gene and patterns of pairwise-linkage disequilibrium (LD)
between the SNPs. Strength of LD in the samples is represented as red
squares for strong LD and white squares for little or no LD.



LHX4 is abundantly expressed in cancers (34, 35). Treatment
with simvastatin, a known anticancer agent that inhibits
prostate cancer cell functions and tumor growth (36), resulted
in reduced LHX4 protein level in PC3 cells (37). Further
studies are, thus, warranted to explore the role of these
regulatory molecules in CRYBB2 expression in the context
of PCa development and progression. 

Several limitations should be kept in mind when
interpreting the results of this study. First, the sample size was
relatively small, which can result in insufficient power to
detect minor contributions of associated alleles and
contributions of those with low MAF. Similarly, small sample
sizes can provide imprecise or incorrect estimates of the
magnitude of the observed effects. Second, like other cancers,
PCa is a complex disease associated with both genetic and
environmental factors. Socio-environmental factors were not
included in the present analysis, which limited the
interpretation of these results and evaluation of the gene-
environment interaction. We do, however, envision that since
the participants are recruited from a defined demographic
region, there will be some shared environmental factors,
thereby minimizing the bias imposed by them. Thirdly, the
incidence of PCa increases with age. Therefore, even though
the effect of age was adjusted for by statistical methods, some
of the younger control subjects may yet develop PCa in the
future. The third limitation is not specific to our study design
but, in fact, is applicable for many studies exploring germ-
line genetics of PCa. 

In conclusion, we have, for the first time, demonstrated that
rs9608380, an intronic SNP in the CRYBB2 gene, is associated
with the risk of PCa in an African American population. We also
found that rs9608380 maps to a locus potentially containing
regulatory motifs, as predicted by in silico analyses. While we
acknowledge both the strengths and limitations of our study,
further replication studies with larger sample sizes and deep
sequencing are required to confirm the genetic association of
CRYBB2 gene with PCa and to pin-point the causal variant(s)
as well. The functional role of CRYBB2 in prostate tissue and

how it contributes to PCa remains speculative. CRYBB2 is
among the major proteins of the vertebrate eye lens. Although it
is not clear how a lens protein would contribute to prostate
tumorigenesis, in a rat model, the expression of Crybb2
increased in damaged optic nerves promoting regrowth of axons
(38). Thus, it is possible that over-expression of CRYBB2 in
African American men may promote or enhance tumor growth.
Additional functional studies are warranted to decipher the role
of CRYBB2 gene in PCa development and progression.
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