
Abstract. Curcumin, a yellow substance belonging to the
polyphenols superfamily, is the active component of
turmeric, a common Indian spice, which is derived from the
dried rhizome of the Curcuma longa plant. Numerous studies
have demonstrated that curcumin possesses anti-oxidant,
anti-inflammatory and anticancerous properties. The
purpose of this review is to focus on the anti-tumor effects of
curcumin. Curcumin inhibits the STAT3 and NF-ĸB signaling
pathways, which play key-roles in cancer development and
progression. Also, inhibition of Sp-1 and its housekeeping
gene expressions may serve as an important hypothesis to
prevent cancer formation, migration, and invasion. Recent
data have suggested that curcumin may act by suppressing
the Sp-1 activation and its downstream genes, including
ADEM10, calmodulin, EPHB2, HDAC4, and SEPP1 in a
concentration- dependent manner in colorectal cancer cell
lines; these results are consistent with other studies,
which have reported that curcumin could suppress the Sp-
1 activity in bladder cancer and could decrease DNA
binding activity of Sp-1 in non-small cell lung carcinoma
cells. Recent data advocate that ER stress and autophagy
may as well play a role in the apoptosis process, which is
induced by the curcumin analogue B19 in an epithelial
ovarian tumor cell line and that autophagy inhibition
could increase curcumin analogue-induced apoptosis by
inducing severe ER stress. The ability of curcumin to
induce apoptosis in tumor cells and its anti-angiogenic
potential will be discussed in this review.

Curcumin, a yellow substance belonging to the polyphenols

superfamily, is the active component of turmeric, a common
Indian spice, which is derived from the dried rhizome of the
Curcuma longa plant (1-2). Turmeric contains three principal
components, curcumin, demethoxycurcumin and bisdemetho-
xycurcumin, of which curcumin is the most abundant and
potent (3-6). Curcumin comprises approximately 2%-5% of
turmeric (7). 

Numerous studies have demonstrated that curcumin
possesses anti-oxidant, anti-inflammatory and anticancer
properties (8-18). Its ability to induce apoptosis in tumor cells
and anti-angiogenic potential will be discussed in this review.

Curcumin’s Mechanisms of Action:
The Role of STAT3 and NF-ĸB

The nuclear factor (NF)-ĸB, is a ubiquitous transcription
factor that regulates many genes implicated in growth
regulation, inflammation, carcinogenesis, and apoptosis (19-
20). In vitro and in vivo studies have documented that
constitutive activation of NF-ĸB results in inhibition of
chemotherapy-induced apoptosis in a number of cancer cells
(21-23). Signal transducer and activator of transcription 3
(STAT3) is a ubiquitously expressed member of the STAT
family of transcription factors that is activated by tyrosine
phosphorylation via upstream receptors, such as epidermal
growth factor (EGF), platelet-derived growth factor (PDGF)
and cytokines, such as interleukin-6 (IL-6) (24). Recent
studies have demonstrated that STAT3 may confer cancer
resistance to chemotherapeutic agents (25-28).

STAT3 is one of the major mediators of carcinogenesis
(29-30). The oncogenic significance of activated STAT3
molecules is due to their effects on various parameters, such
as apoptosis, cell proliferation, angiogenesis, and immune
system evasion (31, 32). Constitutively active STAT3 has
been involved in the induction of resistance to apoptosis,
probably through the expression of Bcl-xL and cyclin D1
(33-35). Its role in tumorigenesis is mediated through the
expression of genes that suppress apoptosis, mediate
proliferation, invasion, and angiogenesis. Constitutive
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activation of STAT3 has been implicated in a variety of
cancers, including breast cancer, prostate cancer, head and
neck squamous cell carcinoma, multiple myeloma,
lymphomas and leukemia, brain cancer, colon, gastric,
esophageal, ovarian, nasopharyngeal and pancreatic cancer
(36-47). Nevertheless, it is not completely understood why
STAT3 is constitutively active in cancer cells.

Curcumin inhibits the STAT3 and NF-ĸB signaling
pathways, which -as it has already been mentioned- play
key-roles in cancer development and progression (48).
Constitutive activation of the STAT3 and NF-ĸB signaling
pathways has been demonstrated in prostate cancer cell lines
and clinical samples of prostate cancer (49-52).

Curcumin and Other Transcription Factors

Curcumin has also been suggested to induce apoptosis and
cause down-regulation of EGFR, Akt, cMET cyclin D1, in
CL-5 xenograft tumors (53). In addition, it has been
documented to inhibit lung cell invasion and metastasis
through up-regulation of HLJ1 expression in cancer cells
(54). Apart from its action on STAT3 and NF-ĸB pathways,
curcumin has been shown to inhibit cell proliferation, cell
cycle arrest and stimulate apoptosis via modulation of other
transcription factors, such as AP-1, Erg-1, p53, β-catenin,
Notch-1, Hif-1, and PPAR-α (55). 

Curcumin and Sp-1 

Sp-1, a transcription factor highly expressed in breast, gastric
and thyroid tumor cells compared to normal cells, has been
demonstrated to interact with co-activators and co-repressors
and, thereby, activate multiple biological functions, including
cell cycle and carcinogenesis. It has also been implicated in
nuclear factors, protein-protein interaction, and sequence-
specific DNA binding (56). Sp-1 has been related to
housekeeping gene expression, such as vascular epithelial
growth factors (VEGF), urokinase plasminogen activator
(uPA), urokinase plasminogen activator receptor (uPAR) and
epithelial growth factor receptor (EGFR), which are known
to be involved in cell differentiation, tumor angiogenesis and
metastasis (57-59). Hence, inhibition of Sp-1 and its
housekeeping gene expressions may serve as an important
hypothesis to prevent cancer formation, migration, and
invasion (60-61). Recent data have suggested that curcumin
may act by suppressing the Sp-1 activation and its
downstream genes, including ADEM10, calmodulin (CALM),
EPHB2, HDAC4, and SEPP1 in a concentration-dependent
manner in colorectal cancer cell lines; these results are
consistent with other studies, which have reported that
curcumin could suppress the Sp-1 activity in bladder cancer
and could decrease DNA binding activity of Sp-1 in non-
small cell lung carcinoma (NSCLC) cells (62, 63). In

addition, curcumin has significantly reduced colony
formation in colorectal cancer cells. These results are in
agreement with other studies, which have documented that
down-regulation of Sp-1 prevents the colony formation in a
patient-derived fibrocarcinoma cell line (64).

Curcumin and Αdhesion Μolecules

Curcumin has been demonstrated to inhibit focal adhesion
kinase (FAK) phosphorylation and enhance the expression of
several extracellular matrix components, which play a
pivotal role in invasion and metastasis. Curcumin has been
shown to enhance cell adhesion ability, through induction of
extra-cellular matrix components collagen I, collagen III,
collagen IV, collagen IX, laminin, and fibronectin in a
concentration-dependent manner. Taken together, these
results have suggested that curcumin suppresses FAK
activity by means of inhibition of its phosphorylation sites
and also induces extra-cellular matrix components to
enhance cell adhesion ability, thus, preventing detachment of
cancer cells and cell migration. Inhibition of FAK expression
leads to increased cell adhesion, which may be the potential
mechanism of the anti-invasive effect of curcumin (65).

Curcumin has been shown to reduce CD24 expression in
a dose-dependent manner in colorectal cancer cells.
Moreover, E-cadherin expression has been documented to be
up-regulated by curcumin and serve as an inhibitor of
epithelial mesenchymal transition. These results suggest that
curcumin could exert its function against metastasis, through
down-regulation of Sp-1, FAK, and CD24 and by promoting
E-cadherin expression in colorectal cancer cells (65). Also,
Zhou et al. have evaluated eleven curcumin-related
compounds, containing a benzyl piperidone moiety in
various cancer cell lines and have found that some of them
have been associated with a decrease in phospho-Akt and
phospho-extracellular signal-regulated kinase (Erk)1/2 (65).

Curcumin, Endoplasmic Reticulum 
Stress and Autophagy

Endoplasmic reticulum (ER) is an essential cellular
compartment for protein synthesis and maturation. Various
pathological conditions may affect ER homeostasis and
interfere with protein folding, thus, resulting in an imbalance
between ER protein folding load and capacity, leading to the
accumulation of un-folded or mis-folded proteins in the ER
(66). This cellular condition is widely known as ER stress.
Autophagy is an evolutionarily conserved protein
degradation pathway in eukaryotes, which plays a key-role
in regulating protein homeostasis and which is essential for
cell survival under metabolic stress. Ubiquitinated proteins
are degraded by the proteasome through the ER-associated
degradation pathway and by autophagy through the ER-
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activated autophagy pathway (67).
In addition to its role in cellular homeostasis, autophagy

has been serving as a form of programmed cell death, as well
as a cell-protective role in cases of nutrient deprivation (68-
69). Recent studies have suggested that unfolded protein
response signaling may also affect interactions within the
cancer microenvironment. Unfolded protein response,
autophagy and ER stress-induced apoptosis have been
documented to regulate cancer cell future. Furthermore,
different anti-cancer treatments may activate this signaling
in tumor cells, a process that has been proposed to either
enhance cancer cell death or to act as a mechanism of
resistance to chemotherapy (70-72).

Recent data advocate that ER stress and autophagy may
play a role in the apoptosis process, which is induced by the
curcumin analogue B19 in an epithelial ovarian tumor cell
line and in hepatocellular carcinoma cells and that autophagy
inhibition could increase curcumin analogue-induced
apoptosis by inducing severe ER stress. In other words, this
curcumin analogue may induce ER-stress, autophagy and
apoptosis in ovarian cancer cell lines in vitro (73-74). Other
researchers have demonstrated that autophagy could act as
programmed cell death type II and could efficiently suppress
the growth of malignant glioma cells after curcumin
treatment (75).

Curcumin Bioavailability

Curcumin lacks toxicity and has lately gained much interest
as a potential anticancer agent. Its main disadvantage is its
low oral bioavailability due to its extensive first-pass
metabolism and its poor aqueous solubility (76-81). It is
widely known that the enhanced permeability and retention
effect of nanomaterials may improve the accumulation of
chemotherapeutic agents at tumor sites. For example,
liposomes, carbon nanotubes, dendrimers, and micelles have
been used as carriers for SN38, doxorubicin, paclitaxel, and
cisplatin to improve drug concentrations in tumors and
reduce adverse effects (81-86). Another advantage of using
nanomaterials as drug carriers is the enhanced solubility of
chemotherapeutic drugs. Self-assembling peptide nanofibers
have attracted much attention due to their good
biocompatibility, easy modification, and design flexibility
through a “bottom-up” approach (87-88). They have been
widely used in various cell cultures, as well as drug delivery
systems to enhance solubility of a hydrophobic drug,
improve accumulation at the tumor site, and reduce adverse
effects (89). Hydrophobic antitumor drugs encapsulated into
peptide nanofibers, such as paclitaxel, camptothecin and
ellipticine, have shown improved anticancer effects (90-92).
Some studies have demonstrated that the two-dimensional
structure of peptide nanofibers is superior to the three-
dimensional structure of nanoparticles for drug carriers.

Indeed, Law et al. demonstrated that peptide-based
nanofibers have better biocompatibility, better tumor
targeting within a shorter time and more rapid elimination
compared with spherical nanomaterials (poly[lactic-co-
glycolic acid], gold, polystyrene, cadmium and selenium
quantum dots), and carbon rods (93).

Nowadays, curcumin has been much explored and various
synthetic analogues have been prepared and evaluated for
potential pharmacological activities (94-101). Some
analogues have shown promising properties in various models
and various cancer cell lines. A recent study documented that
curcumin-related compounds with a benzyl piperidone have
enhanced absorption and biological activities (102-103).
Other studies have also demonstrated the potential anticancer
properties of curcumin analogues (104-107). The
incorporation of curcumin into nano-formulations for
enhanced water-solubility has indeed revolutionized the
bioavailability of curcumin. Nano-formulations have
accomplished improved delivery and better concentrations of
curcumin in the cell in vitro, while their prolonged release
formulas along with their higher degree of compatibility seem
to be very promising for their effects in vivo (108-110).

Conclusion
Curcumin and its analogues have been demonstrated to
possess various anticancer properties in a series of cancer
cell lines, such as pancreatic, lung, ovarian, oral, colorectal,
breast carcinoma and even in melanoma cells. In the future,
further research will ascertain or not the potential of
curcumin analogues as effective chemotherapy agents.
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