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RADO001 Enhances the Radiosensitivity of SCC4 Oral Cancer
Cells by Inducing Cell Cycle Arrest at the G,/M Checkpoint
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Abstract. Background: Inhibition of mammalian target of
rapamycin (mTOR) kinase enhances the radiosensitivity of
some cancer cells. We investigated the effect of RADO0I, an
mTOR inhibitor, on irradiated oral cancer cell lines.
Materials and Methods: Clonogenic assays were performed
to determine the radiosensitivity of SCC4 and SCC25 cells
after treatment with RADOOI . Target protein phosphorylation,
apoptosis, and cell-cycle progression were assessed in SCC4
cells treated with RADOOI with and without ionizing
radiation. Results: RADOOI increased the radiosensitivity of
SCC4 cells without affecting cell death; it also inhibited
phosphorylation of mTOR, S6, and factor 4E binding protein
1 and reduced the clonogenic survival of irradiated cancer
cells. RADO0I combined with radiation increased G, arrest
by activating CHKI, which phosphorylates CDC25C at
Ser216, thereby inhibiting CDC2-cyclin B 1 complex
Sformation. Conclusion: RADOOI enhances the radiosensitivity
of SCC4 cells by inhibiting mTOR signaling and inducing G,
cell-cycle arrest through disruption of the G, checkpoint.

Oral squamous cell carcinoma (OSCC) is one of the most
common malignant neoplasms in Taiwan and is currently
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the fourth most common cause of cancer-related mortality
in men (1).

Radiation therapy (RT) is an important treatment modality
for oral cancer as early-stage and patients with locally
advanced disease can often be treated with local radiation
alone. However, loss of local control of the disease and the
significant toxicity associated with radiation therapy remain
problematic. Therefore, increasing the radiosensitivity of oral
cancer in order to maintain local control of the disease,
reduce the radiation dose and radiation toxicity, and thereby
improve efficacy is crucial.

mTOR, a downstream serine/threonine protein kinase in
the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, and
its downstream effectors, S6 and factor 4E binding protein 1
(4EBP1), play important roles in multiple cellular functions,
including cell proliferation and growth (2, 3). The mTOR
signaling pathway is abnormally activated in many types of
human cancers and is associated with the transformation
process and oncogenesis (2, 3). Consequently, the anti-
neoplastic effects of mTOR inhibitors combined with
chemotherapeutic agents, or other targeted-therapeutic agents
for treating various types of cancer have been evaluated in
clinical studies (4, 5). In addition, mTOR inhibitors increase
the radiosensitivity of cancer cells in vitro and in vivo (6-8)
through different mechanisms, including increased
autophagy (9) and apoptosis (6) as well as through anti-
angiogenic effects.

RADOO1 (everolimus), a derivative of rapamycin, acts as an
allosteric inhibitor of mTOR. Its antitumor effects in vitro and
in vivo have been reported in some carcinoma models (11-13).
Currently, RADOOL1 is being tested as an antitumor drug in
phase II/IIT clinical trials (14, 15). However, the molecular
mechanism underlying increased OSCC radiosensitivity due
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to RADOO1 has not been elucidated. Therefore, we evaluated
the antitumor effects of RADOO1 alone and in combination
with radiation in OSCC-derived cell lines. In addition, we
investigated the mechanism by which combined treatment
with RADOO1 and radiation inhibits tumor growth.

Materials and Methods

Agent. RADOO1 (everolimus) was supplied by Novartis
Pharmaceuticals Corporation (East Hanover, NJ, USA), dissolved in
DMSO at a concentration of 10 mM, and stored at —20°C until
further use. The stock solution was diluted to the appropriate
concentration in culture medium containing serum just before
addition to cell cultures.

Cell lines and cell culture. The human head and neck squamous cell
carcinoma cell lines, SCC4 and SCC25, derived from squamous cell
carcinoma of the tongue, were purchased from the American Type
Culture Collection (Manassas, VA, USA). The cells were cultured
in DMEM/F12 containing 10% fetal bovine serum (FBS), 1%
penicillin-streptomycin (10,000 U/ml penicillin and 10 mg/ml
streptomycin), and 2 mM glutamine in 10-cm dishes at 37°C under
a humidified atmosphere of 5% CO, and 95% air.

lonizing radiation. The cells were irradiated with a 6 MV X-ray
medical linear accelerator (LINAC; Elekta, Crawley, Surrey, UK) at
different doses (0, 2, 4, 6, and 8 Gy) with 159 MU. RAD0OO1 was
added to the cells 1 h before irradiation.

3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT)
assay. Cells (5x103) were seeded in 96-well plates overnight and then
treated with either DMSO (vehicle) or RADO001 (30-300 nM) for 24
and 48 h. MTT solution (0.5 mg/ml in PBS) was then added (10
ul/well), and the cells were incubated for 4 h at 37°C. The formazan
crystals formed were dissolved by the addition of 0.04 N HCI in 2-
propanol (110 pl/well). Absorbance was measured with a microculture
plate reader (Anthos; Anthos Labtec, Wals, Austria) at 540 nm.

Cell survival clonogenic assay. The cells were seeded in 10-cm
dishes at a density of 700 cells/dish. After the cells were cultured
overnight, they were pretreated with vehicle (DMSO) or RADOO1
(30 or 300nM) for 1 h at 37°C. The cells were then irradiated (0, 2,
4, 6, or 8 Gy) for 6 h after which the culture medium was replaced
with fresh medium, and the cells were returned to a 37°C incubator
for further growth. After 14 days, the colonies (defined as groups
>50 cells) were stained with 0.05% crystal violet and counted. The
relative surviving fraction was determined by dividing the plating
efficiency of the irradiated cells by the plating efficiency of the
control cells (without irradiation) in three independent experiments.

Western blot analysis. The cells were treated with 300 nM RADOO1
with/without 6 Gy radiation in individual experiments, after which they
were washed twice with ice-cold PBS. Total cell extracts were
prepared using the PRO-PREP protein extraction solution (iNtRON
Biotechnology, Sungnam, Republic of Korea) containing a cocktail of
phosphatase inhibitors (Sigma-Aldrich, St. Louis, MO, USA). Cell
suspensions were then centrifuged to collect clear lysates, and the
protein concentration was measured using the Bio-Rad protein assay
kit (Bio-Rad, Richmond, CA, USA). Proteins (50 pg) were separated
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using 10% and 12.5% polyacrylamide gels containing 0.1% SDS and
transferred to membranes (Millipore, Billerica, MA, USA). After
blocking the membranes with 5% (w/v) non-fat dry milk in TBS
containing 0.1% Tween™ 20 (TBS-T) for 1 h at room temperature,
they were immunoblotted with the following monoclonal primary
antibodies (all rabbit): p-mTOR (Ser2448), p-AKT (S473), p-S6
(Ser235/236), p-4EBP1 (Ser65), eukaryotic translation initiation factor
4E (elF4E), microtubule-associated protein 1A/1B-light chain 3 (LC3),
beclin 1, caspase 3, CDC25C, and p-CDC25C (Ser216) , Rictor,
H2AX, BAK, BAX (all from Cell Signaling Technology, Beverly, MA,
USA). A mouse polyclonal antibody to actin was purchased from
Santa Cruz Biotechnology. (Santa Cruz, CA, USA). Mouse
monoclonal antibodies to poly(ADP-ribose) polymerase (PARP), p-
CHK2 (Thr68), p-CHK1 (Ser345), and cyclin B were purchased from
Epitomics (Burlingame, CA, USA). Appropriate horseradish
peroxidase-conjugated secondary antibodies, including anti-mouse 1gG
and anti-rabbit IgG antibodies (Abcam, Cambridge, MA, USA), were
incubated for 1 h at room temperature. Specific signals were visualized
using a chemiluminescence (ECL) detection kit (Millipore).

Cel-cycle analysis. After treatment with 300 nM RADOO1 with/without
6 Gy radiation as described, the cells were trypsinized, washed with
PBS, and subjected to cell-cycle analysis using NucleoCounter NC-
3000 (Chemometec, Allergd, Denmark), a two-step method that
involves cell lysis and staining of the nuclei with DAPI.

Apoptosis assay. The apoptotic effects of RADOO1 and radiation on
SCC4 cells were assessed with the Annexin V-FITC Apoptosis
Detection Kit (Strong Biotech, Taipei, Taiwan). Cells (1x103) in 6-
cm dishes were treated with RADOO1 with/without radiation for 48
and 72 h. After they were harvested, washed with PBS, and
collected in a trypsin/EDTA solution, the suspended cells were
centrifuged at 270 x g for 5 min. Each sample was then re-
suspended in binding buffer containing annexin V-FITC and
propidium iodide, incubated for 15 min at room temperature, and
analyzed with a flow cytometer (FACSCalibur; Becton Dickinson,
San Jose, CA, USA).

Statistical analysis. All experiments were repeated at least three
times. All data are presented as the mean+SD. Significance levels
were calculated using Student’s #-test, and p-values of less than 0.05
were con-sidered statistically significant.

Results

RADOOI induces cytotoxicity in human oral cancer cell lines.
We evaluated the antiproliferative effect of the mTOR
inhibitor, RADOO1 (10-300 nM), on SCC4 and SCC25 oral
cancer cells using MTT assays. The addition of 300 nM
RADOO1 significantly reduced the cell viability of SCC4 and
SCC25 cells by 21.03% and 17.94%, respectively, after 24 h
(p<0.01, Figure 1A) and by 25%-30% after 48 h (p<0.01,
Figure 1B). These data suggest that SCC4 and SCC25 cells
are insensitive to the effect of RADOO1-alone.

Combining RADOOI with radiation significantly reduces colony
Sformation in SCC4 cells. Next, we assessed the radiosensitizing
effects of RADOO1 on the SCC4 and SCC25 cell lines. SCC4
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Figure 1. Effect of RAD0O01 on SCC4 and SCC25 cell proliferation. SCC4 and SCC25 cell proliferation after treatment with RAD001 (0-300 nM)
for 24 h (A) and 48 h (B) using the MTT assay. Data are the mean+SD of three independent experiments performed in triplicate. *p<0.01 compared

to the vehicle control.
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Figure 2. Effect of RAD00I and radiation on SCC4 and SCC25 colony formation. Cells were exposed to radiation (0-8 Gy) with and without RAD0OOI
(30 or 300 nM for 1 h) and cultured for 14 days (A). The colonies were imaged at 14 days (B). Data are the mean+SD of three independent
experiments performed in triplicate. *p<0.01 compared to the vehicle control.
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and SCC2S5 cells were treated with 30 or 300 nM RADOO1 or
DMSO (control) for 1 h and then irradiated with O to 8 Gy for
6 h. Analysis of colony formation after 14 days revealed that
both 30 and 300nM RADOO1 significantly increased the
radiosensitivity of SCC4 cells treated with 6 Gy radiation
(»<0.05; Figure 2). In addition, treatment with 300 nM
RADOO1 and 6 Gy radiation significantly suppressed SCC4
cell growth compared to treatment with 6 Gy-alone (p=0.004)
or with 30 nM RADOO1-plus-6 Gy radiation (p=0.008; Figure
2). However, no additional effects of RAD00O1 on SCC25 cell
radiosensitivity were noted (Figure 2). Thus, RADO001
enhances the sensitivity of SCC4 cells to radiation.

RADOOI inhibits mTOR activity and phosphorylation of its
downstream effectors, S6 and 4EBPI, but induces AKT
phosphorylation. To understand the mechanisms underlying
the increased radiosensitivity induced by RADOO1, we
investigated the phosphorylation status of the downstream
targets of mTOR. SCC4 cells were treated with 300 nM
RADOO1 with/without 6 Gy radiation, and levels of p-
mTOR, p-AKT, p-S6, p-4EBP1, and eIF4E were measured
with western blot analysis. Treatment of cells with both
RADOO1 and radiation inhibited phosphorylation of mTOR
as well as S6 and 4EBP1, indicating that mTOR activity was
attenuated (Figure 3). No changes in eIF4E levels were
noted; however, AKT phosphorylation at Ser473 was up-
regulated in RADOOI1-treated SCC4 cells (Figure 3).
Inhibition of mTOR induces AKT Ser473 phosphorylation in
a subset of cancer cell lines and patient tumors (16, 17),
which may attenuate tumor responses to radiation (18, 19).

RADOO1-mediated radiosensitization of SCC4 cells does not
involve cell death. Previous studies indicated that RADOO1
increased radiosensitivity by activating autophagy and
enhancing radiation-induced apoptosis (9, 6). To investigate
the effects of RADOO1 on radiation-induced apoptosis, we
first analyzed the expression of the apoptosis-related
proteins, including BAX, BAK, caspase 3, and PARP in
SCC4 cells after administration of RADO00O1 (300 nM) and/or
radiation (6 Gy). As shown in Figure 4A, the levels of these
proteins in irradiated SCC4 cells did not increase in the
presence of RADOOL. Flow cytometric analysis to examine
the apoptotic sub-G; cell fraction confirmed that the
proportion of sub-Gy cells among the irradiated cells did not
increase with exposure to RADOO1 (Figure 4B). We then
assessed the expression of the autophagy-related proteins,
LC3 and beclin-1. Although LC3 expression increased with
RADOO1 treatment, it was not further increased in irradiated
cells (Figure 5). Beclin-1 protein levels did not differ
between the treatment groups (Figure 5). Taken together,
these data indicate that neither autophagy nor apoptosis
contribute to the molecular mechanism underlying the
increase in radiosensitivity of SCC4 cells by RADOOL.
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Figure 3. Effects of RADOOI and radiation on mTOR signaling. SCC4
cells were treated with 300 nM RADOO1 with and without 6 Gy radiation.
mTOR signaling proteins were assessed by western blot analysis.

Treatment with both RADOOI and radiation increases the
percentage of cells in the G,/M phase of the cell cycle. Cell-
cycle changes induced by mTOR inhibition have been
previously reported (10). To determine whether changes in
cell-cycle  distribution  contributed to  increased
radiosensitivity of SCC4 cells, cell-cycle analysis was
performed 48 h after treatment with RADOO1 with/without
radiation. As shown in Figure 6, no notable change in cell-
cycle distribution was observed in RADOO1-treated cells
compared to control cells; radiation-alone led to G,/M arrest.
However, in cells treated with RADOO1 and 6 Gy radiation,
the proportion of cells in the G,/M phase was 15.01%,
compared to 12.56% observed in cells treated with radiation
alone (Figure 6), suggesting that RADOO1 may enhance the
cytostatic effect of radiation by promoting G,/M phase
accumulation and inhibiting cell-cycle progression.

RADOOI and radiation alter the levels of G, checkpoint
regulators. Given the G,/M arrest observed in SCC4 cells
treated with both RADOO1 and radiation, we next assessed
the expression and phosphorylation of cell-cycle regulators,
particularly those associated with the G,/M checkpoint,
including the checkpoint kinases, CHK1 and CHK2, which
induce cell cycle arrest following DNA damage. Activation
of the CHK1 and CHK2, subsequently phosphorylates
CDC25C, inactivating the CDC2-cyclin B1 complex and
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Figure 4. Effect of RADOOI and radiation on apoptosis-mediated cell death. SCC4 cells were treated with DMSO (control), 300 nM RADOOI, 6 Gy
radiation, or both. A: Protein levels of apoptosis-inducing factors (cleaved PARP and cleaved caspase 3), pro-apoptotic proteins (BAX, BAK), and the
anti-apoptotic protein, BCL2, were detected by western blot analysis. B: Annexin V flow cytometric analysis of the effect of RADO0I on radiation-
induced apoptosis in SCC4 cells. The cells were cultured with and without 300 nM RADOOI and then exposed to 6 Gy radiation or no radiation for 48
h (left panel) and 72 h (right panel). Data represent the proportion of annexin V-positive cells (mean=SEM of three independent experiments). *p<0.05.

thereby inducing G,/M arrest (20). As shown in Figure 7,
although no changes were observed with radiation or
RADOO1 alone, 300 nM RADOO1 and 6 Gy irradiation
substantially increased the phosphorylation of CHKI1
(Ser345) at 48 h; no changes in phosphorylation of CHK?2
(Thr68) in SCC4 cells were noted. Analysis of CDC25C,
CDC2 and cyclin B1, which are involved in G,/M arrest,
revealed no changes in the overall expression of CDC25C in
response to both 300 nM RADOO1 and 6 Gy radiation alone
or in combination (Figure 7). However, phospho-CDC25C
(Ser216) and phospho-CDC2 (Thr14) levels were increased
and cyclin B1 levels were deceased 48 h after the combined
treatment. Radiation alone also increased the levels of

phospho-CDC25C (Ser216) and phospho-CDC2 (Thr14), but
did not alter cyclin Bl levels. Cyclin B1 is the principal
mitotic kinase; therefore, its inhibition would effectively
block entry into mitosis.

We also checked the phosphorylation levels of histone
H2AX (S139), v-H2AX, a well-known marker of DNA
damage (21). Treatment with radiation alone and in
combination with RADOO1 increased the level of y-H2AX in
SCC4 cells when compared to control treatment and
treatment with RADOO1-alone (Figure 7). These data suggest
that RADOO1 increases cellular sensitivity to radiation by
activating CHK1, which inhibits CDC2—cyclin B1 kinase
activation, leading to G2/M arrest.
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Discussion

Aberrant activation of mTOR promotes the growth of
malignant tumors, including head and neck squamous cell
carcinoma (22). The mTOR inhibitor, RADOO1, improves the
treatment outcomes in several types of cancer (4, 23).
Therefore, we wanted to determine the efficacy of RADOO1
in the OSCC cell lines, SCC4 and SCC25. In both cell lines,
a high dose of RADOO1 (300 nM) reduced cell viability by
only 25%-30%, suggesting that they were insensitive to
RADOO1. We hypothesized that RADOO1 and radiation
would act synergistically and observed that 300 nM RADO001
with 6 Gy radiation significantly suppressed SCC4 cell
colony formation. Although we did not attempt to maximize
SCC4 growth inhibition by adjusting the duration of
RADOO1 treatment, RADOO1 significantly enhanced the
anticancer effects of radiation. However, similar effects were
not observed in SCC25 cells. Thus, RADOO1 may represent
an effective radiosensitizing agent.

Several studies have reported a transient increase in
signaling along the AKT/mTOR survival pathway after
radiation, thus paradoxically associating radiotherapy with
the activation of radioresistance (6, 24). Although radiation-
alone did not significantly alter the phosphorylation of
mTOR and the ribosomal S6 protein, RADOO1, alone or
combined with radiation, almost completely abolished
mTOR and S6 phosphorylation, with the greatest reduction
seen with the combined treatment. However, treatment with
RADOO1 increased AKT phosphorylation following mTOR
inhibition, which is consistent with previous reports that
mTOR inhibition inactivates S6, resulting in a feedback loop
that activates AKT (25). Inhibition of mMTORC1 can induce
AKT Ser473 phosphorylation in a subset of cancer cell lines
and patient tumors (16, 17), and may attenuate tumor
responses (18, 19). Although activation of AKT might limit
RADOO1-mediated antitumor effects, it appears that the
greatest benefit of combined treatment with RADOO1 and
radiation may derive from inhibition of the pro-survival
response in SCC4 cells.

In general, radiation induces apoptotic cell death through
activation of caspases in the presence of BAX and BAK (26,
27). Another study showed that that increased radiosensitivity
by mTOR inhibition is mediated by induction of the apoptotic
cell death pathway (6). However, in SCC4 cells treated for 48
or 72 h, the proportion of apoptotic cells that were irradiated
was similar with and without RADOOL.

Autophagy is an alternative mechanism of cell death.
Whereas in some cases, it is an adaptive response that
promotes survival, in others, it appears to promote cell death
and morbidity (28). In addition, autophagy-related stress
tolerance can maintain energy production, thereby promoting
cell survival, which can lead to tumor growth and resistance
to therapy (29). Prior studies have reported that the
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Figure 5. Effect of RADOOI and radiation on autophagy. SCC4 cells were
treated with DMSO (control), RAD001 (300 nM), radiation (6 Gy), or their
combination for 48 h. The expression of the autophagy-related proteins,
LC31 /LC3II and beclin-1, was assessed by western blot analysis.

PI3K/AKT/mTOR pathway, and mTOR in particular,
regulates autophagy, as well as cell survival and proliferation
pathways (30). Current investigations suggest that mTOR
inhibitors, when used in combination with radiation, appear
to potentiate the ability of radiation to induce autophagy (9).
We found that inhibition of mTOR by RADOOI increased the
expression of the autophagy-associated protein, LC3;
however, no additional enhancement was observed with the
addition of radiation. Thus, the cytotoxic effect of RADO0O1
enhanced the effect of radiation on SCC4 cells independent
of apoptotic and autophagic cell death pathways.

RADOO1 combined with radiation induced significant
G,/M arrest in MDA-MB-231 breast cancer cells (6), similar
to that observed in the present study after 48 h of treatment.
Specifically, the combined treatment increased the proportion
of cells in the G,/M phase as compared to radiation alone,
which is consistent with another previous study (31).
Therefore, cell-cycle arrest may contribute to increased
radiosensitivity observed in this study.

The G,/M checkpoint is located at the end of G,/M phase,
controlling cell-cycle progression from G, to M phase.
Because radiation-induced G,/M phase blocking is a
universal event in tumor cells, the G,/M checkpoint is a target
for improving the efficacy of radiation therapy (32). CHK1
and CHK2 are both major effectors of the G, checkpoint
kinase that are required for the initiation of G,/M arrest in
response to ionizing radiation and thus, are implicated in the
DNA damage response pathway (33). Phosphorylation
activates CHK1 and CHK?2, which phosphorylate CDC25C
phosphatase on Ser216, thereby blocking the activation of
CDC2/cyclin B1 complex and transition into the M phase
(34). In the absence of CDC2 kinase/cyclin B1 activity, cells
arrest in the G,/M phase. Our results suggest that CHK1
rather than CHK?2 is the primary checkpoint kinase that
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responds to the combined treatment with RADOO1 and
radiation. In addition, treatment with a combination of
RADOO1 and radiation increased phosphorylation of
CDC25C at Ser216 and CDC2 at Thr14, indicating regulation
of the G, checkpoint. A previous study showed that RAD001
modified cell-cycle checkpoints, enhanced chemosensitivity,
and regulated cell-cycle progression at the G,/M transition
(35). Activation of the CDK1-cyclin B1, which triggers a
positive feedback loop at the end of the G,/M phase, is the
key event that initiates mitotic entry; expression of cyclin B1
is cyclic and peaks at the G, transition (36). Because cyclin
B1 has a direct effect on mitosis, its overexpression may lead
to uncontrolled cell proliferation. Previous studies have
shown that a variety of cancers, such as breast, colorectal,
prostate, oral cavity, and head and neck squamous cell cancer,
express high levels of cyclin B1 (37-40). In the present study,
RADOO1 and radiation combination therapy blocked cyclin-
B1 expression more effectively than radiation-alone. Thus,
RADOO1 and radiation inhibited SCC4 growth by inducing
G,/M arrest via the inactivation of CDC25C and the
CDC2—cyclin B1 complex.

v-H2AX formation has normally been associated with the
induction of double-strand breaks after exposure to ionizing
radiation or other DNA-damaging agents (21). Cells treated
with y-H2AX antagonists exhibit increased radiosensitivity
when compared to untreated irradiated cells (41). Thus,
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Figure 7. Expression of cell cycle regulatory proteins following RAD0OO1
and radiation treatment. SCC4 cells were treated with 300 nM RAD001
with and without 6 Gy radiation. After 48 h, the expression of the Go/M
checkpoint molecules, p-CHKI, p-CHK2, CDC25C, p-CDC25C, p-
CDC2, cyclin Bl, and p-H2AX (y-H2AX), was assessed by western blot
analysis. 3-Actin was used as an internal control for normalization. The
numbers beneath the blots indicate the relative expression of each band
when compared to the respective untreated control.
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H2AX may be a predictor of radiosensitivity and a target for
radiotherapy. In the present study, phosphorylation of H2AX
was induced by radiation alone but was not markedly
affected by co-treatment with RADOO1.

Conclusion

In summary, this study describes a role for RADO0O1 in OSCC
radiosensitization that differs from those previously reported;
it attenuates mTOR-S6 and 4EBP1 activity and induces G,/M
phase arrest through the CHK1/CDC25C/CDC2—cyclinB1
pathway, which inhibits SCC4 cell growth.
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