Genetics of Lymphocytes Influences the Emergence of Second Cancer in Chronic Lymphocytic Leukemia

MARTA BERNUÉS1*, MARIA ANTÒNIA DURÁN2, GUIOMAR PUGET2, JULIO IGLESIAS3, PILAR GALÁN4, FRANCISCO JAVIER VERCHER5, JOAN BESALDUCH2 and JORDI ROSELL1*

Departments of 1Genetics, 2Hematology and 3Immunology, Son Espases University Hospital, Palma de Mallorca, Balearic Islands, Spain; 4Hematology Department, Mateu Orfila Hospital, Maó, Balearic Islands, Spain; 5Hematology Department, Can Misses Hospital, Ibiza, Balearic Islands, Spain

Abstract. Background: Patients affected by chronic lymphocytic leukemia (CLL) have an increased risk of developing a second cancer. There is not a definitive explanation for this phenomenon, although some hypotheses have been postulated. The aim of the present work was to assess the presence of second cancer in untreated patients with CLL who were cytogenetically characterized, and secondly to investigate if there is a correlation between the genetics of CLL and the emergence of second cancer. Patients and Methods: We performed conventional cytogenetics and Fluorescent in situ hybridization analyses in a series of 106 patients. Results: We observed that nearly 8% of cases developed second cancer, mostly epithelial tumors. The majority of them presented two common features, del(13)(q14.3) and the presence of at least two genetic alterations. Conclusion: We suggest that the genetic background of CLL, particularly the presence of several genetic alterations, influences the emergence of second cancer in patients affected by CLL.

Chronic lymphocytic leukemia (CLL) is a common hematological malignancy that accounts for 25-30% of all leukemias in Western countries and patients have an increased risk of developing a second cancer (1-3). In these cases, dense peri-tumoral lymphocytic infiltrates composed of leukemia B-cells have been observed at the tumor sites (4-10).

The biological basis of this phenomenon is not well-known, although some possible causes have been postulated to explain the relationship between the two diseases. Smoller and Warnke suggested that the infiltrates might result from a preferential recruitment of neoplastic cells at sites of immune reactions because of the predominant neoplastic composition of the lymphocytic pool in patients with CLL or because of a paracrine action on leukemia cells at the site of carcinoma-associated neo-vascularization (4). Dargent et al. proposed that the leukemic infiltrate was a consequence of the immune disorders occasionally seen in CLL patients (5). Cheung et al. suggested an underlying etiology that predisposed towards both tumor types (11). Catteau et al., in a report of CLL concomitant with breast cancer, also suggested a relationship between the two diseases (9).

We present here cytogenetic and Fluorescent in situ hybridization (FISH) results in a series of 106 untreated CLL to assess genetic risk markers of developing second cancer in these patients.

Patients and Methods

Patients. One hundred and six patients with CLL were enrolled between 2006 and 2012. Flow cytometric immunophenotyping on blood samples confirmed the clinical suspicion of CLL. None of the patients received previous chemotherapy or radiotherapy treatment. The median follow-up of patients was 9.5 (range=0-19) years. Eight patients developed second cancer.

Conventional cytogenetics. Cytogenetic analysis was performed following a standard methodology. For each patient, 0.5 ml of peripheral blood was cultured in RPMI-1640 medium with 10% fetal calf serum and phorbol myristate acetate (40 ng/ml) at 37°C for 72 h. Colcemide was added at 0.3 μg/ml for 25 min to arrest cells in metaphase and chromosomesal preparations were carried out according to standard procedures. G-Banding staining was performed to identify chromosome alterations, and karyotypes were described according to the International System for Human Cytogenetic Nomenclature (12).
FISH. FISH was carried out following a standard protocol on fixed nuclei obtained after cytogenetic procedure with blood sample cultures. The following commercial probes (Abbott Molecular Inc., Max-Planck-Ring 2, Wiesbaden, Germany) were used according to the protocol provided by the manufacturer: Locus Specific Identifier Ataxia Telangiectasia Mutated (LSI ATM) (11q23), Locus Specific Identifier D13S319 (LSI D13S319) (13q14), Chromosome Enumeration Probe 12 (CEP12) (17p13.1) and Locus Specific Identifier P53 (LSI P53) (17p13.1). We applied the following cut-off values on 200 interphase nuclei: 6% (ATM), 5.5% (D13S319 monosomy), 1.5% (D13S319 nullisomy), 2.5% (CEP12) and 7% (P53).

Results

Detailed karyotypes and FISH results from all patients are available from the Authors. A summary of our findings is shown in Table I.

We observed an altered genetic pattern (at least one cytogenetic or FISH abnormality) in 90 out of 106 (84.9%) patients. Sixteen patients presented a normal karyotype and also a normal FISH pattern. Among the 90 abnormal cases, 34 (37.8%) exhibited only one genetic alteration and 56 (62.2%) had more than two alterations.

Among the 34 patients with a sole abnormality, the most frequent alterations were: del(13)(q14.3) (16/34, 47%), +12 (9/34, 26.5%), -X in female patients (5/34, 14.7%) and del(11)(q22.3) (2/34, 5.9%).

Among the 56 patients with two or more alterations, we found that 29 (51.8%) presented bi-allelic del(13)(q14.3) alone or concomitant with other alterations, 15 (26.8%) had mono-allelic del(13)(q14.3) concomitant with other alterations, and 12 (21.4%) had other altered genetic patterns.

Among patients with a second cancer (Table II), seven out of eight had two or more alterations and only one patient (case 6) presented a normal genetic pattern. Six out of the seven genetically altered cases shared del(13q). This genetic alteration was found together with loss of chromosome X in women (cases 73 and 83) and loss of Y chromosome in a man (case 116), +12 (cases 70 and 73), del(6q) (case 67) and del(17p) (case 111).
Discussion

We selected a series of 106 patients with CLL that did not receive any treatment during disease and we assessed the presence of second cancer in those cases. Eight patients (7.5%) developed second tumors.

The most frequent alteration in this series was del(13)(q14.3), as a sole genetic event or concomitant with other alterations (64/106 cases, 60.4%). Mono-allelic and bi-allelic deletions were observed in 34 and 30 cases, respectively. Interestingly, del(13)(q14.3) was the common genetic trait in seven out of the eight cases that developed second tumors. Only one out of the 42 cases that did not have del(13)(q14.3) presented a second cancer (Figure 1A). This patient (case 6), with a quiescent CLL (19 years of disease), had a normal karyotype and also a normal FISH pattern.

There are only three reported cases of CLL where both the presence of second tumors and the genetic data of CLL were considered: a basal cell carcinoma (BCC) of the skin (13), a breast cancer (9) and a lung cancer (14). The latter presented del(13)(q34) and monosomy 12, while the other two cases presented solely del(13q). Our results and those from the literature suggest that del(13q) could be involved in CLL with second cancer.

Out of the patients presented here, however, seven out of the eight with second cancer presented del(13)(q14.3) together with other alterations (Figure 1B, Table II). None of the 16 patients with sole del(13)(q14.3), some of them with more than three years of follow-up, developed a second cancer. As a consequence, it is reasonable to believe that del(13)(q14.3) could be a risky genetic alteration but not enough to trigger a second tumor. The acquisition of further genetic alterations must be necessary as a second step in tumorigenesis. Although the number of patients is scarce, our results support the concept that as the number of genetic alterations increases, including del(13)(q14.3), the risk of developing second cancer in patients with CLL also increases.

All cases of second cancer but one (case 107) were epithelial tumors, especially squamous cell carcinomas (SCC) and BCC of the skin. Our findings are in agreement with previous reports where skin tumors are described as the most frequent second tumors in patients with CLL (1, 2). Among the eight patients with second cancer, only two (cases 70 and 111) presented a concomitant second cancer at the time of diagnosis of CLL. In these cases, CLL might have been masked before the emergence of epithelial tumors. The other six patients were followed-up for a range of 2-19 years. This supports the notion that the risk of emergence of second tumors in patients with CLL might be related not only to the genetic background of lymphocytes in CLL but also to the duration of CLL.

It is also interesting to note that none of the patients we present here received any chemotherapy, consequently second tumors cannot be related to treatment. Literature concerning the association of CLL and carcinomas has varying interpretations. Immunological disorders and an underlying predisposing etiology are mostly postulated to explain this phenomenon (4-5, 9).

It is well-known that solid tumors emerge as a consequence of several genetic abnormalities that are progressively accumulated in cells. Therefore, a pre-neoplastic lesion is required before a tumor emerges. Interestingly, CLL lymphocyte infiltrates are not exclusively found at tumor sites but also in other diseases (actinic keratoses, benign prostate hypertrophy) (4, 16). This implies that in patients with CLL, a pre-neoplastic lesion (induced by chemicals, infections, ultraviolet radiation etc.), in an immunologically-impaired environment, could be the first
step towards solid tumorigenesis. In agreement with Smoller and Warnke (4), the second step would be a paracrine action of leukemic cell infiltrates at the altered site. This would result in a somewhat altered cell environment at the infiltrate site, depending on the molecular trafficking, and this could be important for initiating an epithelial tumor. Based on our analyses, we suggest that del(13)(q14.3) in addition to other genetic alterations of lymphocytes in CLL is a risk factor for developing second cancer. In cases with only one alteration, or none, molecular trafficking was less altered and this would explain why these patients rarely developed second cancers.

All chromosomes altered in CLL carry several genes that are involved in epithelial tumors: absent in melanoma-1 (AIM1) (6q21), tumor suppressor TSG1 (TSG1) (6q16), squamous cell carcinoma antigen recognized by T-cells-3 (SART3) (12q24.1), fibroblast growth factors (12p13, 13q11-q12, 13q34, 17p13), epidermal growth factor receptor pathway substrate 8 (EPS8) (12p12), several keratins (12q13), P53 (13q12, 13q34, 17p13), epidermal growth factor receptor pathway (SART3) (12q24.1), fibroblast growth factors (12p13, 13q11-q12, 13q34, 17p13), regulator of cell cycle (RGCC) (13q14), epithelial stromal interaction 1 (EPST1) (13q13) and retinoblastoma 1 (RB1) (13q14), among others. In addition, deletions of chromosomes 6q, 13q and 17p; losses of X (in females) and Y (in males) chromosomes; and re-arrangements of chromosome 12 have been observed not only in CLL but also in skin, prostate and lung carcinomas (15).

In conclusion, the presence of second cancer in untreated patients with CLL cannot be attributed to chance. There is a genetic association between both diseases. The genetic background of CLL, particularly the presence of del(13)(q14.3) together with other genetic alterations in lymphocytes, increases the risk of developing second cancer in these patients.

Acknowledgements

We thank the technical staff from Genetics, Immunology and Hematology Departments for technical assistance. We thank Lynne Dorrien for the English revision of the manuscript.

References


Received January 10, 2014
Revised February 24, 2014
Accepted February 25, 2014