
Abstract. Aim: We aimed to investigate the clinical
significance of the activation of Yes-Associated Protein 1
(YAP1), a key downstream effector of Hippo tumor-
suppressor pathway, in ovarian cancer. Materials and
Methods: A gene expression signature reflecting activation
of YAP1 was developed from gene expression data of 267
samples from patients with ovarian cancer. A refined ovarian
cancer YAP1 signature was validated in an independent
ovarian cancer cohort (n=185). Associations between the
YAP1 signature and prognosis were assessed using
Kaplan−Meier plots, the log-rank test, and a Cox
proportional hazards model. Results: We identified a 612-
gene expression signature reflecting YAP1 activation in
ovarian cancer. In multivariate analysis, the signature was
an independent predictor of overall survival (hazard
ratio=1.66; 95% confidence interval=1.1 to 2.53; p=0.01).
In subset analysis, the signature identified patients likely to
benefit from taxane-based adjuvant chemotherapy.

Conclusion: Activation of YAP1 is significantly associated
with prognosis and the YAP1 signature can predict response
to taxane-based adjuvant chemotherapy in patients with
ovarian cancer.

Ovarian cancer is the most lethal gynecological cancer, and
has been predicted to account for an estimated 14,030 deaths
in 2013 in the United States, making it the fifth most
common cause of cancer death in women (1). The clinical
approach to epithelial ovarian cancer is quite uniform, with
all patients being treated with standard cytoreductive surgery
and adjuvant chemotherapy. However, there is considerable
clinicopathological heterogeneity and differential responses
among patients (2). Tumors with similar histopathological
appearance can follow significantly different clinical courses.
Approximately 40 to 60% of patients with advanced ovarian
cancer have complete response to adjuvant chemotherapy.
However, disease in a significant proportion of patients with
complete response will eventually recur. Disease in the
remaining patients either does not respond or only responds
transiently and subsequently progresses rapidly (3),
suggesting heterogeneity of ovarian cancer. 

The Hippo pathway represents a novel tumor-suppressor
pathway. When Hippo signaling is active, Mammalian
STE20-like kinase (MST)1/2, Salvador Homolog 1 (SAV1),
Large Tumor-Suppressor Kinase (LATS)1/2, and Mps One
Binder Kinase Activator-Like 1 (MOB1) form core
complexes that inactivate the Yes-Associated Protein 1
(YAP1) and Transcriptional Coactivator With PDZ-Binding
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Motif (TAZ) oncogenes by phosphorylation (4, 5). When
Hippo signaling is absent, unphosphorylated YAP1/TAZ
enters the nucleus inducing the transcription of genes that
promote cell growth and survival. Sav1 and Mst1/2 knockout
in mouse leads to the development of liver cancer (6-9),
indicating the importance of the Hippo pathway as a key
tumor suppressor. Elevated YAP1 mRNA levels have been
reported in colon, lung, and ovarian cancer (10, 11). 

In this study, we undertook a systems level characterization
of genomic data from multiple ovarian cancer cohorts to
determine whether the Hippo pathway is a key tumor-
suppressor pathway in the ovaries. This approach uncovered
molecular classifiers that can stratify patients with ovarian
cancer according to the absence or presence of active YAP1. 

Materials and Methods

Gene expression and patient data. The gene expression and clinical
data are available from the National Center for Biotechnology
Information (NCBI) Gene Expression Omnibus (GEO) database
(http:// www.ncbi.nlm.nih.gov/geo). Gene expression data from
MCF10A breast epithelial cells overexpressing human YAP1 were
collected from two series of experiments (GSE10196 and
GSE13218) using the U133 v2.0 platform (12). For discovery and
validation of a YAP1-specific signature associated with prognosis of
patients with ovarian cancer, gene expression data from two
independent cohorts were used. Gene expression data from the Peter
MacCallum Cancer Center (PMC cohort, GSE9891, n=267) were
used as discovery cohort and for refining the prognostic gene
expression signature (13). Gene expression data from the Memorial
Sloan Kettering Cancer Center (MSKCC cohort, GSE26712, n=185)
were used as the validation data set. 

All of gene expression data were generated by using Affymetrix
microarray platforms (U133A or U133 v2.0). All data were
normalized by using robust multi-array average method (14). All
patients in the two cohorts had undergone cytoreductive surgery
and subsequent platinum-based chemotherapy. Overall survival
(OS) and chemotherapy response data are lacking for 7 and 10
patients, respectively. Out of the 275 patients with available
chemotherapy response data, 192 had undergone both platinum and
taxane treatment, while the remainder (n=65) did not receive
taxane-based treatment. Treatment data were not available from the
MSKCC cohort. 

Patient and gene expression data in Cambridge Translational Cancer
Research Ovarian Study 01(CTCR–OV01) are also publicly available
from NCBI (accession ID, GSE15622) (15). Patients in CTCT-OV01
had been recruited from 2002 to 2004 and had histologically-
confirmed advanced (stages III and IV) epithelial ovarian cancer. All
tissues had been biopsied prior to the start of neoadjuvant
chemotherapy. Patients had been randomly assigned to undergo either
three cycles of carboplatin [area under the receiver operating
characteristic (ROC) curve (AUC) 7] or paclitaxel (175 mg/m2).
Treatment response had been estimated using serum Cancer Antigen
125 (CA125) levels after three cycles of single-agent treatment.
Treatment-sensitive patients were defined as those who experienced
more than a 50% decrease in serum CA125 level (15). The
pathological and clinical characteristics of the patients in all three
cohorts are shown in Table I.

Statistical analysis of microarray data. BRB-ArrayTools were
primarily used to statistically analyze gene expression data (16), and
all other statistical analyses were performed in the R language
environment (http://www.r-project.org). We identified genes that
were differentially expressed among the two classes using a
random-variance t-test (17); genes were considered statistically
significant if their p-value was less than 0.001. Cluster analysis was
performed using Cluster and Treeview (18). 

The strategy used to develop and validate the prediction model
on the basis of the gene expression signature and to estimate of
predictive accuracy was adopted from previous studies (19-21).
Briefly, using the expression patterns of the 612 genes included in
the Affymetrix microarray, we used data from the PMC cohort as
the training set and data from the MSKCC cohort as the validation
set. In brief, expression patterns of the 612 genes from the PMC
cohort were combined to form a classifier according to the
compound covariate predictor (CCP) algorithm (22). This algorithm
estimates the probability that a particular sample belongs to the
YAP1 subgroup. The miscalculation rate in this training set was
estimated by leave-one-out cross-validation during training. We then
directly applied the developed classifier to gene expression data
from the MSKCC cohort (test set). 

Kaplan−Meier plots and the log-rank test were used to estimate
patient prognosis, and a multivariate Cox proportional hazard
regression analysis was used to evaluate independent prognostic
factors associated with survival. Overall survival (OS) was
defined as the time interval between the date of histological
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Table I. Clinical and pathological features of patients with ovarian
cancer.

Cohort

Variable PMC MSKCC CTCR-OV01

Number of patients 267 185 35
Age (years)

Median 59 63 NA
Range 22-80 26-84 NA

FIGO stage
I 16 (6%) 0
II 14 (5%) 0
III 212 (79.5%) 149 (80%)
IV 21 (8%) 36 (20%)
NA 4 (1.5%) 0 35

Grade
1 11 (4%) 0
2 97 (36.5%) 40 (22%)
3 155 (58%) 145 (78%)
NA 4 (1.5%) 0 35

Histological subtype
Serous 246 (92%) 185 (100%) 35 (100%)
Endometrioid 20 (7.5%)
Adenocarcinoma 1 (0.5%)

Number of deaths 103 129 NA

PMC, Peter MacCallum Cancer Center; MSKCC, Memorial Sloan
Kettering Cancer Center; CTCR-OV1, Cambridge Translational Cancer
Research Ovarian Study 01; NA: not available.



diagnosis and the date of death from any cause. Gene signature,
tumor stage, and pathological characteristics were used as
covariates. 

To evaluate the usefulness of dichotomized stratification by the
YAP1 signature for predicting sensitivity to each neoadjuvant
chemotherapy, we used ROC curve analysis. For each ROC curve,
we calculated the AUC, which ranges from 0.5 (for a noninformative
predictive marker) to 1 (for a perfect predictive marker). A bootstrap
method was used to calculate the confidence interval (CI) for the
AUC. A p-value of less than 0.05 was considered to indicate
statistical significance, and all tests were two-tailed. 

Results

Activation of YAP1 is significantly associated with prognosis
of ovarian cancer. Since YAP1 is the most well-known
activated oncogene in the Hippo pathway (23), we analyzed
gene expression data generated from MCF10A cells
overexpressing human YAP1 to identify genes whose
expression is significantly associated with activation of
YAP1. This analysis revealed 388 genes under stringent
statistical cut-off (p<0.001) (Figure 1a). We next sought to
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Figure 1. Hierarchical clustering analysis of gene expression data from patients with ovarian cancer and human mammary epithelial cells
overexpressing Yes-Associated Protein 1 (YAP1). a: YAP1-specific gene expression signature from the MCF10A cell line. A two-sample t-test was
applied to gene expression data from two sample groups (p<0.001). b: Expression data from YAP1-specific 388 genes were used for clustering of 267
patients with ovarian cancer (Peter MacCallum Cancer Center cohort). Gene expression data from cell lines and human tissues were centralized by
subtracting the median expression level across samples before pooling them together for clustering analysis. The data are presented in matrix format
in which rows represent individual genes and columns represent individual tumor samples. Each cell in the matrix represents the expression level of
a gene in an individual tumor. The red and green colors reflect high and low relative expression levels, respectively, as indicated in the scale bar
(log2-transformed scale). c: Kaplan-Meier plots of overall survival (OS). Patients were stratified into two subgroups by hierarchical clustering.
Seven patients [four in the YAP1-active (YA) and three in the YAP1-inacrive (YI) subgroup] with no survival data were excluded from the plot. p-
Values were obtained using the log-rank test. +, Censored data.



test the clinical relevance of YAP1 activation in human
ovarian cancer by cross-comparing the data for 388 genes
from the MCF10A cell line with expression data from
human ovarian cancer. Gene expression data of 267 ovarian
cancer tissues from the PMC cohort were used for this
analysis, and hierarchical clustering analysis was applied to
stratify patients according to overlap with the YAP1-
activated gene expression signature (Figure 1b). When the
gene expression data were analyzed, data for 138 patients
were tightly co-clustered with that for YAP1-overexpressing
cells (hereafter referred to as the YAP1-active or YA-
subgroup), while the rest lacked the YAP1-specific signature
(hereafter referred to as YAP1-inactive or YI subgroup).
Kaplan−Meier plots revealed that the duration of OS of the
YA-subgroup was significantly shorter (p=0.002) than that
of the YI-subgroup (Figure 1c). 

The 388-gene expression signature reflects YAP1
activation in the cell culture condition but may lack the
biological characteristics associated with ovarian cancer
because it was generated from MCF10A human mammary
epithelial cells. Therefore in order to identify genes whose
expression is tightly associated with YAP1 activation in
ovarian cancer, we used the two-sample t-test with stringent
threshold cut-off (p<0.001 and two-fold difference) to
evaluate gene expression data from 267 patients in the PMC
cohort. This approach revealed 612 genes that were
differentially expressed between the YA- and YI-subgroups
of ovarian cancer in the PMC cohort (Figure 2a). As an
example of the utility of this approach, expression of

connective tissue growth factor (CTGF), a well-known
downstream target of YAP1 (24), was elevated (>2-fold) in
the YA subgroup. 

Validation that the YAP1 signature is significantly associated
with prognosis in an independent ovarian cancer cohort. We
next used the 612-gene signature to validate the association
between the YA-subgroup with the poorer ovarian cancer
prognosis in the MSKCC cohort (n=185). The expression
signature of 612 genes from the PMC cohort and CCP
algorithm were used to build and train the predictive model.
When patients in the MSKCC cohort were stratified
according to the refined YAP1 signature, the duration of OS
for patients in the YA subgroup was significantly shorter
(p=0.03 by log-rank test) than those in the YI subgroup
(Figure 2b). Specificity and sensitivity for correctly predicting
subgroup YA during leave-one-out cross-validation in the
PMC cohort were 0.88 and 0.73, respectively. 

To estimate the prognostic value of the YAP1 signature
with other clinical variables, including patient age at
diagnosis, Fédération Internationale de Gynécologie et
d’Obstétrique (FIGO) stage and grade, univariate and
multivariate Cox proportional hazards regression analysis was
undertaken in the PMC cohort, because only in this cohort
were all clinical variables available for analysis. On univariate
analysis, FIGO stage and the YAP1 signature were significant
predictors of OS (p<0.0001 and p=0.003, respectively). On
multivariate analysis, FIGO stage and the YAP1 signature
retained significance (p=0.001 and 0.01) (Table II). 
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Figure 2. Validation of the Yes-Associated Protein 1 (YAP1) signature with prognosis in an independent cohort. a: A schematic overview of the
strategy used for constructing predictive models and evaluating predicted outcomes based on gene expression signatures. CCP, Compound covariate
predictor; LOOCV, leave-one-out cross-validation. b: Kaplan−Meier plots of overall survival (OS) in the Memorial Sloan Kettering Cancer Center
cohort. Patients were stratified into two subgroups, as predicted by the CCP predictor algorithm. p-Values were obtained using the log-rank test. +,
Censored data.



Sensitivity to taxane treatment. We next carried out a subset
analysis in the PMC cohort, for which adjuvant
chemotherapy treatment information was available for 257
out of the 267 patients. All patients underwent platinum-
based treatment, 192 patients received additional taxane-
based treatment. To determine the association between the
signature and benefit of taxane-based treatment, we
categorized the 257 patients into two subgroups (YA and
YI), and independently assessed the OS rate. Taxane-based

treatment significantly affected OS for patients in the YA-
subgroup (3-year rate: 60.3% with taxane vs. 37.9% without
taxane, p=0.005 by log-rank test; Figure 3a). However, no
significant benefit was found for patients in the YI subgroup
(3-year rate: 74.4% vs. 60.5%, respectively, p=0.53 by log-
rank test, Figure 3b). Consistent with the Kaplan−Meier
plots, the estimated hazard ratio for death after taxane-based
treatment in the YA subgroup was 0.5 (95% CI=0.31-0.82;
p=0.005). 
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Figure 3. Sensitivity of Yes-Associated Protein 1 (YAP1) subgroups to taxane-based treatment. Kaplan−Meier plots of patients in the YAP1-Active,
YA (a) and YAP1-inactive, YI (b) subgroups. Data were plotted according to taxane use. Chemotherapy data were not available for 10 patients.
Receiver operating characteristic (ROC) analyses for the discriminatory value of the YAP1 signature in the paclitaxel- (c) and carboplatin-treated
arms (d).



To further test the association between the YA subgroup
and benefit of taxane treatment, we evaluated gene
expression data from advanced ovarian cancer tissues
prospectively collected in a randomized phase II clinical
trial, CTCR–OV01, that was designed to determine the
response to neoadjuvant carboplatin (n=15) or paclitaxel
(n=21) monotherapy. The YAP1 signature was highly
predictive of sensitivity to paclitaxel, with an AUC of 73.1%
(p=0.02; 95% CI=54.9-92.3%) (Figure 3c), but not
significantly predictive of sensitivity to carboplatin, with an
AUC of 44.4% (p=0.7; 95% CI=22.2-66.7%) (Figure 3d).
Together, these results strongly indicate that patients with the
YAP1 signature are significantly more sensitive to taxane-
based treatment. 

Discussion

By incorporating a well-defined gene expression signature
reflecting activation of YAP1, we identified a novel subgroup
of patients with ovarian cancer with a prognostic gene
expression signature. The newly-identified YAP1 gene
expression signature was an independent and significant
predictor of poor prognosis as evidenced by multivariate
analysis (Table II). The clinical significance of YAP1
activation observed in current study is in good agreement
with biological characteristics of YAP1. YAP1 and TAZ play
key roles in lysophosphatidic acid-induced migration and
proliferation of epithelial ovarian cancer cells (25, 26). Mice
lacking LATS1, key upstream negative regulator of YAP1 (4,
5), spontaneously developed ovarian cancer (27), further
supporting the roles of YAP1 as major oncogene and poor
prognostic gene in ovary. 

A subset analysis of patients in the PMC cohort revealed
significant association between the YAP1 signature and
taxane-based chemotherapy; this finding was validated in a
prospectively collected independent data set (CTCR-OV01).
While these data are potentially interesting, the significance
and robustness of the YAP1 signature as a predictive marker
for taxane-based chemotherapy response should be evaluated
in large-scale data sets and prospective trials and the

molecular mechanisms associated with activation of YAP1
and paclitaxel sensitivity remain to be elucidated. 

The standard treatment for patients with ovarian cancer
consists of maximal cytoreductive surgery followed by
chemotherapy (28). However, 5-year OS durations remain
very low. Therefore, alternative therapeutic strategies
including novel cytotoxic drugs or targeted therapies are
needed. Our results indicated that down-stream effectors of
the Hippo pathway such as YAP1 and TAZ might represent
good therapeutic targets and the feasibility of targeting YAP1
and TAZ should be tested in future investigations. 

In conclusion, we have identified two new prognostic
subgroups of ovarian cancer with significant survival
differences. Our results clearly demonstrate that the YAP1
signature can identify patients with ovarian cancer who have a
poor prognosis, particularly in the subset that achieve
complete response. Further validation of the signature will be
necessary before implementation in clinical practice, but the
fact that the signature was validated in two independent patient
cohorts suggests that it can contribute to the rational design of
future clinical trials by identifying high-risk patients. 
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