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Abstract. Background: Expression of heparanase (HPSE) in
tumor cells is strongly associated with invasion, metastasis
and angiogenesis. It also plays a key role during pregnancy,
in processes of implantation as well as placentation. Vascular
endothelial growth factor (VEGF) and heparin are known to
alter HPSE expression, with heparin given prophylactically to
women with a history of placenta-mediated complications in
subsequent pregnancies. Materials and Methods: We examined
the growth-modulatory effects of different concentrations of
heparin and VEGF on the choriocarcinoma cell-line JEG-3
and the expression of heparanase under VEGF and heparin
by proliferation assays, PCR, and western blot. Results:
Proliferation of JEG-3 cells was induced by heparin in a dose-
dependent manner, whereas highly concentrated VEGF led to
a decreased cell proliferation. Both agents did not influence
the HPSE-expression. Conclusion: The presumed pregnancy-
protecting effects of heparin may partially be due to an
increase of trophoblast proliferation and not via regulation of
HPSE expression.

Heparanase (HPSE) is an endo-f3-d-glucuronidase, involved in
degradation and remodelling of the extracellular matrix (1).
Cleaving heparan sulfate side chains is among its mainly
examined functions (2). HPSE has been found in placental
tissue of both humans (3-5) and animals (6). HPSE is
considered to play a key role in processes of implantation. as
well as placentation (7). Its expression is not restricted to the
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placenta as HPSE is expressed in platelets, keratinocytes and
activated cells of the immune system under physiological
conditions, whereas most normal epithelia stain negative for
HPSE (1, 8). HSPE has been described to be over-expressed in
both inflammatory (9) and autoimmune diseases and in a
variety of cancers (10) with increased rates of tumour
angiogenesis (10), invasiveness (11) and metastatic behaviour
(12) associated with a HPSE over-expression, which is in fact
the case for human choriocarcinoma (13). Recently, there have
been reports about an altered expression of the HPSE gene
after heparin incubation in combination with high glucose in
human aortic endothelial cells (14). Heparins themselves are
known to exert a wide range of effects beyond anti-
coagulation at the placental and decidual level, which has
especially been investigated in association with questions of
implantation failure and recurrent miscarriages (15).

In women suffering from the anti-phospholipid syndrome
(APS), the application of heparin has been shown to increase
the live-birth rate in combination with low-dose acetyl
salicylic acid. Such a beneficial effect had also been
postulated for the isolated application of heparin in patients
with other subtypes of early (16-17) and late pregnancy
complications (18), such as non-recurrent and recurrent
miscarriages, as well as placenta-associated diseases, e.g.
preeclampsia. It is established that preeclampsia goes along
with a reduced invasion of the trophoblast into the maternal
decidua (19), implying that a pro-invasive protein, such as
HPSE, might play a role in altering this process (20).
Additionally, recent reports have described that vascular
endothelial growth factor (VEGF), regarded necessary for
tumor vascularity and metastasis, shows mutual enhancing
effects with HPSE (21). VEGF has been described to alter
the expression of pro-invasive matrix metalloproteinases in
the choriocarcinoma cell-line JEG-3 (22) and its subtype A
(VEGFA) is thought to be secreted by (23) and to stimulate
the proliferation of both the trophoblast (24) and
choriocarcinoma cells (25).
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As HPSE itself is expressed in the implantation window
of non-conceptual cycle endometrium (26), we sought to find
out whether heparin and VEGFA may exert pregnancy-
protective effects by altering the expression of HPSE.

Taking into account the similarities between the
proliferative, migratory and invasive properties of placental
and cancer cells (27), immortalized human choriocarcinoma
cells served as a surrogate for the primary trophoblast in
accordance to other publications (28-32).

Materials and Methods

Cell culture. The human choriocarcinoma cell line JEG-3 (DSMZ,
Braunschweig, Germany) was cultured at 37°C, in a humidified
atmosphere with 5 % CO,. JEG-3 were grown in Ham’s F12 (PAA
Laboratories GmbH, Colbe, Germany) supplemented with 10 %
fetal calf serum (FCS; PAA Laboratories GmbH) and 1 % (v/v)
penicillin/streptomycin (10,000  Units/ml/10  mg/ml; PAA
Laboratories GmbH).

Growth experiments. 3,000 cells per well were plated in growth
medium on 96-well-plates (Sarstedt AG & Co., Niimbrecht,
Germany). Twenty-four h later, the medium was replaced by FCS-
free medium. After 1 h various concentrations of heparin (0.01,0.1, 1,
10, 100 and 1.000 U/ml; Sigma-Aldrich, Steinheim, Germany) or the
VEGFA splice variant VEGF 45 (1, 10 and 100 ng/ml; Reliatech,
Wolfenbiittel, Germany), responsible for its biological activity, were
added by a further exchange of the media, containing FCS
concentrations of 1% and 3.3%. The growth experiments were
performed in a general atmospheric incubator with 5% CO, and under
hypoxic conditions with 2% O, and 5 % CO, in a hypoxia chamber
THCO08 124 (Toepffer Lab Systems, Goppingen, Germany). Each
experiment was repeated twice with sextuplicates of culture wells.
After incubation times of 24, 48 and 72 h the cells were measured in
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide;
Sigma-Aldrich) assays as described elsewhere (33).

Expression of heparanase (HPSE) mRNA in JEG-3 under the
influence of heparin and VEGF ;45 in normoxia and hypoxia. The
mRNA expression of HPSE and its regulation by heparin, VEGF 45
and hypoxia was evaluated by means of the quantitative reverse
transcription polymerase chain reaction (QRT-PCR). JEG-3 were
plated on 6-well plated by 600,000 cells per well in growth media.
Twenty-four h later, media were replaced by media containing heparin
(0.1 U/ml), VEGF;45 (100 ng/ml) or control medium with 1% or
3.3% FCS for 3 h. Experiments were performed in duplicates. The
respective concentrations of heparin and VEGF,45 were chosen due
to their pronounced effects in the proliferation experiments. Total
RNA was isolated by using QIAzol (Qiagen, Hilden, Germany). One
ng RNA was reverse-transcribed with Superscript-II (Invitrogen,
Karlsruhe, Germany) using random-primers. qPCR was performed by
using Platinum SYBR Green gPCR Super Mix-UDG (Invitrogen) on
the gPCR system Opticon 2 (BioRad, Munich, Germany). To quantify
the HPSE gene the following primer pair was used according to
GenBank Accession No. NM_006665: 5’- TCC TGC GTA CCT GAG
GTT TG-3’ (forward); 5’-CAA CCG TAA CTT CTC CTC CAC-3’
(reverse). Succinate dehydrogenase complex subunit A (SDHA;
forward: 5’-TGG GAA CAA GAG GGC ATC TG-3" and reverse: 5’-
CCA CCA CTG CAT CAA ATT CAT G-3’) and hypoxanthine-
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Table 1. Results of the q-RT-PCR of HPSE in JEG-3 cells, treated with
0.1 U/ml heparin (upper panel) or with 100 ng /ml VEGF165 (lower
panel).

Heparin 1% FCS 3.3% FCS
(0.1 U/ml)

R p-Value R p-Value
Atmosphere 0.842 0.665 0.961 0.672
Hypoxia 1.098 0.824 1.449 0.484
VEGF165 1% FCS 3.3% FCS
(100 ng/ml)

R p-Value R p-Value
Atmosphere 0.847 0.834 0912 0.929
Hypoxia 0.962 0918 1.103 0.885

R=Relative change of expression of the HPSE gene compared to the
untreated control, normalized by the reference genes SDHA and HPRT1.

guanine phosphoribosyltranferase (HPRT; forward: 5’-TCA GGC
AGT ATA ATC CAA AGA TGG T-3’ and reverse: 5°-AGT CTG GCT
TAT ATC CAA CAC TTC G-3’) were used for normalization. All
primers were synthesized at Metabion (Martinsried, Germany). The
PCR protocol consisted of 40 cycles of 15 s at 95°C and 30 s at 60°C.
Each sample was tested in duplicate. The reaction efficiency of every
primer pair had been determined using dilution series with a
representative pool of cDNAs (Table I) as proposed by Pfaftl (34).
Data were further processed with the excel-based program REST-
MCS©-version 2 (www.gene-quantification.info).

Immunochemical analysis of heparanase. Total protein (HPSE) was
extracted by using the Mammalian Protein Extraction Buffer (GE-
Healthcare, Miinchen, Germany). Twenty pg of the extractions were
electrophoresed and blotted onto a nitrocellulose membrane. The
membrane was blocked in TBST-buffer and 5% (w/v) nonfat dry milk
and incubated at 4°C overnight with a 1:4000 diluted monoclonal anti-
human heparanase 1 (HPA1) antibody (Clone HP3/17; Acris, Herford,
Germany). Following 3 times washing for 5 min in TBST-buffer, a
secondary antibody incubation was performed for 1 h at room
temperature with the horseradish peroxidase-linked sheep anti-mouse
antibody diluted 1: 4000 (NA-931; GE-Healthcare, Munich,
Germany). After 3 more washings, the immunoreaction was developed
using the immobilon-Western-HRP substrate (Millipore, Schwalbach,
Germany) and visualized on hyperfilm-ECL (GE-Healthcare).

Statistics. Statistical analyses of growth experiments were performed
with GraphPad-Prism 5 (GraphPad, La Jolla, CA, USA) using the
monofactorial ANOVA-variance analysis and Dunnett’s post-hoc test.
A p-value <0.05 was considered as statistically significant. Outliers
were identified with the GraphPad Outlier calculator, applying the
Grubb’s test, and excluded from further analysis.

Results

Influence of heparin on the proliferation of JEG-3 cells. The
proliferation of JEG-3 cells was significantly increased by
heparin at concentrations of 0.01 to 10 U/ml at atmospheric
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Figure 1. A) Induction of proliferation of JEG-3 cells by heparin at normoxia and a FCS concentration of 3.3%. B) Under hypoxic conditions and
the reduction of FCS to 1%, heparin concentrations of 0.01 and 0.1 U/ml caused a significant induction of cell proliferation. Co, control; *p<0.05;

p<0.01; *¥%p<0.001.

conditions and a FCS concentration of the medium of 3.3%
(Figure 1A). However, heparin concentrations of 100 and
1,000 U/ml showed a return to basic levels of proliferation.
Accordingly, heparin also increased cell proliferation at
concentrations of 0.01 to 0.1 U/ml at hypoxic conditions and
a FCS concentration of the medium of 1% (Figure 1B).

Influence of VEGF165 on the proliferation of JEG-3 cells.
The proliferation of JEG-3 cells was significantly decreased
by VEGF,45 at concentrations of 10 and 100 ng/ml at
atmospheric conditions and a FCS concentration of the
medium of 3.3% (Figure 2A) and at 100 ng/ml in hypoxia
(Figure 2B).

HPSE expression. As shown by western blot analysis, HPSE
is expressed in JEG-3 cells (Figure 3). No significant
differences in the HPSE mRNA-expression were detected
after incubation with heparin or VEGF,¢5 at the respective
concentrations (Table I).

Discussion

Heparin, a negatively-charged glycosaminoglycan, has been
described to exert anti-metastatic effects on tumor cells (35).
However, we were able to show a significant increase of
proliferation of choriocarcinoma cells after incubation with
heparin at distinct concentrations, a result that was — to the
best of our knowledge — not described before. The
stimulation of proliferation, depending on the concentration
of heparin, is comparable to results from other cell-lines, e.g.
human osteoblasts (36). In our setting, heparin at most
concentrations failed to compensate the anti-proliferative

effects of hypoxia but was still able to lead to a significantly
increased cell proliferation at 0.01 U/ml.

When reducing both the concentrations of oxygen and
FCS to induce a lack of nutrients, heparin at low
concentrations again was able to compensate partially the
lack of nutrients and promote cell growth. This observation
could not be confirmed for higher concentrations of heparin,
which may be explained by the fact that heparin can also
exert direct cytotoxic effects on tumors cells (35).

It has been shown that heparin may induce trophoblastic
invasiveness in vitro by altering the expression of matrix
metalloproteinases and tissue inhibitors (37), thus possibly
promoting a protective effect for the developing pregnancy.
However, clinical applications of heparin (s) in
pregnancies threatened by miscarriage or complications,
such as preeclampsia, have failed to show consistent
results (16-18, 38-47). It is especially surprising that
heparin may exert a protective effect against placenta-
mediated complications when applied in the second
trimester of pregnancy (18); when the invasion of the
trophoblast is already completed. Nevertheless, our results
showing an increase of trophoblastic proliferation may
prompt further investigations in the field of heparin
application in early pregnancy to prevent late (r)
complications in patients at risk.

Heparins have been described as strong inhibitors of
heparanase (HPSE) (48) showing to interfere in its
transcriptional regulation (14) with chemically modified
heparins, such as SST0001, preclinically used to inhibit
tumor cell growth and angiogenesis (49). This regulation of
HPSE expression by heparin could not be observed in our
setting.
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Figure 2. A) Reduction of proliferation of JEG-3 cells by VEGF ;45 at normoxia and a FCS concentration of 3.3%. B) Under hypoxic conditions, a
VEGF ;45 concentration of 100 ng/ml caused a significant reduction of cell proliferation. Co, control; *p<0.05; **p<0.01; ***p<0.001.

HPSE has been shown to increase VEGF expression in
non-malignant and malignant cells (50, 51). However, an
enhancing effect of VEGF on the expression of HPSE, as
seen in melanoma cell lines (21), could not be demonstrated
in our setting.

Hypoxia has been described to induce expression of VEGFA
in human choriocarcinoma cells, with VEGF thought to
increase the invasive capacity in these cells (52). Interestingly,
the splice variant of VEGFA, VEGF, 45, does not lead to a
proliferation of JEG-3 cells in our setting; it reduced their
growth at higher concentrations. This result seems to stand in
contrast to experiments with the BeWo choriocarcinoma cell
line where VEGEF leads to an increased cell proliferation (25).
However, as shown in BeWo cells, endogenous nitric oxide
(NO) production induced by exogenous VEGF at a
concentration of 10 ng/ml down-regulates the otherwise VEGF-
stimulated proliferation. Therefore, our approach with the
aforementioned and even higher concentration of VEGF might
explain their growth-inhibiting effects on JEG-3 cells.

Since the first characterization of HPSE in the placenta (53)
deriving from trophobalstic tissue, some studies have
investigated its expression in human placental tissue (2, 4, 54,
55). Placental HPSE has been proven to be expressed in all
trimesters of both physiological and pathological pregnancies;
however, no findings on its concentrations under the various
circumstances were reported (4). Nadir and colleagues (2)
proved that placental tissue form early miscarriages over-
expresses HPSE. Furthermore, trophoblast cells incubated with
exogenous recombinant HPSE show a significantly altered
expression pattern of haemostatic factors, such as tissue factor
pathway inhibitor 1 and 2. These factors are thought to be
involved in early pregnancy complications, such as (recurrent)
miscarriages (2). However, as the alterations were detected in
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Figure 3. Protein expression of heparanase (HPSE ) in JEG-3 cells as
shown in western blot. OVCAR-3 cells are shown as a positive control.

early pregnancy tissue and cell culture, the results cannot be
automatically attributed to complications in the second or third
trimester of pregnancy, such as preeclampsia.

Since in our setting such a regulation could not be shown,
heparin must exert its growth-stimulatory effects through
other pathways. On the other hand, as there are striking
similarities between the invasion of the trophoblast and that
of cancer cells, with the latter stimulated by an increased
heparanase expression (10), the otherwise observed reduction
of HPSE expression by heparins is lacking in the trophoblast.
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