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Osthole Induces Apoptosis, Suppresses Cell-Cycle
Progression and Proliferation of Cancer Cells
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Abstract. Background: The aim of the present study was to
determine the effects of osthole on cell proliferation and
viability, cell-cycle progression and induction of apoptosis in
human laryngeal cancer RK33 and human medulloblastoma
TEG671 cell lines. Materials and Methods: Cell viability was
measured by means of the MTT method and cell proliferation
by the 5-bromo-2-deoxyuridine (BrdU) incorporation assay.
Cell-cycle progression was determined by flow cytometry,
and induction of apoptosis by release of oligonucleosomes
to the cytosol. The gene expression was estimated by a
quantitative polymerase chain reaction (qPCR) method.
High-performance counter-current chromatography
(HPCCC) was applied for isolation of osthole from fruits of
Mutellina purpurea. Results: Osthole decreased proliferation
and cell viability of cancer cells in a dose-dependent manner.
The tested compound induced apoptosis, increased the cell
numbers in G; and decreased cell number in S/G, phases of
the cell cycle, differentially regulating CDKNIA and TP53
gene expression depending on cancer cell type. Conclusion:
Osthole could be considered as a potential compound for
cancer therapy and chemoprevention.

Natural plant components, coumarins, have attracted great
attention because of their pharmacological potential (1).
Osthole  (7-metoxy-8-isopenthenocoumarin), one of
naturally-occurring coumarins isolated from dried fruits of
Cnidium monnieri, Angelica pubescens and Peucedanum
ostruthium used in traditional Chinese medicine (2),

Correspondence to: Aneta Grabarska, Department of Biochemistry
and Molecular Biology, Medical University of Lublin, Chodzki 1,
20-093 Lublin, Poland. Tel: +48 817423793, Fax: +48 817423793,
e-mail: anetagrabarska@umlub.pl

Key Words: Osthole, proliferation, apoptosis, cell cycle, high-
performance counter-current chromatography, RK33, TE671 cells.

0250-7005/2014 $2.00+.40

possesses anti-inflammatory (3, 4), anti-viral (5, 6), anti-
coagulant (7), anti-convulsant (8, 9) and anti-allergic
activities (10-13). Currently, osthole is investigated as a
potential drug in the treatment of osteoporosis (14-17), as
well as liver (18-22) and central nervous system disorders
(23-26). Osthole also possesses anti-cancer properties and
has been shown to inhibit cancer cell proliferation in human
leukemia (HL-60) (27), cervical cancer U-937 (28) and Hela
(27), MCF7 (29) and MDA-MB-231 (30) human breast
carcinoma cell lines, human prostatic  cancer
hormonosensitive LNCaP and hormonoindependent PC3,
DU145 cell lines (31) or non-small cell lung cancer A549
line (32) and colorectal carcinoma (CoLo 205) cells (27). A
single study reported in vivo anti-cancer effects of osthole in
a murine-ype lymphocytic leukemia, P-388 D1 (33). Osthole
also enhanced the cytotoxic activity of paclitaxel in vitro in
breast cancer cells with HER?2 receptor overexpression (34).

The aim of the present study was to evaluate the
anticancer activity of osthole in two human tumor cell lines:
laryngeal carcinoma RK33 and medulloblastoma TE671
cells. To determine the viability and proliferation, cancer
cells were exposed to either culture medium-alone (control)
or medium containing osthole (10-100 uM) for 72 h. High-
performance countercurrent chromatography (HPCCC) was
used for successful separation of osthol from natural source,
a herb of Mutellina purpurea.

Materials and Methods

Apparatus. A Spectrum HPCCC apparatus (Dynamic Extractions,
Slough, UK) was employed in the present study. The instrument was
equipped with two multilayer PTFE coils: analytical and
semipreparative (0.8 mm ID, 22 ml volume and 1.6 mm ID, 136 ml
volume), respectively and working with the optimal speed of 1,600
rpm. The effluent was monitored at 320 nm by an ECOM Sapphire
UV detector (Prague, Czech Republic). Identification of separated
fractions was elucidated on an Agilent 1100 HPLC chromatograph
coupled with 250 mm x 4.6 mm stainless steel column packed with
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5 wm Cyg (Zorbax Eclipse XDB-C18, Agilent Technologies,
address) with a diode array detector (DAD) detector.

Reagents. Dichloromethane, n-heptane and ethyl acetate used for
preparation of the extract from plant material was of analytical
grade and purchased from Polish Reagents (POCH, Gliwice,
Poland). Water was purified using a Millipore laboratory ultra pure
water system (Simplicity™ system, Millipore, Molsheim, France).
Methanol used for HPLC was of chromatographic grade (J.T. Baker
Inc., city, The Netherlands).

Plant material. The plant material was collected in the Medicinal
Plants Garden, Medical University in Lublin in June 2011. Aerial
parts (herb) of Mutellina purpurea were dried at room temperature
(RT), powdered and left for further extraction. Voucher specimens
No ES17/18-19/2011 were deposited in the Department of
Pharmacognosy with Medicinal Plant Unit, Medical University,
Lublin. Fruits were air-dried at RT, powdered and 50 g was
extracted with 500 ml of petroleum ether under reflux in 30 min.
The procedure was repeated three times. The filtrates were
combined and concentrated with a rotary evaporator to remove the
solvent. The dried crude extract (4.9 g) was stored in a refrigerator
for subsequent HPCCC separation.

Selection and preparation of two-phase solvent system. Two-phase
solvent systems made of n-heptane, ethyl acetate, methanol and water
(HEMWat) in different volume ratios were tested. Partition coefficient
K, as a ratio of target substance in stationary to mobile phase, was
determined by high-performance liquid chromatography (HPLC)
analysis (comparing the peak area of the osthole both in upper and
lower phases). A volume ratio 3:2:3:2 was chosen as the most proper
for purification of target compounds (K=1.8). Then, the analytical
column was first entirely filled with the upper stationary phase. The
apparatus was rotated at 1,600 rpm and the lower mobile phase was
pumped into the column at a flow rate of 1.0 ml/min. After
hydrodynamic equilibrium was reached, 60 mg of extract dissolved in
1 ml of two-phase solvent system was loaded onto the column through
a 1-ml injection valve. The solid phase retention was 70%. The effluent
from the column was continuously monitored with a UV detector at
320 nm. Each one minute fraction was manually collected into test
tubes. At the end of the run, the fractions were evaporated under
reduced pressure and redissolved in methanol for subsequent HPLC
analysis. Osthole was detected in fractions 40-45 with amount of
0.2 mg. The separation procedure was repeated in order to obtain the
desirable amount. The crude methanol extract and each fraction
obtained from the HPCCC separations were analyzed by HPLC. During
HPLC analysis the flow rate was 1 ml/min, the column temperature
was 25°C. A stepwise mobile phase gradient was prepared from
methanol (A) and water (B). The gradient was: 0-5 min 50-60% A; 5-
25 min 60-80% A; 25-30 min isocratic 80% A; 30-40 min 80-100% A.

The identification of isolated compound was carried out by
comparison of retention time and UV-DAD spectra with those
obtained by standards under the same conditions. The purity of
osthole was 99% (established by the HPLC-DAD method).

Cell lines. Huoman medulloblastoma (TE671) was obtained from the
Department of Medical Biology of Institute of Agricultural Medicine
in Lublin. Human larynx carcinoma (RK33) was derived from a
patient with diagnosed larynx squamous cell carcinoma. Cancer tissue
was removed from the larynx after total laryngectomy and established
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as stable cell line, as previously described (35). Cell lines were
maintained in Dulbecco’s Modified Eagle Medium (DMEM) culture
medium (Sigma, address) and 1:1 mixture of DMEM and Nutrient
mixture F-12 Ham (Sigma) for RK33 and TE671 cells, respectively.
All media were supplemented with 10% fetal bovine serum (FBS)
(Life Technologies, Karlsruhe, Germany), penicillin (100 U/ml)
(Sigma) and streptomycin (100 pg/ml) (Sigma). Cultures were kept
at 37°C in a humidified atmosphere of 95% air and 5% CO,.

Cell viability assessment. Tumor cells were placed on 96-well
microplates (Nunc, Langenselbold, Germany) at a density of
2x10%/ml (RK33), 1x104/ml (A549, TE671). The folloing day the
culture medium was removed and cells were exposed to serial
dilutions of osthole in a fresh culture medium. Cell proliferation was
assessed after 72 h by means of the methylthiazolyldiphenyl-
tetrazolium bromide (MTT) method in which the yellow tetrazolium
salt (MTT) is metabolized by viable cells to purple formazan crystals.
Tumor cells were incubated for 3 h with MTT solution (5 mg/ml,
Sigma). Formazan crystals were solubilized overnight in SDS buffer
(10% SDS in 0.01 N HCl) and the product was determined
spectrophotometrically by measuring absorbance at a wavelength of
570 nm using an Infinite M200 Pro microplate reader (Tecan,
Minnedorf, Switzerland).

Cell proliferation assay. The Cell Proliferation ELISA, 5-bromo-2-
deoxyuridine (BrdU) Kit (Roche Diagnostics, Mannheim,
Germany), was applied. Optimized cell amount (2x10%) was applied
on the 96- well plate (100 ul/well). The cells were treated with
100 uM concentrations of osthole for 72 h, followed by incubation
with BrdU (100 uM). Cells were than fixed in FixDenat solution
(30 min, RT). Monoclonal anti-BrdU antibodies coupled with
horseradish peroxidase were subsequently added (90 min, RT) and
detected using TMB (tetramethylobenzidine) substrate (30 min, RT).
IM sulphuric acid was added to stop enzymatic reaction and
quantitation was performed spectrophotometrically at 450 nm using
the Infinite M200 Pro microplate reader (Tecan).

Assessment of cell death. Measurement of cell death was performed
using the Cell Death Detection ELISAPLUS kit (Roche). RK33 and
TEG671 cells growing on 96-well microplates were subjected to
osthole (100 uM) for 24 h, whereupon supernatants were removed
and cells lysed with 200 pl of lysis buffer for 30 min on ice.
Subsequently, cell lysates were centrifuged at 200 X g for 10 min.
and 20 pl of the sample were carefully transferred into the
streptavidin-coated 96-well microplate. The immunoreagent (80 pl)
containing  anti-histone-biotin and anti-DNA-POD mouse
monoclonal antibody was added and incubated under gentle shaking
(300 rpm) for 2 h at 20°C. The solution was removed by tapping,
each plate well was rinsed three times with 250 pl of incubation
buffer and, finally, 100 pl per well of substrate, 2,2’-azino-bis(3-
ethylbenzthiazoline-sulfonic acid) solution (ABTS), was applied and
incubated at RT for 15 min on a plate shaker (250 rpm). Absorbance
was measured at a wavelength of 405 nm using an Infinite M200
Pro microplate reader (Tecan).

Flow cytometry analysis. Experiments were performed using the
FACSCalibur™ flow cytometer (BD Biosciences, San Diego, CA,
USA), equipped with a 488-nm argon-ion laser. For cell-cycle
analysis, cells were fixed in 70% ethanol at —20°C. After fixation, the
cells were stained with propidium iodide utilizing the PI/RNase
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Figure 1. Osthole suppress proliferation of TE671 and RK33 cells. The cells were exposed to either culture medium-alone (Control), or osthole (10-
100 uM) for 72 h. Normalized cell viability, measured by the MTT assay (A), and BrdU incorporation (B) is presented as mean+SEM at each
concentration. Student’s t-test revealed significant effect ( *p<0.05, **p<0.01, ***p<0.001) of treatment with osthole compared to vehicle-treated
cultures. This effect was also concentration-dependent, as judged by analysis of variance ANOVA test (***p<0.001). n=24 per concentration from

three independent experiments.

Staining Buffer (BD Biosciences) according to the manufacturer’s
instructions. Acquisition rate was at least 60 events per second in low
acquisition mode and at least 10,000 events were measured. Cell-
cycle analysis was performed by using a non-commercial flow
cytometry analyzing software - Cylchred Version 1.0.2 for Windows
(source: University of Wales, Cardiff, Wales, UK) and WinMDI 2.9
for Windows (source: facs.scripps.edu/software.html). The cells were
acquired and gated by using dot plot FL-2 Width (X) versus FL-2
Area (Y)-gate to exclude aggregates and analyzed in histograms
displaying fluorescence 2-area (yellow-orange fluorescence: 585 nm).

RNA isolation and ¢cDNA synthesis. Tumor cell lines RK33, A549
and TE671 were incubated on the 6-well microplates with the
100 uM concentration of osthole for 24 hours. Total RNA from the
cells was isolated and digested with DNase using the High Pure
RNA Isolation Kit (Roche) following the manufacturer’s instructions.
The RNA concentration was determined spectrophotometrically with
a UV-VIS Genesys 10S spectrophotometer at 260/280 nm (Thermo
Fisher Scientific, Madison, WI, USA). Three pg of total RNA was
reverse transcribed for 30 min at 50°C using an oligo(dT) primer and
the Transcriptor High Fidelity cDNA Synthesis Kit (Roche) followed
by 5 min enzyme inactivation at 85°C according to manufacturer’s
instructions.

Quantitative polymerase chain reaction (¢PCR). Quantitative real-
time expression analysis was performed using a LightCycler® 480 11
instrument (Roche). Analysis was performed utilizing Universal
ProbeLibrary (UPL) hydrolysis probes specific for the TP53 and
CDKNIA genes labeled with FAM in duplex with probe for
reference gene GAPD labeled with Yellow 555 (Roche). The primers
and probe sets were as following: TP53 (For 5’-CCCCAGCC
AAAGAAGAAAC-3’, Rev 5’-AACATCTCGAAGCGCTCAC-3’,
Probe 5’-GGATGGAG-3"); CDKNI1A (For 5’-TCACTGTCTTGT

ACCCTTGTGC-3’, Rev 5’-GGCGTTTGGAGTGGTAGAAA-3’,
Probe 5’-CCTGGAGA-3’); GAPD (For 5’-CTCTGCTCCT
CCTGTTCGAC-3’, Rev 5’-GCCCAATACGACCAAATCC-3’,
Probe 5’-CTTTTGCGTCGC-3"). Amplification was performed in
10 pl of reaction mixture containing cDNA amount corresponding
to 12.5 ng of total RNA, 1 x LightCycler® 480 Probes Master
(Roche) and appropriate set of 0.4 puM primers and 0.2 uM UPL
hydrolysis probes for each target and reference duplex. After 10 min
of initial incubation at 95°C, cDNA was amplified in 45-55 cycles
consisting of 10 s denaturation at 95°C, 30 s annealing at 60°C and
10 s elongation at 72°C. Obtained fluorescence data was calculated
using a relative quantification method with efficiency correction.

Statistics. The calculations were done by means of the Student’s ¢-test
and analysis of variance (ANOVA) test for multiple comparisons. Data
are expressed as the meantstandard error of the mean (SEM)
(*p<0.05, **p<0.01, ***p<0.001).

Results

Osthole was purified with application of the powerful technique
of HPCCC in a very short time (40-45 min). We showed that
osthole significantly inhibited cell proliferation and cell viability
of TE671 and RK33 cells in a dose-dependent manner, as
measured by means of the MTT assay. The threshold
concentrations required to elicit antiproliferative effect in tumor
cell lines were 10 pM for TE671 (p<0.001) and 25 uM for
RK33 (p<0.01) cells. Incubation of RK33 and TE671 cell lines
with 100 uM concentration of osthole caused a decrease in cell
viability below 50% compared to non-exposed cells (Figure
1A). The effect of osthole on cancer cell proliferation was
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Figure 2. Osthole induces apoptotic cell death in TE671 and RK33 cells. Enrichment of oligonucleosome fragments (fold increase) in the absence
(Control) and following 24 h of osthole (100 uM) exposure (n=9 per concentration from three independent experiments, ***p<0.001 versus control,

Student’s t-test).

attributed to decreased cell division, as determined by decreased
incorporation of BrdU. Incubation of tumor cells with 100 uM
of osthole resulted in more than 50% reduction of BrdU
incorporation (Figure 1B), which mimics the inhibition of cell
viability measured by the MTT assay. Of note, solvent (70%
ethanol) did not influence the assays (not shown).

The mechanism responsible for inhibition of cancer cell
growth mediated by osthole is not fully-resolved. An increase
of apoptosis was demonstrated after incubation with osthole
in HeLa cells (33), as well as a slowdown of the cell-cycle
progression at G,/M phase in A549 lung adenocarcinoma
cells (32). Osthole was effective in decreasing the migration
and invasion of breast cancer cells probably through
inhibition of matrix metalloproteinase-2 (MMP2) promoter
and MMP2 enzyme activity (36) or hepatocyte growth factor
(HGF)-induced decrease of E-cadherin and increase of
vimentin expressions (37). More detailed mechanism of
action of osthole was linked to up-regulation of the ratio of
Bax/Bcl-2 proteins in a lung cancer line (33) and inhibition
of Akt kinase activity in lung (33) and breast cancer cells
(34). The influence of osthole on the HGF/Met pathway
associated with MCF-7 breast cancer cells metastasis and
invasiveness was also suggested (37). In our study, we also
focused on the potential mechanism of anticancer activity of
osthole. To assess if decrease in cell proliferation was
connected to apoptosis induction and/or alterations of cell
cycle progression, tumor cells were exposed to the selected
concentrations of osthole for 24 h. We showed that after
treatment with 100 uM of osthole the apoptosis rate in RK33
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and TE671 cells increased by 1.5-fold and 2.5-fold,
respectively, as measured by mono- and oligonucleosomes
release to cytosol (Figure 2).

We also determined that osthole influences cell-cycle
progression. FACS analysis showed an increased amount of
TE671 cells entering the G; phase of the cell cycle upon
incubation with osthole in a concentration-dependent
manner, being mirrored by a decrease in the S/G2 cell
population (Figure 3A) (Table I). Minor changes were
noticed in the RK33 cell line, however, in contrast to the
TE671 cells, treatment with osthole resulted in a slight
increase of cell amount in S and G, phases of the cell cycle
(Figure 3B) (Table I).

Next, we investigated whether osthole treatment influences
gene expression involved in the control of cell-cycle
progression. We analyzed the expression of TP53 and
CDKNIA in TE671 and RK33 cells. After a 24-h incubation
of TE67 cells with osthole, qPCR revealed increased
expression of p53 and p21%¥1/CiPl (TP53 and CDKNIA)
mRNAs by 2.5- and 9-fold, respectively. Such effect was not
observed in RK33 cells (Figure 4).

Discussion

Our results indicate that the cellular and molecular mechanism
of osthole’s anticancer action remains different in the analyzed
cell lines. Although osthole inhibited cell proliferation at a
similar level in the sudied cell lines, it differentially affected
induction of apoptosis and cell-cycle progression of TE671
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Figure 3. Flow cytometric analysis of propidium iodide-stained nuclei revealed higher percentages of (A) TE671 cells in G; and lower percentages
of these cells in S and G, phases, and (B) lower percentages of RK33 cells in S, and higher in G, phases of the cell cycle following exposure to
100 uM concentration of osthole compared to controls (*p<0.05, **p<0.01, ***p<0.001, Student’s t-test, n=9 per concentration from three

independent experiments).

Table 1. Cell-cycle analysis of TE671 and RK33 treatment by osthole.

G, phase (%)

S phase (%) G, phase (%)

Mean+SEM Mean+SEM Mean+SEM
TE671 Control 49.97+0.37 11.61+0.98 47.27+1.05
50 uM 58.33+0.84 (**) 9.72+1.18 33.48+0.78 (*%)
100 uM 65.96+1.2 (¥**) 5.38+0.54 (**) 29.7+0.47 (***)
RK33 Control 86.9+0.41 5.54+0.56 14.55+0.71
50 uM 82.4+0.99 9.46+0.68 (*¥*) 13.78+0.72
100 uM 84.01%1.1 8.02+0.64 (*) 21.3+0.70 (**)

*p<0.05, *¥p<0.01, ***p<0.001, Student’s ¢-test, n=9 per concentration from three independent experiments.

and RK33 cells. The influence of osthole on TE671 cells could
be connected with cell-cycle arrest in the restriction point
G,/S, thus slowing-down the cell cycle progression by
increased expression of TP53 and CDKNIA coding genes,
followed or accompanied by apoptosis. This scheme could not
be applied for RK33 cells, where osthole exerts its anticancer
mode of action by an unknown mechanism. It has been shown,
that osthole down-regulated the expressions of cyclin B1 and
p-Cdc2, thereby inducing G,/M arrest in human lung cancer
A549 cells (33) and G,/S arrest of cell cycle in vascular
smooth muscle cells (38). Together with our data, it seems that
the influence of osthole on cell-cycle progression depends on
the examined cell type. However, how the mechanism of
action of osthole is connected to or dependent on cancer cell
type is not known. Coumarin interactions with surface
receptors have been suggested (1), therefore the different
mode of action of osthole could be related to the type and

amount of specific receptors present on different cancer cells.
It was found that osthole could abrogate HGF-induced cell
scattering, migration and invasion in MCF-7 breast cancer
cells (37), thereby osthole blocked the growth factor-induced
effect, which supports this hypothesis. However, this issue
requires further studies.

It was shown that osthole is a more cytotoxic substance in
comparison to other coumarins against the cervical cancer
HeLa line, lymphocytic lymphoma HL-60 line and colon
cancer CoLo line (27), thereby could be used as the basic
compound for new drug development. The modifications of
osthole structure led to synthesisof many different osthole
derivatives with enhanced anticancer activity (1, 30, 39-41),
including a new type of drugs containing osthole and
inhibitors of histone deacetylases (HDAC) in one molecule,
which were more selective towards histone deacetylase
(HDAC) than other HDAC inhibitors (39-41).
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Figure 4. Osthole induces changes in gene expression in cancer cells. Quantification of TP53 and CDKNI1A gene expression by means of gPCR
method inTE671 and RK33 cells exposed (24 h) to 100 uM concentration of osthole compared to controls (¥*p<0.05, **p<0.01, ***p<0.001, n=9

measurements from 3 separate experiments, Student’s t-test).

In contrast to other chemotherapeutics, coumarin derivatives
are relatively low toxic for normal cells. It was demonstrated
that osthole was less toxic against normal fibroblast cultures
isolated from cervix than against HeLa cervical cancer cells
(33). Osthole was also proved to have quite low cytotoxicity
against other normal cells such as osteoblasts, where harmful
concentrations exceeded 670 uM (15). The concentrations
used in our experiments (up to 100 uM) were relatively low,
especially when compared with other studies (32) but still able
to elicit significant anti-cancer effect.

Conclusion

HPCCC was used for fast separation of minor osthole from
the crude extract of the herb Mutellina purpurea. The
purified compound was examined for nhibition of cell
proliferation and viability, cell cycle progression and
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induction of apoptosis in human laryngeal cancer RK33 and
human medulloblastoma TE671 cell lines. Together with
additional beneficial features of osthole treatment, including
inhibition of bone resorption (37), protection against liver
damage (20, 22) and neuroprotective activities (42), we
suggest that osthole may have a therapeutic application in the
treatment or chemoprevention of human cancers.
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