
Abstract. A zinc-finger gene in autoimmune thyroid disease
susceptibility region (ZFAT) was originally identified as a
highly conserved immune-related transcriptional regulator
containing one adenosine-thymidine (AT)-hook and 18 C2H2-
type zinc-finger domains. Subsequently, roles of ZFAT in
development, primitive haematopoiesis, angiogenesis,
immune responses and several common diseases, such as
multiple sclerosis, hypertension and cancer, have been
demonstrated. Previously, we recorded a ZFAT protein
expression in MOLT-4 human acute T-lymphoblastic
leukaemia cells, while ZFAT knockdown activated caspases
and induced apoptosis in these cells. Hence, the precise
functions of ZFAT are of particular interest in cancer
research. In this article, we have reviewed investigations on
the roles of ZFAT in haematopoietic and angiogenesis, and
discussed the possible involvement of ZFAT in
haematopoietic malignancies. 

Recent studies have indicated a central role for the aberrant
expression of transcription factors in the pathobiology of
haematopoietic malignancies. Deregulated expression of
these transcription factors, which are often functionally
normal, leads to abnormal proliferation and differentiation
arrest of lymphoid progenitors (1). 

Through linkage and association analyses in a cohort of
Japanese patients with autoimmune thyroid disease (AITD) (2,
3), we identified a zinc-finger gene in the AITD susceptibility
region (ZFAT) (3). ZFAT contains 18 zinc-fingers domains and
one AT-hook and is an evolutionally conserved gene from fish
to human. ZFAT protein is highly expressed in T- and B-cells in
the lymphoid tissues in adult mice (4) and plays critical roles in
peripheral T-cell homeostasis and its receptor-mediated

responses (5). We previously reported that Zfat deficiency
(Zfat–/–) in the mouse is embryonically lethal by embryonic
day 8.5 and ZFAT is a critical transcriptional regulator for
primitive haematopoiesis (6) and is functionally involved in
regulation of apoptosis of mouse embryonic fibroblasts and
MOLT-4 human acute T-lymphoblastic leukaemia cells (7, 8).
We also found that ZFAT is expressed in human umbilical vein
endothelial cells (HUVECs) and demonstrated that endothelial
cell assembly and the branch point formation of capillary-like
structures in HUVECs are impaired by the reduction of ZFAT
expression through the use of ZFAT miRNA. These studies
suggest that ZFAT is a key mediator of the development of
specific cell lineages such as lymphocyte and endothelial cells,
though the molecular and functional details in cancer
development have not been determined. Here, we focus on the
roles of ZFAT in the haematopoietic system and angiogenesis,
and discuss the possible involvement of ZFAT in
haematopoietic malignancies.

The Role of ZFAT in the Haematopoietic System

During embryonic development, mesodermal progenitors give
rise to haemangioblasts, which have differentiation potential
for both endothelial and haematopoietic lineages (9-11).
Haemangioblasts arise in the primitive streak and then
migrate into extra-embryonic yolk sacs to form blood islands
(12, 13). Blood islands are the foci of haemangioblasts, which
form a luminal layer of endothelial cells that produce
haematopoietic progenitor cells, and are eventually assembled
into a functional vascular network that transfers nutrients
from the yolk sac to the embryo proper (14, 15). Recent
studies have revealed that T-cell acute lymphocytic leukemia
1 (SCL/TAL1), a basic helix–loop–helix transcription factor,
is essential for differentiation of haemangioblasts into
haemogenic endothelium (9, 16-20). TAL1 also plays pivotal
roles in vascular and haematopoietic development when in
complex with LIM domain only 2 (LMO2) and GATA-
binding protein-1 (GATA1) (17, 21-25). LMO2 functions as a
bridging molecule between TAL1 and GATA1 in the DNA-
binding complex (22). GATA1 also functions as a key
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molecule in the differentiation of erythroid lineages (26, 27).
However, transcriptional regulation of upstream genes
remains elusive. Recently, we found that Zfat−/− mice are
embryonic-lethal, with impaired differentiation of
haematopoietic progenitor cells in blood islands, precisely
where ZFAT is highly expressed. Expression levels of Tal1,
Lmo2 and Gata1 in Zfat−/− yolk sacs are greatly reduced
compared with those of wild-type mice, and chromatin
immunoprecipitation (ChIP)–polymerase chain reaction
(PCR) analysis revealed Zfat binding to promoter regions of
these genes in vivo. Furthermore, profound reductions in Tal1,
Lmo2 and Gata1 protein expression were observed in Zfat−/−

blood islands (6). We also found that vascular endothelial
growth factor receptor-2 (Vegfr2), runt-related transcription
factor 1 (Runx1) and integrin alpha 2b (platelet glycoprotein
IIb of IIb/IIIa complex, antigen CD41) are directly regulated
by the Zfat targets Tal1, Lmo2 and Gata1 (6) (Figure 1).
These results suggest that Zfat is indispensable for mouse
embryonic development, and functions as a critical
transcription factor in primitive haematopoiesis. Currently, we
are generating knock-in reporter mice to elucidate ZFAT
expression during embryogenesis. 

Role of ZFAT in Angiogenesis

ZFAT mRNA was ubiquitously expressed in tissues, but had
lower expression levels in the non-immune-related tissues
than in the immune-related tissues (3). This suggests that
ZFAT might also play physiological roles in non-immune-
related cells. Recently, genetic variants of ZFAT are
reportedly associated with adult height in Japanese and
Korean populations (28, 29), equine body size (30, 31) and
with several other diseases including hypertension and
cancer (32, 33). It is of great interest that a genetic variant
of ZFAT was found to be strongly associated with interferon-
β responsiveness in multiple sclerosis (34). These findings
suggest that ZFAT might have critical roles in non-immune-
related cells involved in human diseases or altered
physiological phenotypes.

Angiogenesis is the cellular mechanism by which the
primitive vasculature is remodeled into a mature vascular bed

comprising arteries, capillary networks and veins (35).
Vascular remodeling is an active process of structural
alteration that involves changes in cellular processes, including
cell growth, cell death and cell penetration into the
extracellular matrix (36). The mechanisms of vascular
remodeling, in which endothelial cells play pivotal roles,
include penetration via the sprouting and branching of vessels
into avascular regions. This is observed under physiological
and pathological conditions, such as wound healing,
neovascularization in tumors, inflammation, autoimmune
diseases and obesity (37-40). We previously found evident
expression of ZFAT in HUVECs, and evaluated the
physiological roles for ZFAT in the angiogenic responses of
HUVECs (41). We established HUVEC transfectants
expressing ZFAT miRNA through the use of lentiviruses. The
relative growth rates for HUVECs and HUVEC transfectants
with ZFAT miRNA were not significantly different, indicating
that the ZFAT in HUVECs is not involved in proliferation or
apoptosis, which are essential components of vascular
remodeling. The HUVEC transfectants with the control
miRNA manifested assembly into capillary-like structures
and the branch point formation of interconnected capillary-like
structures, whereas the capillary-like network formations of
the HUVEC transfectants with ZFAT miRNA were
dramatically impaired. We further quantified the number of the
segments and the segment lengths between these transfectants.
The number of the segments of the HUVEC transfectants with
ZFAT miRNA decreased, indicating impaired branch point
formation in the capillary-like structures caused by the
reduction in ZFAT expression. Furthermore, the average
segment length of the capillary-like structures in the HUVEC-
transfectants with ZFAT miRNAs was significantly higher,
indicating that impaired branch point formation due to the
reduction of ZFAT expression culminated in the increase in
the length of each segment in the capillary-like structure
(Figure 2). Indeed, Lazrak et al. demonstrated that ectopic
expression of wild-type TAL1 accelerated the formation of
capillary-like structures in vitro and in vivo (42). These
findings suggest that ZFAT may regulate TAL1 in HUVECs
and play various physiological roles depending on the cell
type and environmental conditions. 
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Figure 1. Possible involvement of A zinc-finger gene in autoimmune thyroid disease susceptibility region (ZFAT) in haematopoietic system. 



Role of ZFAT in Cancer Development 

We previously showed that ZFAT regulates apoptosis in
MOLT-4 human T-cell acute lymphocytic leukaemia (T-ALL)
cells (8) and recently found ZFAT expression in other types
of haematopoietic cancer cell lines (data not shown). Another

recent study also demonstrated a correlation between ZFAT
copy numbers and ovarian cancer (32). These studies
indicate critical roles of ZFAT in cancer progression.

For example, the most frequent targets of genetic
alterations in human lymphoid leukaemias are transcription
factor genes with essential functions in blood cell
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Figure 2. Schematic illustration of capillary-like structure with (+) and without (–) A zinc-finger gene in autoimmune thyroid disease susceptibility
region (ZFAT). 

Figure 3. Differential role of A zinc-finger gene in autoimmune thyroid disease susceptibility region (ZFAT)/ T cell acute lymphocytic leukemia 1
(TAL1) signalling between early haematopoietic development and haematopoietic malignancies. 



development. During early haematopoietic development,
TAL1 is required for the generation of all blood cell lineages
(17) and haemogenic endothelium (9), but it is not required
for the generation and function of haematopoietic stem cells
during adult haematopoiesis (43). TAL1 is overexpressed in
T-ALL as a result of the t(1;14) translocation or site-specific
deletions in approximately one-fourth of childhood T-ALL
cases (44). However, these two mechanisms cannot account
for all instances of TAL1 overexpression in this disease,
indicating that other mechanisms, such as ZFAT
overexpression, are involved in these processes. The
constitutive expression of ZFAT is suggested to induce
subsequent tumour growth and angiogenesis through TAL1
activation (Figure 3). To confirm this hypothesis, we will
investigate expression levels of ZFAT and TAL1 in different
kinds of haematopoietic cancer cell lines. 

Conclusion

In summary, ZFAT is an essential signalling molecule in
haematopoietic development, angiogenesis and cancer.
Deregulation of other ZFAT targets, such as LMO2 (45) and
GATA1 (46) are also suggested to be critical in
haematopoietic malignancies, and future studies will
elucidate the detailed mechanism for the transcriptional
regulation of ZFAT targets. 
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