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Human Pancreatic Cancer Cells with Acquired
Gemcitabine Resistance Exhibit Significant Up-regulation
of Peroxiredoxin-2 Compared to Sensitive Parental Cells

SHIGEYUKI SUENAGA !, YASUHIRO KURAMITSU!, YUFENG WANG!, BYRON BARON!,
TAKAO KITAGAWA!, JUNKO AKADA!, KAZUHIRO TOKUDA!, SEIJT KAINO?Z,
SHIN-ICHIRO MAEHARA?, YOSHIHIKO MAEHARA3, ISAO SAKAIDA? and KAZUYUKI NAKAMURA !

Departments of 'Biochemistry and Functional Proteomics, and
2Hepatology and Gastroenterology, Yamaguchi University Graduate School of Medicine, Ube, Japan;
3Department of Surgery and Science, Graduate School of Medical Sciences,
Kyushu University, Fukuokashi, Fukuoka, Japan

Abstract. Gemcitabine (2’-deoxy-2’-difluorodeoxycytidine)
is the only clinically effective drug for pancreatic cancer.
However, high levels of inherent and acquired tumor
resistance to gemcitabine lead to difficulty of chemotherapy
for pancreatic cancer. We have reported on a proteomic study
of gemcitabine-sensitive KLMI and -resistant KLMI-R
pancreatic cancer cells, and identified some proteins which
were shown to be up-regulated in KLMI-R compared to
KLMI cells. In those proteomic studies, peroxiredoxin-2 was
listed as an up-regulated protein in KLMI-R cells.
Peroxiredoxin-2 is a member of a family of peroxiredoxins
providing a protective role for redox damage. In this study,
the expression of peroxiredoxin-2 in KLMI1 and KLMI-R
cells was compared. It was found that peroxiredoxin-2 was
significantly up-regulated in KLMI-R cells compared to
KLMI cells (p<0.001). However, peroxiredoxin-1 expression
was significantly down-regulated in KLM1-R cells (p<0.001).
These results suggest that peroxiredoxin-2 is a possible
candidate biomarker for predicting the response of patients
with pancreatic cancer to treatment with gemcitabine.

Gemcitabine  (2’-deoxy-2’-difluorodeoxycytidine), a
deoxycytidine analog with structural and metabolic
similarities to cytarabine, is one of the most effective
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chemotherapeutic drugs for pancreatic cancer (1). However,
many patients with pancreatic cancer exhibit intrinsic or
acquired resistance to gemcitabine (2). To identify the
proteins with differential expression between pancreatic
cancer cells sensitive and resistant to gemcitabine, we used
KLM1 and KLMI-R cells, respectively. KLM1 is highly
sensitive to gemcitabine (3); KLM1-R was established from
KLMLI by exposure to 10 ug/ml of gemcitabine, with a half-
maximal (50%) inhibitory concentration (ICsy) value for
gemcitabine a 20-fold greater compared to KLMI.

Our recent proteomic studies revealed many proteins
whose expressions were different between KLM1 and KLM1-
R cells, and a validation study using western blotting and
knock-down identified heat-shock protein-27 (HSP27) as a
key molecule playing an important role in gemcitabine
resistance (4-6). Peroxiredoxin-2 was included in these
candidate proteins. Peroxiredoxin-2 is a member of a family
of thiol-specific antioxidant proteins. The peroxiredoxin
family has six isoforms (peroxiredoxin-1, to 6).
Peroxiredoxin-1 protects cells from cell death by scavenging
reactive oxygen species (ROS). Peroxiredoxin-3 is a
mitochondrial antioxidant protein which scavenges H,O, in
cooperation with thiol and peroxynitrite, and detoxifies
peroxynitrite. Tsutsui et al. demonstrated that the
overexpression of peroxiredoxin-3 protected the heart against
post-myocardial infarction remodeling and failure in mice (7).
Peroxiredoxin-4 is a ubiquitously expressed endoplasmic
reticulum (ER)-localized peroxiredoxin. This peroxiredoxin
plays roles in both H,O, removal and disulfide formation (8).
Peroxiredoxin-5 plays roles in reducing alkyl hydroperoxides
or peroxynitrite using cytosolic or mitochondrial thioredoxins
(9). Peroxiredoxin-6 plays roles in both glutathione (GSH)
peroxidase and phospholipase A2 activities, and uses GSH as
an electron donor to reduce H,O, (10, 11).
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Many studies have reported on relations between
peroxiredoxins and resistance to induced cell death in tumor
cells. An etoposide-resistant neuroblastoma cell line showed
overexpression of peroxiredoxin-1 (12). Peroxiredoxin-2 was
up-regulated in radiation-resistant MCF-7 breast cancer cells
(13). Chung et al. reported that overexpression of
peroxiredoxin-2 in SNU638 cells lead to greater resistant to cell
death induced by cisplatin and H,O, than control cells (14).
Kubota et al. reported the higher expression of peroxiredoxin-2
in poor responders to therapy of osteosarcoma (15). Dai et al.
reported the down-regulation of peroxiredoxin-3 in platinum-
resistant ovarian cancer cell lines (16). On the other hand, Wang
et al. reported peroxiredoxin-3 expression was significantly
higher in patients with the platinum-resistant epithelial ovarian
cancer (17). Peroxiredoxin-4 protected head-and-neck squamous
cell carcinoma cells from radiation-induced apoptosis (18). On
the other hand, Smith ez al. reported that peroxiredoxin-4 was
down-regulated in cisplatin-resistant breast cancer cells (19).
Peroxiredoxin-6 was found to be strongly up-regulated in
cisplatin-resistant cervical squamous cell carcinoma cells after
cisplatin exposure (20). Knockdown of peroxiredoxin-6 in
peroxide-induced cytotoxicity-resistant hepatoma cell line Hepa
1-6 increased apoptosis (21). Peroxiredoxin-6 was up-regulated
in 5-fluorouracil-treated colorectal SW480 cancer cells (22).

In the present study, in order to validate the comparison
of the expression of peroxiredoxin-2 between gemcitabine-
sensitive and resistant pancreatic cancer cells, we performed
western blot analysis of peroxiredoxin-1 and -2 in KLM1
and KLM1-R cells.

Materials and Methods

Cancer cell lines and culture conditions. KLM1 and KLMI1-R, human
pancreatic cancer cell lines, were kindly provided by the Department
of Surgery and Science at the Kyushu University Graduate School of
Medical Science. KLM1 is gemcitabine-sensitive, and resistant
KLMI1-R was established by exposing KLM1 cells to gemcitabine,
as described previously (3). These cells were cultured in RPMI-1640
medium supplemented with 10% fetal bovine serum (inactivated at
56°C for 30 min), 2 mM L-glutamine, 1.5 g/l sodium bicarbonate,
10 mM HEPES, and 1.0 mM sodium pyruvate, and maintained in a
humidified 5% carbon dioxide-95% air mixture at 37°C.

Sample  preparation. Sub-confluently growing cells were
homogenized in ice-cold lysis buffer [SO mM Tris-HCI, pH 7.5, 165
mM NaCl, 10 mM NaF, 1 mM sodium vanadate, 1 mM
phenylmethylsulfonyl fluoride (PMSF), 10 mM EDTA, 10 pg/ml
aprotinin, 10 pg/ml leupeptin, and 1% NP40], and centrifuged at
15,000 xg for 30 min at 4°C. The supernatants were collected and
used for western blotting after protein concentrations were measured
by Lowry method (23). The samples from KLM1 and KLM1-R
cells were prepared five times independently.

Western blotting. For western blot analysis, 15 pg of protein
samples were used. Sodium dodecyl sulfate-polyaclylamide gel
electrophoresis (SDS-PAGE) was carried out in precast gels (12%
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acrylamide; Mini-PROTEAN TGX Gels, Bio-Rad, Hercules, CA,
USA). Proteins separated by SDS-PAGE were transferred to
polyvinylidene difluoride membranes (Immobilon-P; Millipore,
Bedford, MA, USA) electrophoretically. After blotting, the
membranes were blocked with Tris-buffered saline (TBS) containing
5% skimmed milk for 1 h at room temperature. Membranes were
then incubated with rabbit polyclonal antibody to peroxiredoxin-1
(0.5 npg/ml, ab41906; Abcam, Cambridge, MA, USA), rabbit
polyclonal antibody against peroxiredoxin-2 (0.5 ug/ml, R8656;
Sigma-Aldrich, St. Louis, MO, USA) or goat polyclonal antibody
to actin (1:500, #sc-1616; Santa Cruz Biotechnology, Santa Cruz,
CA, USA) overnight at 4°C. The membranes were reacted with
horseradish peroxidase-conjugated secondary antibodies (dilution
range 1:10,000; Jackson ImmunoResearch Laboratories Inc., West
Grove, PA, USA) for 1 h at room temperature after washing with
TBS containing 0.05% Tween-20 three times and once with TBS.
Bands of peroxiredoxin-1, peroxiredoxin-2 and actin were
visualized by enhanced chemiluminescence system (ImmunoStar
Long Detection; Wako, Osaka, Japan), and recorded by using Image
Reader LAS-1000 Pro (Fujifilm Corporation, Tokyo, Japan) (24-26).
Progenesis PG240 software (Nonlinear Dynamics Ltd., Newcastle-
upon-Tyne, UK) quantified the expression levels of the bands of
peroxiredoxin-1 and peroxiredoxin-2 (27).

Statistical analysis. Statistical significance of differences between
KLM1 and KLMI1-R cells was calculated by Student’s r-test. A p-
value of <0.05 was accepted as being significant.

Results

Western blot analysis of peroxiredoxin-1 and 2 in KLM1-R
and KLM1I cells. Intracellular proteins from gemcitabine-
resistant KLM1-R and -sensitive KLM1 cells were analyzed
by western blotting with primary antibody against
peroxiredoxin-1, peroxiredoxin-2 and actin. The protein
expression of peroxiredoxin-2 was up-regulated significantly
in KLMI1-R cells compared to KLM1 cells (Figure 1). The
expression of peroxiredoxin-2 was significantly up-regulated
in KLM1-R compared to KLM1 cells (p<0.001 by Student’s
t-test) (Figure 2). On the other hand, peroxiredoxin-1 was
significantly down-regulated in KLM1-R cells (p<0.001)
(Figures 3 and 4).

Discussion

The present study validated the significant up-regulation of
peroxiredoxin-2, which was identified as being up-regulated
by a recent proteomic study (4), in gemcitabine-resistant
KLMI-R cells by means of western blot analysis with a
specific antibody to peroxiredoxin-2 (p<0.001 by Student’s
t-test). On the other hand, peroxiredoxin-1 was found to be
down-regulated in KLM1-R cells.

Peroxiredoxins are thiol-specific antioxidant enzymes
which regulate H,O, levels and protect cells from oxidative
stress. Peroxiredoxin-2 thus promotes survival of cells under
oxidative stress. Overexpression of peroxiredoxin-2 was
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Figure 1. Western blot analysis of peroxiredoxin-2 in gemcitabine-resistant human pancreatic cancer KLMI1-R cells and parental gemcitabine-
sensitive KLM1 cells. Fifteen micrograms of protein from KLMI-R cells and KLMI cells were used. Bands of 22 kDa are peroxiredoxin-2, and
43 kDa bands are actin, as a loading control. The samples from KLMI-R and KLM1 were prepared five times independently.

found to protect cells from oxidative stress-induced apoptosis
(28), while down-regulation of peroxiredoxin-2 increased
harmful effects of oxidative stress on cardiomyocytes (29).
Peroxiredoxin-1 regulates H,0, levels to maintain
appropriate cellular redox levels as does peroxiredoxin-2.
The expression of peroxiredoxin-1 is high in many types of
cancer cells and tissues (30, 31). Suppression of
peroxiredoxin-1 resulted in a modest increase in peroxide-
induced cytotoxicity towards MCF-7  mammary
adenocarcinoma cells (32). Knock-down of peroxiredoxin-1
significantly enhanced HeLa cell sensitivity to beta-
lapachone, a potential anticancer agent (33). Kim et al.
reported that peroxiredoxin-1 expression status predicted for
recurrence and shorter survival in stage I non-small cell lung
cancer after surgery (34, 35).

Many groups have reported on the relation between drug
resistance and peroxiredoxin-1 or peroxiredoxin-2. Kalinina et
al. reported that cisplatin-resistance was accompanied by a
significant increase in the expression of peroxiredoxin-1 and 2
genes in cancer cell lines (36). Urbani et al. reported the
overexpression of peroxiredoxin-1 in an etoposide-resistant
neuroblastoma cell line (12). Peroxiredoxin-2-overexpressing
SNU638 gastric cancer cells became more resistant to cisplatin
(14). Not only the basic analysis of the relationship of
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Figure 2. Comparison of the intensities of bands of peroxiredoxin-2
between gemcitabine-resistant human pancreatic cancer KLM1-R cells
and parental gemcitabine-sensitive KLMI. The intensities of
peroxiredoxin-2 were significantly up-regulated in KLM1-R compared
to KLM1 (p<0.001 by Student’s t-test) (n=5).

peroxiredoxin-1 and 2 and chemoresistance, but also the
clinical analysis of the relationship between peroxiredoxin-2
and prognosis of patients was carried out by Kubota et al.
They reported peroxiredoxin-2 to be a predictive biomarker of
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Figure 3. Western blot analysis of peroxiredoxin-1 in gemcitabine-resistant human pancreatic cancer KLMI-R cells and parental gemcitabine-
sensitive KLM1 cells. Fifteen micrograms of protein from KLMI-R cells and KLM1 cells were used. Bands of 22 kDa are peroxiredoxin-1. The

samples from KLMI-R and KLM1 were prepared five times independently.

response to induction chemotherapy in osteosarcoma (15). Not
only peroxiredoxin-2, but also peroxiredoxin-1 was reported
as a protein involved in drug resistance. Why in the case of
gemcitabine-sensitive KLM1 and -resistant KLM1-R cells are
peroxiredoxin-1 and 2 expressed differently? Human
peroxiredoxin-1 and 2 are more than 90% homologous in their
amino acid sequences (37); the 10% difference in sequence
may have a key role in this differential effect on expression.
Westwood et al. reported on a peroxiredoxin inhibitor
conoidin A. Conoidin A bound covalently to the peroxidatic
cysteine of Toxoplasma gondii peroxiredoxin-2, inhibiting its
enzymatic activity in vitro, and also inhibited hyperoxidation
of human peroxiredoxin-2 (38, 39). Therefore, the clinical
application of conoidin A for patients with pancreatic cancer
who need treatment with gemcitabine might be expected.
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