Novel Vitamin D Hydroxyderivatives Inhibit Melanoma Growth and Show Differential Effects on Normal Melanocytes

ANDRZEJ T. SLOMINSKI^{1,2}, ZORICA JANJETOVIC¹, TAE-KANG KIM¹, ADAM C. WRIGHT¹, LAURA N. GRESE¹, SAMUEL J. RINEY¹, MINH N. NGUYEN³ and ROBERT C. TUCKEY³

¹Department of Pathology and Laboratory Medicine and ²Division of Dermatology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A.; ³School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA, Australia

Abstract. Background/Aims: To test the activity of novel hydroxyvitamin D_3 analogs $(20(OH)D_3, 20, 23(OH)_2D$ and $1,20(OH)_2D_3$) on normal and malignant melanocytes in comparison to $1,25(OH)_2D_3$. Materials and Methods: Human epidermal melanocytes and human and hamster melanoma cells were used to measure effects on proliferation and colony formation in monolayer and soft agar. Cell morphology and melanogenesis were also analyzed. QPCR was used to measure gene expression. Results: Novel secosteroids inhibited proliferation and colony formation by melanoma cells in a similar fashion to $1,25(OH)_2D_3$, having no effect on melanogenesis. These effects were accompanied by ligand-induced translocation of VDR to the nucleus. In normal melanocytes 1α -hydroxyderivatives $(1,25(OH)_2D_3)$ and $1,20(OH)_2D_3$) had stronger anti-proliferative effects than $20(OH)D_3$ and $20,23(OH)_2D_3$, and inhibited dendrite formation. The cells tested expressed genes encoding VDR and enzymes that activate or inactivate vitamin D_3 . Conclusion: Novel secosteroids show potent anti-melanoma activity in vitro with $20(OH)D_3$ and $20,23(OH)_2D_3$ being excellent candidates for pre-clinical testing.

There is a significant public interest in vitamin D_3 due to its wide beneficial effects in both prevention and therapy for various diseases including cancer (1, 4, 13, 23). These pleiotropic (not fully explained) effects are believed to be secondary to the action of 1,25-dihydroxyvitamin D_3 (calcitriol; 1,25(OH)₂D₃), which is generated through sequential hydroxylation of vitamin D_3 at positions C25 by CYP27A1 or CYP2R1, and C1 by CYP 27B1 (1, 4, 13, 23).

Correspondence to: Andrzej Slominski, 930 Madison Avenue, Room 525, Memphis, TN, 38163, U.S.A. Tel: 901 4483741, e-mail: aslominski@uthsc.edu

Key Words: 20-hydroxyvitamin D derivatives; melanoma, melanocytes, anti-proliferative activity.

pathway of vitamin D metabolism, initiated by cytochrome P450scc (CYP11A1), that generates in vitro novel vitamin D hydroxyderivatives, different from the classical 1,25(OH)₂D (27, 38, 41) (Figure 1). This pathway can also operate in vivo (31). The main product of CYP11A1-initiated metabolism of vitamin D₃ is 20-hydroxyvitamin D₃ (20(OH)D₃) (11, 27). It can further be hydroxylated by CYP11A1 to 20,23dihydroxyvitamin D₃ (20,23(OH)₂D₃) and a number of other hydroxy-products (27, 40, 41). Both 20(OH)D₃ and $20,23(OH)_2D_3$ are biologically active, with anti-leukemic properties (30) and exhibit anti-proliferative and prodifferentiation activities in human epidermal keratinocytes (15, 16, 43), inhibiting NF-кB activity (14, 16). Importantly, 20(OH)D₃ is non-toxic (non-calcemic) in rats (30) and mice (42), at doses as high as 3 μ g/kg and 30 μ g/kg, respectively. $20(OH)D_3$ can be hydroxylated to $1,20(OH)_2D_3$ by CYP27B1 (32, 37) and 1,20(OH)D₃ can also be produced from the 1(OH)D₃ prodrug by hydroxylation at C20, mediated by P450scc (39) (Figure 1). Although 1,20(OH)D₃ is biologically active, addition of the hydroxygroup in position 1α causes a partial calcemic activity (30).

Most recently, we defined a previously unrecognized

Despite significant progress in understanding mechanisms defining malignant behavior of melanoma cells, there is still no therapy for metastic melanoma [reviewed in (9, 10)]. Although the use of B-RAF inhibitors leads to attenutation of the disease, it has undesirable side-effects and there is a high recurrence rate due to development of resistance to B-RAF inhibitors (9, 34). Other types of therapy are predominantly ineffective for metastatic melanoma (8, 9, 24). Therefore, there is a need to develop new strategies to manage this devastiting disease that has a high mortality rate.

The anti-melanoma activity of $1,25(OH)_2D_3$ *in vitro* was established more than 30 years ago (5). Subsequent studies have also shown inhibitory effects of $1,25(OH)_2D_3$ on some human melanoma lines cultured *in vitro* [reviewed in (6, 21, 36)]. A potential beneficial involvement of vitamin D is also indicated by the reverse correlation between serum levels of

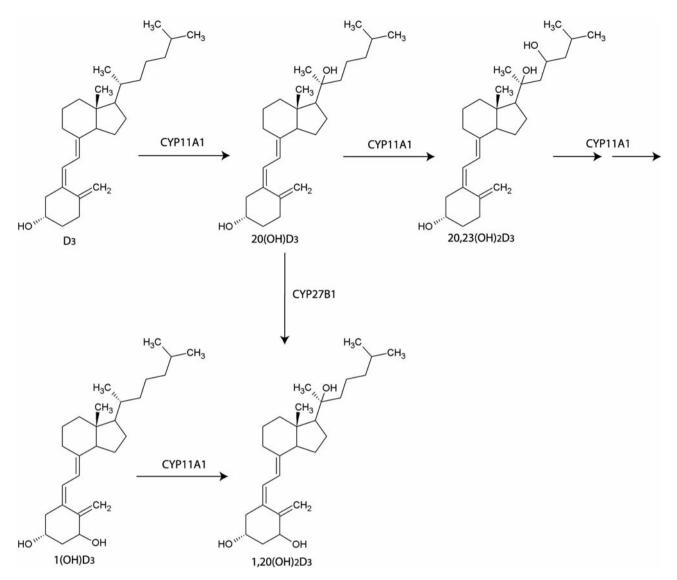


Figure 1. Structures and enzymatic methods of production of novel vitamin D_3 hydroxy-derivatives.

 $1,25(OH)D_3$ or local cutaneous production of vitamin D and melanoma progression, and the markedly increased incidence of melanoma in patients having mutations in the vitamin D receptor (VDR) (reviewed in (6, 7, 21, 36)). Furthermore, recent clinicopathological studies demonstrate a decrease or loss of VDR or CYP27B1 expression during melanoma progression, with loss of either of these markers connected with an increased mortality rate (2, 3). These observations indicate that targetting VDR signaling may represent a promising strategy for malignant melanoma treatment. Therefore, we tested several melanoma lines for antimelanoma activities of novel non-calcemic vitamin D₃ derivatives derived from the action of CYP11A1. The biological activity of all these cell lines was also tested on normal human epidermal melanocytes.

Materials and Methods

Materials. 1,25(OH)₂D₃ was from Fluka Chemicals (Sigma-Aldrich, St. Louis, MO). 20(OH)D₃ and 20,23(OH)₂D₃ were produced by the enzymatic hydroxylation of vitamin D₃ catalyzed by CYP11A1, while 1,20(OH)₂D₃ was produced by CYP11A1-catalysed hydroxylation of 1(OH)D₃, as described previously (39, 41). Products, extracted with dichloromethane, were first purified by preparative thin-layer chromatography, then further purified by reverse phase HPLC as detailed in (39, 41). The hydroxyderivatives of vitamin D₃ were divided (5 µg/vial), dried and stored at -80° C until use. Stock solutions were prepared in ethanol at a concentration of 100 µM.

Cell culture. Human SKMEL-188 melanoma cells (gift from Dr Ashok Chokraborty, Yale University), established from a human metastatic melanoma, were maintained in Ham's F10 medium supplemented with glucose, L-glutamine, pyridoxine hydrochloride (Cellgrow, Manassas, VA, USA), 5% fetal bovine serum (FBS) (Sigma, St. Louis, MO, USA) and 1% penicillin/ streptomycin/ amphotericin antibiotic solution (Sigma, St. Louis, MO), as described previously (29). YUROB, YUKSI and YULAC human melanoma cells (gift of Dr. Ruth Halaban, Yale University) were cultured in Opti-MEM media supplemented with 10% serum (12). Human WM35, WM1341, WM164, WM98D and SBCE2 melanoma cells (gift of Dr Meenhard Herlyn from Wistar Intitute) and the hamster AbC1 melanoma line were cultured as described previously (22, 25). Normal human epidermal melanocytes were established from foreskin of African-American donors following protocols described previously (32). They were grown in melanocyte MBM media supplemented with MGF (Lonza, Walkersville, MD)

Cell proliferation assays. To measure cell growth, human melanocytes (HEMn) and melanoma cells (SK Mel 188) were seeded in 25 cm² flasks and grown until 80% confluent. Ham's F10 plus 5% charcoal-stripped FBS media was used for melanoma cells or MBM + MGF for melanocytes. The media were changed every third day and 100 nM of $1,25(OH)_2D_3$, $20,23(OH)_2D_3$, $1,20(OH)_2D_3$, $20(OH)D_3$ or ethanol (solvent control) were added every day. After 7 days the cells were trypsinized, stained with Trypan blue, and viable cells were counted under the microscope.

Testing of DNA synthesis was carried out as described previously (17, 26). Cells were inoculated into 24-well plates at 5,000 cells/well. After overnight incubation at 37°C, the cultures were placed in serum-free media to synchronize cells at the G_0/G_1 phase of the cell cycle. After 24 h, vitamin D₃ derivatives (100 nM) were added along with fresh media containing growth supplements and incubated for an additional 48 h. After a defined period of time, [3H]-thymidine (specific activity 88.0 Ci/mmol: Amersham Biosciences, Piscataway, NY, USA) was added to a final concentration of 0.5 µCi/mL in the medium. After 4 h of incubation at 37°C, media were discarded, cells precipitated in 10% TCA for 30 min, washed twice with 1 mL PBS and then incubated with 1 N NaOH/ 1% SDS (250 µL/well) for 30 min at 37°C. The extracts were collected in scintillation vials and 5 mL of scintillation cocktail was added. 3H-radioactivity incorporated into DNA was measured with a beta counter (Direct Beta-Counter Matrix 9600; Packard).

Colony forming assay. The assay followed standard methodology as described previously (19, 43). Briefly, cells were plated in 24-well plates at a density of 192 cells/well in medium containing 5% charcoal-treated FBS, 1% antibiotic solution and vitamin D_3 hydroxyderivatives, at graded concentrations or vehicle control. After 10 days of culture with media changed every 3 days, the colonies were fixed with 4% paraformaldehyde and stained with 5% crystal violet. The number and size of the colonies were measured using an ARTEK counter 880 (Dynex Technologies Inc., Chantilly, VA, USA). Colony forming units were calculated by dividing the number of colonies by the number of cells plated and then multiplying by 100.

Growth in soft agar. The tumorogenicity of human SKMEL-188 and hamster AbC1 melanoma cells was determined by their ability to form colonies in soft agar, as previously described (33). Briefly, cells were detached from the flasks by trypsinization and re-suspended (~1,000 cells/well) in 250 μ L of medium containing 0.4% agarose and 5% charcoal-stripped serum (HyClone). Cell suspensions were placed on a 0.8% agar layer in 4×24 well plates. Compounds were

Table I. Sequences of the primers used for qPCR.

Oligo	Sequence		
Cyclophilin B	L TGTGGTGTTTGGCAAAGTTC		
	R GTTTATCCCGGCTGTCTGTC		
CYP2R1	L AGCCTCATCCGAGCTTCC		
	R CCACAGTTGATATGCCTCCA		
CYP11A1	L CCAGACCTGTTCCGTCTGTT		
	R AAAATCACGTCCCATGCAG		
CYP27A1	L CAGTACGGAACGACATGGAG		
	R GGTACCAGTGGTGTCCTTCC		
CYP27B1	L CTTGCGGACTGCTCACTG		
	R CGCAGACTACGTTGTTCAGG		
CYP24	L CATCATGGCCATCAAAACAAT		
	R GCAGCTCGACTGGAGTGAC		
VDR	L CTTACCTGCCCCTGCTC		
	R AGGGTCAGGCAGGGAAGT		

added from ethanol stocks (100 μ M) to final concentrations of 0.1 nM or 10 nM, in 100 μ L media. Each condition was tested in quadruplicate. An ethanol solvent control (amount of ethanol equivalent to test) as well as a media-only control was included in the assay. Cells were allowed to grow at 37°C with 5% CO₂ over two weeks with secosteroids in fresh media (100 μ L) being added after every 72 h. Soft agar colonies were scored and stained with 0.5 mg/ml MTT reagent (Promega), at 500 μ L/well after two weeks. Colonies were then counted under the microscope.

Melanogenesis. Cell pigmentation was evaluated macroscopically, while tyrosinase activity (DOPA oxidase) was assayed in cell extracts as described previously (29).

VDR translocation. In order to determine VDR translocation from the cytoplasm to the nucleus, induced by hydroxyvitamin D_3 compounds, SKMEL-188 cells were transduced with pLenti-CMV-VDR-EGFP-pgk-puro, resulting in stable expression of the VDR-EGFP fusion protein (32). The cells were incubated with hydroxyvitamin D_3 derivatives for 2 h, followed by fixing with 4% paraformaldehyde and analyzed under a fluorescent microscope. The cells containing fluorescent nuclei were counted from the pictures taken from at least 6 different fields. Data are presented as a percentage of cells with fluorescent nuclei relative to the total cell number.

Quantitative PCR analysis. RNA from skin cells and tissue was isolated using an Absolutely RNA Miniprep Kit (Stratagen, USA). Reverse transcription was performed using a Transcriptor First Strand cDNA Synthesis Kit (Roche, USA). Real-time PCR was performed using cDNA and a Cyber Green Master Mix (n=3). Reactions were performed at 95°C for 5 min and next 50 cycles (95°C for 15 s, 60°C for 30 s and 72°C for 30 s). Data were collected on a Roche Light Cycler 480. The amounts were compared to a reference gene (Cyclophilin B) using a comparative C_T method. Relative gene expression data were calculated using the $\Delta\Delta$ Ct method. Changes in gene expression are presented as relative quantities using mean Δ Ct (normalized target) as a difference between target gene and reference gene in the cycle of appearance in time (C). A list of primers is presented in Table I.

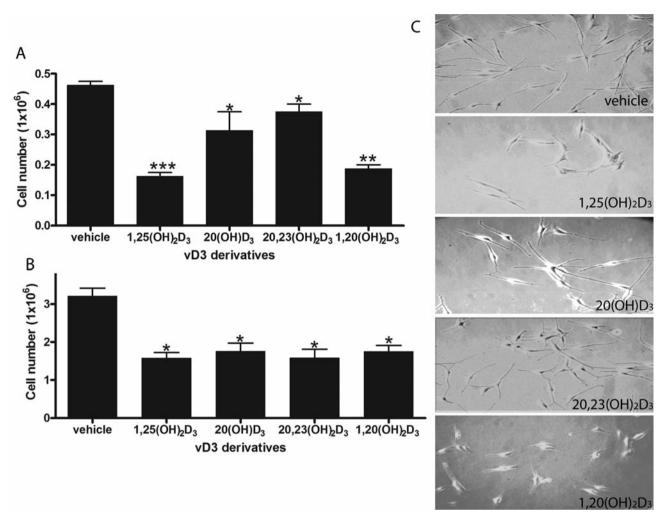


Figure 2. Comparison of the anti-proliferative activity of the vitamin D derivatives $1,25(OH)_2D_3$, $20(OH)D_3$, $20,23(OH)_2D_3$ and $1,20(OH)_2D_3$ between cultured normal human epidermal melanocytes (A) and human SKMel-188 melanoma cells (B). The cells were treated with the secosteroids (10^{-7} M) for 7 days and their numbers were counted. Data are shown as mean±SD (n=3); *p<0.05; **p<0.01; ***p<0.001. 1,25(OH)_2D_3 and $1,20(OH)_2D_3$, but not $20(OH)D_3$ or $20,23(OH)_2D_3$ inhibited dendrite formation (C). The differences between ethanol-treated control and treatments were analyzed by the Students t-test.

Statistical analysis. Data are presented as mean \pm SD, and they were analyzed with Student's *t*-test (for 2 groups) and appropriate *post*-hoc test (for more than 2 groups) using Prism 4.00 (GraphPad Software, San Diego). Statistically significant differences were considered when p < 0.05.

Results

 $1,25(OH)_2D_3$ and the novel vitamin D_3 hydroxy-derivatives inhibited proliferation of normal and malignant melanocytes, with a differential effect noted for normal melanocytes (Figure 2). Specifically, $1,25(OH)_2D_3$ and $1,20(OH)_2D_3$ showed stronger inhibitory effects on melanocytes than $20,23(OH)_2D_3$ and $20(OH)D_3$ (Figure 2A). In contrast, all compounds caused comparable inhibition of humam melanoma (SKMel-188) and $1,20(OH)_2D_3$, but not $20(OH)D_3$ and $20,23(OH)_2D_3$, inhibited dendrite formation by normal melanocytes (Figure 2C). None of the compounds, including $1,25(OH)_2D_3$, had a significant effect on pigmentation and tyrosinase activity in normal and malignant melanocytes (data not shown). A similar inhibitory effect of the secosteroids on DNA sysnthesis was observed in another human melanoma line, YUROB (Figure 3). Interestingly, $20(OH)D_3$, $20,23(OH)_2D_3$ and $1,20(OH)_2D_3$ caused greater inhibition than $1,25(OH)_2D_3$ in this cell line. We also screened other human melanoma cell lines (YUKSI, YUTICA, YULAC, WM35, WM1341, WM164, WM98D and SBCE2), using the MTT assay to estimate the effects of $1,25(OH)_2D_3$, $1,20(OH)_2D_3$, $20(OH)D_3$ and $20,23(OH)_2D_3$ on

growth in vitro (Figure 2B). Furthermore, only 1,25(OH)₂D₃

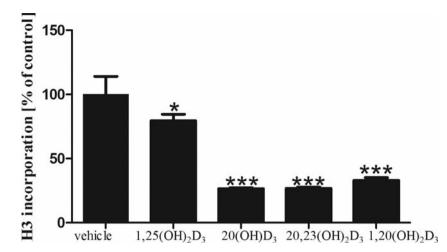


Figure 3. Novel vitamin hydroxyderivatives inhibit DNA synthesis in human melanoma cells. YUROB cells were treated for 48 h with $1,25(OH)_2D_3$, $20(OH)D_3$, $20,23(OH)_2D_3$, or $1,20(OH)_2D_3$ (10^{-7} M) and the rate of ³H-thymidine incorporation into DNA served as a measure of proliferative activity. Data are presented as mean±SD (n=4). Statistical significance was estimated using one-way ANOVA. Incorporation into DNA is shown as a percentage (%) of control (ethanol-vehicle treated cells). *p<0.05 and ***p<0.001.

Table II. Expression of genes encoding VDR and enzymes metabolising vitamin D_3 .

Cell Line	CYP11A1	CYP27A1	CYP27B1	CYP2R1	CYP24	VDR
WM98D	0.92±0.24	2.95±0.64	3.08±0.23	3.08±0.23	-1.71±0.32	6.55±0.62
YUROB	-3.74±0.24	6.42±0.34	5.46±0.23	5.46±0.23	1.14±0.30	8.15±0.3
YULAC	1.83±0.45	10.68±0.78	4.98±0.29	4.98±0.29	1.03±0.30	5.55±0.3
WM164	9.14±0.11	8.96±0.06	16.28±0.14	19.83±0.1	11.28±0.11	3.56±0.11
WM1341	15.28±0.18	7.90±0.03	15.53±0.23	13.93±0.09	11.56±0.28	4.53±0.19
SK Mel 188	5.24±0.28	-2.51±0.36	5.24±0.28	5.24±0.28	-11±0.35	5.24±0.28
SBCE2	15.46±0.69	8.78±0.32	12.85±0.16	11.04±0.13	5.61±0.47	8.69±0.13

Real-time PCR was performed using cDNA and a Cyber Green Master Mix (n=3). The amounts were compared to a reference gene (Ciclophilin B) using a comparative C_T method. Changes in gene expression are presented as a relative quantity using mean ΔCt (normalized target) as a difference between the target gene and the reference gene in the cycle of appearance in time (C). The lower the number, the higher is the expression level.

cell growth, and found that all of the compounds tested inhibited the growth of these lines *in vitro* (data not shown).

To better define the anti-melanoma activities of the novel secosteroids, we tested their effect on the ability to form colonies by human melanoma liens in monolayer (plating efficiency). We found a dose-dependent inhibitory effect for all compounds, with $1,25(OH)_2D_3$ showing the highest potency (Figure 4). Finally, we tested the ability of the secosteroids to inhibit growth in soft agar (anchorage independent cell growth), and found that $20(OH)D_3$ and $20,23(OH)_2D_3$ inhibited growth in soft agar of hamster (AbC1) (Figure 5) and human (SKMel-188) melanoma cells (Figure 6). Both of these compounds showed similar effects to those seen for $1,25(OH)_2D_3$.

Using the previously described melanoma line transfected *via* lentivirus with the VDR-GFP construct (18, 32), we

found that the novel secosteroids induced translocation of VDR from the cytoplams to the nucleus (Figure 7), consistent with the action of VDR. We also screened human melanoma lines for the expression of genes encoding 25-hydroxylases (CYP27A1 and CYP2R1), 1 α -hydroxylase (CYP27B1), 24-hydroxylase (CYP24), cytochrome P450scc (CYP11A1) and VDR; although all of these genes were found to be expressed, there was a considerable variation between the different melanoma lines tested (Table II).

Discussion

In this study we showed, for the first time, that novel vitamin D_3 hydroxyderivatives generated by the action of CYP11A1 display differential phenotypic effects against normal epidermal melanocytes and human and hamster melanoma cell lines.

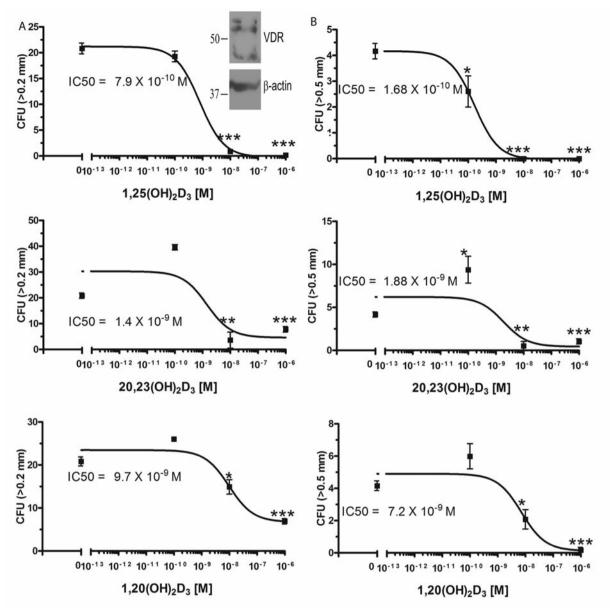


Figure 4. Novel vitamin D hydroxyderivatives inhibit the ability of human melanoma cells to form colonies in monolayer (platting efficiency). SBCE2 cells were plated at a density of 20 cells/cm², grown in the presence or absence of $1,25(OH)_2D_3$, $20,23(OH)_2D_3$ or $1,20(OH)_2D_3$, and after 10 days the formation of colonies larger than 0.2 mm (A) or 0.5 mm (B) in diameter was determined. Data are shown as mean±SD (n = 4); statistical significance was estimated using one-way ANOVA and presented as *p<0.05, **p<0.01 and ***p<0.001. Insert shows western blot detection of VDR in SBCE2 human melanoma cells. The whole extracts from cells were subjected to immunoblotting with anti-VDR, and anti- β -actin (internal control) as described before (3). The numbers on the left in the insert represent molecular weight in kD.

Thus, the classical hormonally active form of vitamin D_3 , $1,25(OH)_2D_3$, and novel $1,20(OH)D_3$ significantly inhibited proliferation of normal epidermal melanocytes and inhibited dendrite formation. $20(OH)D_3$ and $20,23(OH)_2D_3$ displayed a lower inhibitory effect on proliferation and no effect on cell morphology. This selectivity was absent in human melanoma, where all compounds inhibited proliferation by a similar degree with no effect on cell morphology.

P450scc hydroxylates vitamin D_3 (D_3) in a sequential fashion: $D_3 \rightarrow 20(OH)D_3 \rightarrow 20,23(OH)_2D_3$ (31, 41). In addition, $20(OH)D_3$ *in vitro* and *in vivo* is hydroxylated by CYP27B1 in position 1 α (the same enzyme that generates 1,25(OH)_2D_3) to produce 1,20(OH)_2D_3 (32, 37). Our previous studies have shown that addition of a hydroxyl group to C1 α modifies the action of the parental 20(OH)D_3 by producing some calcemic activity and increasing the ability to stimulate CYP24

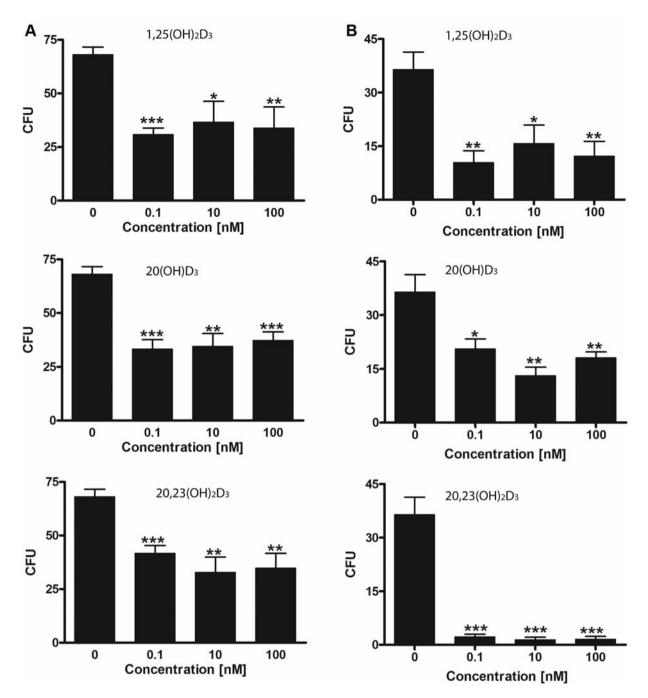


Figure 5. Novel vitamin hydroxyderivatives inhibit the anchorage-independent growth (ability to form colonies in soft agar) of hamster melanoma cells. AbC1 melanoma cells were plated in soft agar at 1,000 cells/well and grown in the presence or absence of $1,25(OH)_2D_3$, $20(OH)D_3$ or $20,23(OH)_2D_3$. After two weeks colonies with a diameter larger than 0.2 mm (A) or 0.5 mm (B) were counted. Data are shown as mean±SD (n=4); statistical significance was estimated using one-way ANOVA and presented as *p<0.05, **p<0.01 and ***p<0.001.

expression (30, 32). In these studies we showed that addition of 1α -hydroxyl group increases the ability of $20(OH)D_3$ to modulate the phenotype of normal melanocytes in a similar way to $1,25(OH)_2D_3$. However, proliferation of melanoma cells is inhibited in a similar manner by compounds without a 1α -

hydroxyl group, which is similar to the effects described in leukemias (30) and normal keratinocytes (39).

 $1,25(OH)_2D_3$ is a recognized inhibitor of melanoma proliferation acting in a context-dependent fashion, making vitamin D a good candidate to treat skin cancers [reviewed in

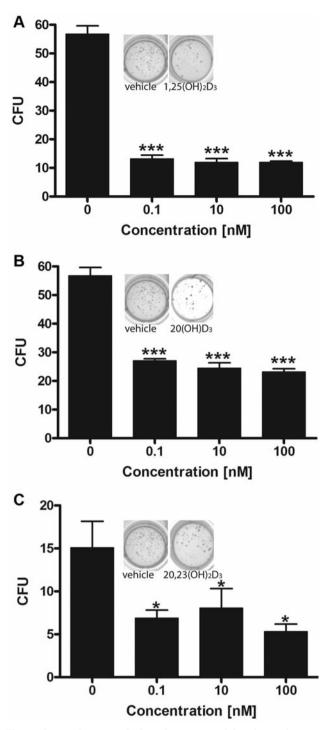


Figure 6. Novel vitamin hydroxyderivatives inhibit the anchorageindependent growth (ability to form colonies in soft agar) of human melanoma cells. SKMel-188 human melanoma cells were grown in soft agar in the presence or absence of $1,25(OH)_2D_3$ (A), $20(OH)D_3$ (B) or $20,23(OH)_2D_3$ (C). Panels A and B are from the same, while panel C from a separate experiment. After two weeks colonies with a diameter larger than 0.5 mm were counted. Data are shown as mean±SD (n=4); statistical significance was estimated using one-way ANOVA and presented as *p<0.05 and **p<0.001. Insert: Representative plates incubated with solvent (ethanol) or 10^{-7} M secosteroids.

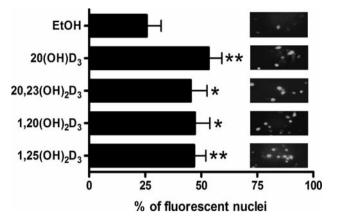


Figure 7. The effect of vitamin D_3 derivatives on the translocation of VDR from the cytoplasm to the nucleus. The panel on the right shows photographs of the cells with fluorescent VDR-EGFP fusion protein in the nucleus. The left pannel shows the percentage of cells with fluorescent nuclei. Data are presented as means±SEM (n≥6). The differences between ethanol-treated controls and treatment samples were analyzed by the student's t-test: p<0.05 (*), p<0.01 (**).

(6, 7, 36)]. Unfortunately, pharmacological use of vitamin D or its analogs is limited because of hypercalcemic effects causing secondary organ failure and possible death (35). Thus the major obstacle in using 1,25(OH)₂D₃ for melanoma treatment is its small therapeutic window defined by its calcemic effects. The CYP11A1-derived 20(OH)D is noncalcemic at doses as high as 3-4 μ g/kg in rats (30, 32) and 30 $\mu g/kg$ in mice (42). We have also observed that 20,23(OH)₂D₃ is non-calcemic in mice (unpublished). Our initial studies also demonstrated that 20(OH)D₃ and related 20(OH)D₂ show anti-proliferative activity towards the human SKMel-188 melanoma line (14, 32). In this study we extended the spectrum of melanoma lines and parameters tested and found inhibitory effects of 20(OH)D₃ as well as the previously untested 20,23(OH)₂D₃ in 10 human melanoma lines. Using selected human melanoma cell lines we showed that both 20(OH)D₃ and 20,23(OH)₂D₃ inhibit plating efficiency as well as the ability to grow in soft agar, illustrating their anti-tumorogenic activity. We also found that 20(OH)D₃ and 20,23(OH)₂D₃ inhibit the growth of the hamster melanoma line AbC1 in soft agar with a slightly stronger effect for 20(OH)₂D₃. This identifies this line, as well as human lines SBCE2, SKMel-188 and YUROB, as excellent testing models for planned pre-clinical studies in animals. We also excluded from further testing the mouse S91 Cloudman line that did not respond or responded poorly to vitamin D₃ derivatives, which is consistent with other reports on this cell line [reviewed in (36)].

The phenotypic effects of vitamin D_3 are mediated trough an interaction with VDR, and the activity of vitamin D_3 depends on its sequetial hydroxylations by CYP27A1 or CYP2R1, and CYP27B1 (classical activating), and CYP24 (classical inactivating) pathways (13, 23). This study showed that the novel secosteroids tested stimulate VDR translocation from the cytoplasm to the nucleus, confirming our previous finding of activation of VDR by CYP11A1-derived vitamin D analogues (18, 32). Expression of genes encoding the enzyme that metabolizes vitamin D was heterogenous without a clear association with a significant modulatory effect. Since all melanoma lines tested express CYP11A1, we believe that exogenously added 20(OH)D₃ enters metabolic pathways mediated by this enzyme with production of other equi-or potentially more potent compounds, including 20,23(OH)₂D₃. This is further rationalized by our previous finding that $20(OH)D_3$ is a relatively poor substrate for CYP27B1 (32, 37), and our demonstration that phenotypic activity of $20(OH)D_2$ does not require its activation in position 1α (32). The role of 25- and 24-hydroxylases on the activity of 20(OH)D₃ remains to be tested.

There are conflicting reports on regulation of melanin pigmentation by $1,25(OH)_2D_3$ [reviewed in (28, 36)]. In the present study we observed a lack of a significant effect (stimulation or inhibition) of $1,25(OH)_2D_3$ and novel vitamin D_3 analogs on melanogenesis in pure cultures of melanocytes or melanoma cells. This is in agreement with studies published by others showing lack of such an effect in cell cultures (20). However, we cannot entirely exclude a role of vitmain D_3 on the regulation of melanin pigmentation *in vivo* because $1,25(OH)_2D_3$ and $1,20(OH)_2D_3$ inhibited the formation of dendrites, which are involved in the transfer of melanosomes to the keratinocytes. Nevertheless, the lack of effect of $20(OH)D_3$ and $20,23(OH)_2D_3$ on these functions indicate that the vitamin D derivatives without a hydroxyl group at C1 α are not involved in the regulation of melanin pigmentation.

In conclusion, we have shown that novel non-calcemic $20(OH)D_3$ and $20,23(OH)_2D_3$ demonstrate potent antimelanoma activity *in vitro* with lesser effects on normal melanocytes. Both $20(OH)D_3$ and $20,23(OH)_2D_3$ are excellent candidates for pre-clinical testing, since they are non-calcemic and non-toxic, and they also show anti-cancer activity on leukemia, breast and liver cancers (30, 42).

Acknowledgements

This work was supported by NIH [Grant R01AR052190] and in part by [Grant 1R01AR056666-01A2], both to AS.

References

- 1 Bikle DD: Vitamin D metabolism and function in the skin. Mol Cell Endocrinol *347*: 80-89, 2011.
- 2 Brozyna AA, Jozwicki W, Janjetovic Z, and Slominski AT: Expression of vitamin D activating enzyme 1-alpha-hydroxylase (CYP27B1) decreases during melanoma progression. Hum Pathol, In press, 2012. DOI:10.1016/j.humpath.2012.03.031.

- 3 Brożyna AA, Jozwicki W, Janjetovic Z and Slominski AT: Expression of vitamin D receptor decreases during progression of pigmented skin lesions. Hum Pathol 42: 618-631, 2011.
- 4 Carlberg C and Molnar F: Current status of vitamin D signaling and its therapeutic applications. Curr Top Med Chem 12: 528-547, 2012.
- 5 Colston K, Colston MJ and Feldman D: 1,25-dihydroxyvitamin D_3 and malignant melanoma: the presence of receptors and inhibition of cell growth in culture. Endocrinology *108*: 1083-1086, 1981.
- 6 Denzer N, Vogt T and Reichrath J: Vitamin D receptor (VDR) polymorphisms and skin cancer: A systematic review. Dermatoendocrinol *3*: 205-210, 2011.
- 7 Egan KM: Vitamin D and Melanoma. Annals Epidemiol 19: 455-461, 2009.
- 8 Finn L, Markovic SN and Joseph RW: Therapy for metastatic melanoma: the past, present, and future. BMC Med 10: 23, 2012.
- 9 Flaherty KT: Targeting metastatic melanoma. Annu Rev Med 63: 171-183, 2012.
- 10 Flaherty KT, Hodi FS and Fisher DE: From genes to drugs: targeted strategies for melanoma. Nat Rev Cancer 12: 349-361, 2012.
- 11 Guryev O, Carvalho RA, Usanov S, Gilep A and Estabrook RW: A pathway for the metabolism of vitamin D₃: unique hydroxylated metabolites formed during catalysis with cytochrome P450scc (CYP11A1). Proc Natl Acad Sci USA *100*: 14754-14759, 2003.
- 12 Halaban R, Zhang W, Bacchiocchi A, Cheng E, Parisi F, Ariyan S, Krauthammer M, McCusker JP, Kluger Y and Sznol M: PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment Cell Melanoma Res 23: 190-200, 2010.
- 13 Holick MF: Vitamin D deficiency. N Engl J Med *357*: 266-281, 2007.
- 14 Janjetovic Z, Brozyna AA, Tuckey RC, Kim TK, Nguyen MN, Jozwicki W, Pfeffer SR, Pfeffer LM and Slominski AT: High basal NF-kappaB activity in nonpigmented melanoma cells is associated with an enhanced sensitivity to vitamin D₃ derivatives. Br J Cancer 105: 1874-1884, 2011.
- 15 Janjetovic Z, Tuckey RC, Nguyen MN, Thorpe EM Jr. and Slominski AT: 20,23-dihydroxyvitamin D_3 , novel P450scc product, stimulates differentiation and inhibits proliferation and NF-kappaB activity in human keratinocytes. J Cell Physiol 223: 36-48, 2010.
- 16 Janjetovic Z, Zmijewski MA, Tuckey RC, DeLeon DA, Nguyen MN, Pfeffer LM and Slominski AT: 20-Hydroxycholecalciferol, product of vitamin D₃ hydroxylation by P450scc, decreases NF-kappaB activity by increasing IkappaB alpha levels in human keratinocytes. PLoS One 4: e5988, 2009.
- 17 Kim TK, Chen J, Li W, Zjawiony J, Miller D, Janjetovic Z, Tuckey RC and Slominski A: A new steroidal 5,7-diene derivative, 3betahydroxyandrosta-5,7-diene-17beta-carboxylic acid, shows potent anti-proliferative activity. Steroids 75: 230-239, 2010.
- 18 Kim TK, Wang J, Janjetovic Z, Chen J, Tuckey RC, Nguyen MN, Tang EK, Miller D, Li W and Slominski AT: Correlation between secosteroid-induced vitamin D receptor activity in melanoma cells and computer-modeled receptor binding strength. Mol Cell Endocrinol: In press, 2012. DOI:10.1016/j.mce.2012.04.001.
- 19 Li W, Chen J, Janjetovic Z, Kim TK, Sweatman T, Lu Y, Zjawiony J, Tuckey RC, Miller D and Slominski A: Chemical synthesis of 20S-hydroxyvitamin D₃, which shows antiproliferative activity. Steroids 75: 926-935, 2010.

- 20 Mansur CP, Gordon PR, Ray S, Holick MF and Gilchrest BA: Vitamin D, its precursors, and metabolites do not affect melanization of cultured human melanocytes. J Invest Dermatol 91: 16-21, 1988.
- 21 Pinczewski J and Slominski A: The potential role of vitamin D in the progression of benign and malignant melanocytic neoplasms. Exp Dermatol 19: 860-864, 2010.
- 22 Pisarchik A and Slominski AT: Alternative splicing of CRH-R1 receptors in human and mouse skin: identification of new variants and their differential expression. FASEB J *15*: 2754-2756, 2001.
- 23 Plum LA and DeLuca HF: Vitamin D, disease and therapeutic opportunities. Nat Rev Drug Discov 9: 941-955, 2010.
- 24 Ribas A, Hersey P, Middleton MR, Gogas H, Flaherty KT, Sondak VK and Kirkwood JM: New challenges in endpoints for drug development in advanced melanoma. Clin Cancer Res 18: 336-341, 2012.
- 25 Slominski A, Moellmann G, Kuklinska E, Bomirski A and Pawelek J: Positive regulation of melanin pigmentation by two key substrates of the melanogenic pathway, L-tyrosine and Ldopa. J Cell Sci 89(Pt 3): 287-296, 1988.
- 26 Slominski A, Semak I, Wortsman J, Zjawiony J, Li W, Zbytek B and Tuckey RC: An alternative pathway of vitamin D metabolism. Cytochrome P450scc (CYP11A1)-mediated conversion to 20hydroxyvitamin D2 and 17,20-dihydroxyvitamin D₂. FEBS J 273: 2891-2901, 2006.
- 27 Slominski A, Semak I, Zjawiony J, Wortsman J, Li W, Szczesniewski A and Tuckey RC: The cytochrome P450scc system opens an alternate pathway of vitamin D₃ metabolism. FEBS J 272: 4080-4090, 2005.
- 28 Slominski A, Tobin DJ, Shibahara S and Wortsman J: Melanin Pigmentation in Mammalian Skin and Its Hormonal Regulation. Physiol Rev 84: 1155-1228, 2004.
- 29 Slominski A, Zbytek B and Slominski R: Inhibitors of melanogenesis increase toxicity of cyclophosphamide and lymphocytes against melanoma cells. Int J Cancer 124: 1470-1477, 2009.
- 30 Slominski AT, Janjetovic Z, Fuller BE, Zmijewski MA, Tuckey RC, Nguyen MN, Sweatman T, Li W, Zjawiony J, Miller D, Chen TC, Lozanski G and Holick MF: Products of vitamin D_3 or 7-dehydrocholesterol metabolism by cytochrome P450scc show anti-leukemia effects, having low or absent calcemic activity. PLoS One 5: e9907, 2010.
- 31 Slominski AT, Kim T-K, Shehabi HZ, Semak I, Tang EKY, Nguyen MN, Benson HAE, Korik E, Janjetovic Z, Chen J, Yates CR, Postlethwaite A, Li W and Tuckey RC: *In vivo* evidence for a novel pathway of vitamin D_3 metabolism initiated by P450scc and modified by CYP27B1. FASEB J doi: 10.1096/fj.12-208975.2012.
- 32 Slominski AT, Kim TK, Janjetovic Z, Tuckey RC, Bieniek R, Yue J, Li W, Chen J, Nguyen MN, Tang EK, Miller D, Chen TC and Holick M: 20-Hydroxyvitamin D₂ is a noncalcemic analog of vitamin D with potent anti-proliferative and prodifferentiation activities in normal and malignant cells. Am J Cell Physiol 300: C526-541, 2011.
- 33 Slominski AT, Zmijewski MA, Semak I, Sweatman T, Janjetovic Z, Li W, Zjawiony JK and Tuckey RC: Sequential metabolism of 7-dehydrocholesterol to steroidal 5,7-dienes in adrenal glands and its biological implication in the skin. PLoS One 4: e4309, 2009.

- 34 Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, McArthur GA, Hutson TE, Moschos SJ, Flaherty KT, Hersey P, Kefford R, Lawrence D, Puzanov I, Lewis KD, Amaravadi RK, Chmielowski B, Lawrence HJ, Shyr Y, Ye F, Li J, Nolop KB, Lee RJ, Joe AK and Ribas A: Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 366: 707-714, 2012.
- 35 Spina CS, Tangpricha V, Uskokovic M, Adorinic L, Maehr H and Holick MF: Vitamin D and cancer. Anticancer Res 26: 2515-2524, 2006.
- 36 Szyszka P, Zmijewski MA and Slominski AT: New vitamin D analogs as potential therapeutics in melanoma. Expert Rev Anticancer Ther 12: 585-599, 2012.
- 37 Tang EK, Voo KJ, Nguyen MN and Tuckey RC: Metabolism of substrates incorporated into phospholipid vesicles by mouse 25hydroxyvitamin D₃ 1alpha-hydroxylase (CYP27B1). J Steroid Biochem Mol Biol 119: 171-179, 2010.
- 38 Tieu EW, Li W, Chen J, Baldisseri DM, Slominski AT and Tuckey RC: Metabolism of cholesterol, vitamin D_3 and 20hydroxyvitamin D_3 incorporated into phospholipid vesicles by human CYP27A1. J Steroid Biochem Mol Biol *129*: 163-171, 2012.
- 39 Tuckey RC, Janjetovic Z, Li W, Nguyen MN, Zmijewski MA, Zjawiony J and Slominski A: Metabolism of lalphahydroxyvitamin D₃ by cytochrome P450scc to biologically active lalpha,20-dihydroxyvitamin D₃. J Steroid Biochem Mol Biol 2008.
- 40 Tuckey RC, Li W, Shehabi HZ, Janjetovic Z, Nguyen MN, Kim TK, Chen J, Howell DE, Benson HA, Sweatman T, Baldisseri DM and Slominski A: Production of 22-hydroxy metabolites of vitamin D₃ by cytochrome p450scc (CYP11A1) and analysis of their biological activities on skin cells. Drug Metab Dispos 39: 1577-1588, 2011.
- 41 Tuckey RC, Li W, Zjawiony JK, Zmijewski MA, Nguyen MN, Sweatman T, Miller D and Slominski A: Pathways and products for the metabolism of vitamin D₃ by cytochrome P450scc. FEBS J 275: 2585-2596, 2008.
- 42 Wang J, Slominski A, Tuckey RC, Janjetovic Z, Kulkarni A, Chen J, Postlethwaite AE, Miller D and Li W: 20-hydroxyvitamin D inhibits proliferation of cancer cells with high efficacy while being non-toxic. Anticancer Res 32: 739-746, 2012.
- 43 Zbytek B, Janjetovic Z, Tuckey RC, Zmijewski MA, Sweatman TW, Jones E, Nguyen MN and Slominski AT: 20-Hydroxyvitamin D₃, a product of vitamin D₃ hydroxylation by cytochrome P450scc, stimulates keratinocyte differentiation. J Invest Dermatol 128: 2271-2280, 2008.

Received June 22, 2012 Accepted July 13, 2012