
Abstract. Bacterial lipopolysaccharide (LPS), which is
generally considered to be an endotoxin, is the major
constituent of the outer membrane of Gram-negative
bacteria. The structure of LPS consists of three regions;
lipid A, core oligosaccharide and O-antigen polysaccharide
(O-PS). The structures of lipid A and core oligosaccharide
are highly conserved among bacterial genera, but that of
O-PS varies and differs in common bacterial species.
Although studies of the biological activities of LPS have
mainly focused on the lipid A moiety, a recent study
gradually clarified the importance of O-PS to elicit the
biological activities. In this review, we summarize previous
studies on the correlation between the structure of O-PS
and the biological activity of LPS, and discuss the
possibility of innovative drug development using modified
and synthetic LPS.

Overview of the Correlation Between the
Structure and Function of
Lipopolysaccharide(LPS) 

LPS exists virtually throughout the environment and can be
found in air, food, water, skin and intestine (1, 2). However,
LPSs can cause severe damage to the host immune system
through systemic inflammation (known as endotoxin
shock), which occurs under specific conditions, such as

when LPS is administered intravenously. On the other hand,
LPSs can also regulate enteric immunity by oral
administration, without serious side effects (3). Therefore,
LPS has now been re-recognized as exohormone capable of
regulating homeostatic balance in relation to the external
environment (1).

LPS consists of three regions: lipid A, the core
oligosaccharide and O-antigen polysaccharide (O-PS). The
lipid A moiety is highly conserved among bacteria and is
known to elicit biological activities in immune cells,
especially macrophages (4, 5). These findings were verified
using various synthetic types of lipid A which elicit
different biological activities, such as induction of
inflammatory cytokine production (6-10). Moreover, a few
reports have focused on the correlation between
polysaccharides and biological activities (11). The
functional roles of polysaccharides have usually been
investigated using rough type (short sugar chain) or smooth
type (long sugar chain) LPSs derived from Salmonella (12).
Jiang et al. reported that the smooth and rough type LPSs
induce expression of different levels of tumour necrosis
factor-α (TNF-α) and interferon-β (IFN-β) because of
differences in LPS-binding proteins (LBPs), cluster of
differentiation-14 (CD14) and toll-like receptor 4 (TLR4)-
dependent signalling, respectively (13). In addition, Huber
et al. reported that rough type LPS was immediately
transferred to TLR4-myeloid differentiation-2 complexes on
the cell surface, whereas the smooth type LPS requires
further molecules, such as LBPs and CD14, for such
transfers to occur (14). These reports suggest that cytokine
production is modified by O-PS in LPS, and this
phenomenon appears to be caused by the chain length of
O-PS. In summary, it can be said that O-PS in LPS is able
to elicit biological activities based on reports that state the
interactions between O-PS and transporter proteins.
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O-PS Potentially Acts as Direct 
Modulator for Macrophage Activation

In a pilot study, we investigated the correlation between O-
PSs and biological activities using LPSs derived from
Pantoea agglomerans (LPSp) and from Escherichia coli
O111:B4 (LPSe, known as conventional LPS), which have
almost the same structure as lipid A (15). The study showed
that the level of production of interleukin (IL)-12 and IL-17
differed in human peripheral blood mononuclear cells
(PBMCs) following incubation with LPSe and LPSp, which
led us to hypothesize that O-PS affects biological activities
through an unidentified receptor present on the cell surface.
It has been reported previously that antibodies against O-PS
of LPSp can be used to detect the amount of LPSp (clone:
4E11, 34G2) (16). Different LPSs usually have different
molecular weights depending on their diversity, thus making
it difficult to analyze their function. Therefore, it is
considered that these antibodies are a good tool for directly
clarifying the influence of O-PS. 

As mentioned above, LPSe displayed broad and ladder
bands on sodium dodecylsulfate-polyacrylamide gel
electrophoresis analysis due to heterogeneity of its
polysaccharide, but LPSp displayed mainly two bands in that
analysis. These two bands from LPSp were purified by gel
filtrated chromatography and designated as high molecular
weight LPSp (HM-LPSp) and low molecular weight LPS
(LM-LPSp), respectively (Figure 1). These LPSs appeared to
have the same lipid A structure because of their same
bacterial origin, suggesting that they are indeed good tools
for analyzing the function of polysaccharides compared to
previous reports.

Our group then examined the biological activities of HM-
LPSp and LM-LPSp using O-PS-specific monoclonal
antibodies (IgG and IgM). We found that these monoclonal
antibodies suppressed the production of TNF-α and Nitric
Oxide in RAW264.7 cells following incubation with HM-
LPSp, whereas this was not the case following incubation
with LM-LPSp (data not shown). These in vitro studies
suggest that the biological activities of O-PS can directly
modulate the effects of LPS. In addition, we also found that
IgG suppressed TNF-α production more than IgM.
Therefore, these findings are not the result of steric
hindrance of the antibodies. 

The Possible Existence of Novel 
Receptors for O-PS in LPSp 

It is well known that lectins have a wide variety of important
roles, including cell adhesion, cell signalling, immune
response, host pathogen interactions and control of cellular
growth. Recently, C-type lectin receptors (CLRs) and C-type
lectin receptor-like domains (CLRDs) have been reported to

function as adaptor molecules modulating TLR signalling.
CLRs are a type II transmembrane protein with a
carbohydrate recognition domain to recognize the sugar
structure in a calcium ion-dependent manner. Many
molecules have been shown to convey signals via immune
receptor tyrosine-based activation or inhibitory motif (ITAM
or ITIM) regions in intracellular domain. It has been reported
that ITAM or ITIM signalling could positively or negatively
regulate TLR responses in macrophages (17-20). Therefore,
it is considered that CLRs or CLRDs are candidate receptors
for O-PS, and the biological activities of O-PS possibly
mediate CLR or CLRD signaling. Table Ⅰ shows that the
major CLRs and CLRDs are suggested to be involved with
TLRs. Although the structure of O-PS in LPSp includes
repeating units of rhamnose and glucose (15), the previously
reported CLRs or CLRDs have no specificity for these. This
suggests that the biological activities of O-PS in LPSp are
possibly mediated by unknown or uncharacterized
receptor(s), including lectins. 
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Figure 1. Silver-stained profile of Lipopolysaccharide derived from Pantoea
agglomerans (LPSp). LPSp sample (10 μg) was separated by Tricine
sodium dodecylsulfate -polyaclylamidegel electrophoresis and stained with
commercial silver staining kit. LPSp was separated mainly into two bands
of high molecular mass (from 32.5 to 52.5 kDa) and low molecular mass
(from 3 to 7 kDa), named HM-LPSp and LM-LPSp, respectively.



Prospective Study

As mentioned above, the activation of macrophages by LPS
was found to be depended on the lipid A structure. However,
our data and recent studies support the fact that O-PS in LPS
potentially plays a crucial role in eliciting biological activities
through a novel receptor. Importantly, under various immune
conditions, each tissue macrophage remarkably displays
pleiotropic properties (39, 40). Therefore, there is a possibility
that the involvement of O-PS in different biological activities is
different in each tissue macrophages. It is recognized that LPS
derived from the environment exerts beneficial effects through

the mucosal immune system (41, 42). On the other hand, it is
well known that macrophages and dendritic cells distributed in
mucosal tissue have an immune tolerogenic property so as not
to cause unnecessary inflammation in host (43-48). In our
previous studies, it was reported that the resident intestinal
macrophages (IMs) stimulated with LPS did not produce TNF-
α, but those pre-treated with immunoglobulin did (49). This
suggests that IMs potentially respond to LPS like other tissue
macrophages. In addition, we also reported that orally
administered LPS prevents various diseases (50-55). Therefore,
LPS distributed in the environment undoubtly affects
biological activities through the mucosal immune system.
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Table Ⅰ. A summary of the C-type lectin receptor (CLR)-mediated toll-like receptor (TLR)s expressed in macrophages.

CLRs Name Localization Ligand Regulation Function in macrophages Reference
(Group) specificity factor (mainly involvement of TLRs)

Group 1 MMR DCs, LC, Mannose, fucose, ↑PGE, IL-4, Endocytosis, antigen (21-24)
(mannose receptor (CD206) Mo, Mφ, LE GalNAc, sulphated IL-10, IL-13 uptake, cell adhesion
family) sugars via cysteine ↓IFN-γ, LPS

rich domain.

Group 2 DC-SIGN DCs, HC, Mycobacteria, ↑IL-13 Modulates TLR3,4,5- (25-27)
(asialoglycoprotein (CD209) dMφ, aMφ fungi, viruses ↓LPS induced cytokine responses
receptor family)

SIGN-R1 pMφ, LSE, Glycans from different unknown Associates with the (28, 29)
(CD209b) LNsE, pathgens, dextran, TLR4-MD2 complex to 

Streptococcus pneumonia enhance signal transduction
CPS, HIV, ICAM-3 in response to LPS

M-ASGP-BP pMφ, Gal/GalNAc unit ↓LPS Endocytosis, the mRNA (30, 31)
(Clec10A) myeloid DCs expression of M-ASGP-BP

is down-regulated by
the LPS-mediated TLR4 

pathway involving 
NF-κB activation

Dectin-1 Mφ, DC, Fungi, β-1,3 and ↑IL-4, IL-13 Phagocytosis, antigen (32-34)
(β-glucan receptor) PMN, T-cell β-1,6-linked glucans ↓IL-10, LPS uptake, cell adhesion, 

TLR2-independent 
signal transduction,
the role of dectin-1 

in vivo is unresolved

Mincle pMφ, Mannose, TDM, ↑LPS, NF-α, Transcriptional target (19, 35-38)
(Clec4e, Clecsf9) Gal/GalNAc IL-6, IFN-γ of NF-IL6 and C/EBPβ, 

Candida albicans, Up-regulated in the lungs 
pneumococcal pneumonia, of mice infected with 

influenza A virus pneumococcal pneumonia 
or influenza A virus

MMR: macrophage mannose receptor; DC-SIGN: dendritic cell-specific intracellular adhesion molecule-3-grabbing non integrin (SIGN); SIGN-
R1: SIGN-related 1; M-ASGP-BP: macrophage asialoglycoprotein-binding protein; Mincle: macrophage-inducible C-type lectin, DC: dendritic cell;
LC: Langerhans cells; HC: Hofbauer cells; LE: lymphatic endothelium; LNsE: lymph node sinuses endothelium; LSE: liver sinusoidal endothelium;
Mφ: decidual, alveolar, peritoneal macrophages; Mo: monocytes; PMN: polymorphic nuclear cells; TDM: trehalose-6,6-dimycolate (mycobacterial
cell wall glycolipid that is the most studied immunostimulatory component of M. tuberculosis); GalNAc: N-acetyl galactosamine; HIV: human
immunodeficiency virus; CPS: capsular polysaccharide; IL: interleukin; ICAM: intercellular adhesion molecule; PGE: prostaglandin E; IFN-
γ:interferon-gamma; NF-κB: nuclear factor-kappa B.



These facts also led us to hypothesize that IMs also have
uncharacterized receptors which recognize the O-PS in LPS.
The analyses of the interaction between O-PS in LPS and
macrophages should establish a foundation for regulating
homeostasis. In the future, such studies would lead to creation
of novel drugs by the application of modified LPS adapted to
individual immune conditions.
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