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Abstract. Background: Pharmacological inhibition of the
phosphoinositide 3-kinase (PI3K)/Akt pathway prevents G cell
cycle progression into S, resulting in G; accumulation. The
hypothesis that this arrest might negatively impact on
chemotherapeutic agents primarily effective in S, G, or M-
phase was investigated. Materials and Methods: Inhibition of
PI3K/Akt pathway signaling via LY294002 and Akti-1/2 was
demonstrated by immunoblotting. Cell cycle progression was
determined by flow cytometric analysis. Cell proliferation was
assayed using the XTT cell viability assay. The Chou and
Talalay median effect principal was used to evaluate drug
interaction. Results: In SKOV3 and IGROVI human ovarian
cancer cells, LY294002 and Akti-1/2 increased the percentage
of cells in G; and reversed the cell cycle effects of cisplatin,
paclitaxel, gemcitabine and topotecan. Pathway blockade
synergistically enhanced the cytotoxicity of cisplatin and
paclitaxel, but antagonized gemcitabine and topotecan effects.
Conclusion: Pharmacological PI3K/Akt inhibition antagonizes
the efficacy of chemotherapeutic agents primarily effective in
the S or G,-phase of the cell cycle.

Ovarian cancer affects 22,000 women a year and is the 5th
leading cause of female related deaths in the US (1). The
current therapy for ovarian cancer consists of surgical
removal of the tumor followed by chemotherapy (2-4). First
line chemotherapy is comprised of a platinum-taxane
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combination, while second line treatment may include agents
such as gemcitabine or topotecan.

Activation of the oncogenic phosphoinositide 3-kinase
(PI3K)/Akt pathway has been demonstrated in ovarian cancer
cell lines and ovarian tumor tissue (5-14). In this signaling
cascade activated PI3K phosphorylates phosphoinositide 3.4
bisphosphate (PIP,) to phosphoinositide 3.4,5 trisphosphate
(PIP53), which acts to recruit the serine/threonine kinase Akt to
the membrane. Phosphorylated Akt activates several
downstream targets affecting various biological processes,
including cell proliferation and survival (15-17). The PI3K/Akt
pathway is antagonized by the tumor suppressor protein
phosphatase and tensin homolog (PTEN) via its
dephosphorylation of PIP;. Recent molecular data including
mRNA  expression, microRNA expression, promoter
methylation and DNA copy number in 489 high-grade serous
ovarian adenocarcinomas and the DNA sequences of exons
from coding genes in 316 of these tumors from The Cancer
Genome Atlas project have been analyzed (18). Amplification
of PIK3CA, the gene encoding the p110a subunit of PI3K,
Aktl and Akt2 was found in 18%, 3% and 6% of the samples,
respectively, while Pten deletions were detected in 7%.

Inhibition of the PI3K/Akt pathway has been proposed as a
strategy to sensitize tumors to chemotherapy (19, 20). The
PI3K/Akt pathway regulates the G,/S cell cycle transition via
transcriptional regulation of cell cycle proteins and reduction
of cell cycle inhibitors (21, 22). Pharmacological inhibition of
the pathway prevents G; progression into S, resulting in an
accumulation of cells in G;. This cell cycle arrest might impact
on the cytotoxic effects of chemotherapeutic agents that are
primarily effective in the S, G, or M-phases of the cell cycle.
To investigate this hypothesis four chemotherapeutic agents
with different mechanisms of action that are commonly used
for the treatment of ovarian cancer, namely cisplatin, paclitaxel,
gemcitabine and topotecan were chosen (23). Cisplatin is a
DNA alkylating agent that causes DNA breaks, paclitaxel
inhibits depolymerisation of microtubules during cell division,
gemcitabine is a nucleoside analog that causes inhibition of
DNA synthesis once incorporated into the DNA, and topotecan
is a topoisomerase I inhibitor that prevents religation of nicked

445



ANTICANCER RESEARCH 32: 445-452 (2012)

DNA during DNA synthesis. Cisplatin is rather cell cycle
unspecific and paclitaxel is most active in the M-phase, while
both gemcitabine and topotecan elicit their effects mainly
during S-phase.

The effect of PI3K/Akt pathway inhibition in combination
with cisplatin, paclitaxel, gemcitabine or topotecan, on cell
cycle progression and cell proliferation was investigated in
SKOV3 and IGROV1 human ovarian cancer cells that both
have activating PI3K/Akt pathway mutations. SKOV3 cells
contain an activating mutation (H1047R) in the PIK3CA
gene. IGROV1 cells harbor a heterozygous deletion mutation
in the Pten gene that results in low expression levels of the
PTEN protein.

Materials and Methods

Cell culture. The SKOV3 (American Type Culture Collection,
Manassas, VA, USA) and IGROV1 (National Cancer Institute,
Frederick, MD, USA) cell lines were maintained in Dulbecco’s
Modified Eagle’s Medium (DMEM) (Invitrogen, Carlsbad, CA,
USA) supplemented with 10% fetal bovine serum (FBS). The cells
were grown at 37°C in a humidified atmosphere containing 5% CO,
and 95% air.

Immunoblot assay. The cells were grown for 3-4 days on 10 cm
dishes, serum-starved overnight, then treated with or without the
PI3K inhibitor LY294002 or an allosteric inhibitor of Aktl and Akt2
phosphorylation, Akti-1/2 (24-26) (both from Sigma Aldrich; St.
Louis, MO, USA) for 24 h in the presence of serum. The cells were
then lysed with 1x cell lysis buffer (Cell Signaling Technology,
Danvers, MA, USA) and the protein concentration of the clarified
cell lysates was determined and normalized using the bicinchoninic
acid (BCA) protein assay reagent (Pierce Biotechnology, Rockford,
IL, USA). The lysates were mixed with 4x Laemmli buffer (200
mM Tris—HCI pH 6.8, 1 mM EDTA, 6% SDS, 2 mM EDTA, 4% 2-
mercaptoethanol and 10% glycerol) and analyzed by SDS-PAGE
followed by immunoblotting. Primary antibodies were obtained
from Cell Signaling Technology (phospho-4E-BP1 (eukaryotic
translation initiation factor 4E-binding protein 1) (T37/46),
phospho-Akt (S473), Akt, phospho-S6 (S240/244) and S6).
Immuno-reactive bands were visualized by chemifluorescence
(ECL-Plus; GE Healthcare Biosciences, Piscataway, NJ, USA)
detection of horseradish peroxidase (HRP)-conjugated anti-mouse
or anti-rabbit secondary antibodies (both from Cell Signaling
Technology) and captured with a Typhoon® 9400 scanner (GE
Healthcare Biosciences). The blots were stripped and reprobed for
B-actin (Santa Cruz, CA, USA) as a loading control.

Cell viability assay. Cell proliferation was assayed using the XTT
(2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-
carboxanilide inner salt) cell viability assay. The cells were seeded
in phenol red-free growth medium in 96-well microtiter plates at
5x103 cells/well and incubated overnight at 37°C. Cisplatin (Sigma
Aldrich), paclitaxel (Fisher Scientific, Houston, TX, USA),
topotecan (Sigma Aldrich) or gemcitabine (Sigma Aldrich), with or
without LY294002 or Akti-1/2, was added the next day and the cells
were incubated for 72 h at 37°C. XTT (1 mg/ml) (Invitrogen) and
PMS (phenazine methosulphate; 1 mg/ml) (Sigma Aldrich) were
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added, and the metabolism of XTT was measured over time at 450
nm on an absorbance microplate reader (ELx800, Bio-Tek
Instruments, Winooski, VT, USA).

Cell cycle flow cytometric analysis. Cell cycle progression was
studied using flow cytometry. The cells were plated at 5x105
cells/well in 6-well microtiter plates and incubated overnight at
37°C. The following day fresh medium was added with or without
treatment (cisplatin, paclitaxel, topotecan or gemcitabine, with or
without LY294002 or Akti-1/2) for 24 h. Chromosomal DNA was
stained using a propidium iodide (100 pg/ml) (Invitrogen), RNAse
A (0.02 mg/ml) (Fisher Scientific) and Triton X-100 (0.3%)
solution, and analyzed on a FACScan flow cytometer (BD
Biosciences, San Jose, CA, USA) using the CellQuest software
package (BD Biosciences). Flow cytometry was performed at the
UCLA Jonsson Comprehensive Cancer Center and Center for AIDS
Research Flow Cytometry Core Facility that is supported by the
National Institutes of Health Awards CA-16042 and AI-28697, the
Jonsson Cancer Center, the UCLA AIDS Institute and the UCLA
School of Medicine.

Median-effect analysis. The Chou and Talalay median-effect
principle was used to evaluate drug interaction in drug combination
studies from cell viability assays (27). Median effect doses (Dm;
analogous to the ICs)) were determined from dose response
experiments using individual inhibitors (LY94002 or Akti-1/2) or
chemotherapeutic agents (cisplatin, paclitaxel, gemcitabine or
topotecan). Ratios of the Dm’s for combinations of a particular
inhibitor (e.g. LY294002) and a particular chemotherapeutic agent
(e.g. cisplatin) were then determined. The drug combinations were
applied at a fixed ratio over a range of concentrations. Interaction
(synergy, additivity or synergism) between pairs of drugs was
determined based on the multiple drug effect equation of Chou and
Talalay and was quantified by the combination index (CI) (27). The
CI indicates synergism when = <0.9, additivity when = 0.9-1.1 and
antagonism when = >1.1. The Fa (fraction affected)-CI plot
indicates the expected degree of drug interaction and the
corresponding Fa based on experimental data. Calculations were
based on the mutually exclusive assumption of the mode of activity
of the drugs. Dose effect curves, Cls and Fa-CI plots were generated
in CalcuSyn (Biosoft, Ferguson, MO, USA).

Statistical analysis. All the statistical analyses were performed using
GraphPad Prism, Version 4.00c for Macintosh (GraphPad Software,
www.graphpad.com). Two-tailed unpaired -tests were used to
calculate the significance of differences between cell cycle phases
from the various treatment conditions in the cell cycle flow
cytometric analyses. Treatment with inhibitor or chemotherapeutic
agent alone was compared to untreated control cells. Combination
treatment with chemotherapeutic agent and inhibitor was compared
to single treatment with the respective chemotherapeutic agent.

Results

Effect of LY294002 and Akti-1/2 on PI3K/Akt pathway
signaling. Treatment of the SKOV3 (Figure 1A) and IGROV1
(Figure 1B) cells with LY294002 or Akti-1/2 decreased
phosphorylation of Akt (pAkt), S6 (pS6) and 4E-BP1 (p4E-
BP1) in a dose-dependent manner in both cell lines. The levels
of total Akt, S6 and (3-actin are shown as loading controls.
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Figure 1. Effect of LY294002 and Akti-1/2 on phosphorylation of Akt, S6 and 4E-BP1 in SKOV3 and IGROV1 cells. SKOV3 (A) and IGROV1 (B) cells
were serum-starved overnight, followed by treatment with LY294002 or Akti-1/2 for 24 h. Total cell extracts were analyzed by immunoblotting for
pAkt, pS6 or p4E-BP1. Total Akt, S6 and [(3-actin levels are shown as loading controls. Representative blots of 3 independent experiments are shown.

Effect of PI3K/Akt pathway inhibition on cisplatin,
paclitaxel, gemcitabine or topotecan-treated cells. The cell
cycle distribution of untreated SKOV3 cells showed
59.240.8% of the cells in Gy/Gy, 27.840.6% in S and
13.1+1.3% in G,/M (Figure 2A left). For IGROV1 cells
under control conditions, 65.5+0.6% of the cells were found
to be in Gy/G;, 25.6£0.4% in S, and 8.9+0.3% in G,/M
(Figure 2A right). Exposure of the cells to LY294002 or
AKkti-1/2 increased the proportion of cells in Gy/G; and
decreased those in S-phase (Figure 2A).

Cisplatin treatment alone increased the cells in S-phase
(SKOV3: 41.3+2.9%; IGROV1: 37.3+1.0%) and decreased
the percentage of SKOV3 and IGROV1 cells in the Gy/G;-
phase (SKOV3: 39.0+0.4%; IGROV1: 52.6+0.2%) compared
to untreated cells (Figure 2B). However, when the cells were
treated with a combination of LY294002 and cisplatin, the
percentage of cells in Gy/G, was higher than the one in the
cisplatin alone treated cells (SKOV3: 46.0+0.2%; IGROV 1:
60.1£0.3%). In contrast, the number of cells in S-phase
decreased with combined LY294002 and cisplatin treatment
compared to cisplatin treatment alone. Similarly, in IGROV1
cells treatment with Akti-1/2 reversed the cisplatin-induced
decrease of cells in Gy/G; and increase of cells in S-phase.
Paclitaxel treatment caused an accumulation of SKOV3 and
IGROV1 cells in Go,/M (SKOV3: 47.7+0.2%; IGROV1:
39.1+1.2%) compared to untreated cells, while only
3.6%=1.0% and 22.1+0.5%, respectively, remained in Gy/G,
(Figure 2C). When combined with LY294002, the percentage
of cells in G,/M decreased, while the cells in Gy/G,
increased significantly (SKOV3: 40.3+0.8%; IGROV1:
37.4+1.7%) compared to paclitaxel alone. The reversal of
paclitaxel-induced G,/M accumulation with PI3K/Akt

inhibition was only partial as the percentage of cells in G,/M
still remained higher than in untreated cells. Combination
treatment with paclitaxel and Akti-1/2 had similar effects.

In the SKOV3 cells, gemcitabine increased the proportion
of cells in the S phase of the cell cycle (80.9+1.7%), while
the majority of the remaining cells were found to be in
Gy/Gy (19.2+1.7%) compared to untreated control cells
(Figure 2D left). Upon addition of LY294002 and
gemcitabine, the percentage of cells in the S-phase decreased
with a shift towards the G,/G; phase (43.5+0.9%). The shift
of cells from the S-phase to Gy/G; was even more
pronounced when gemcitabine was combined with Akti-1/2
(75.940.5%). In the IGROV1 cells, gemcitabine had only
minor effects with 62.0+3.8% of cells still remaining in
Gy/G, (Figure 2D right). Accordingly, no significant changes
were observed in the combination treatments with
gemcitabine and LY294002 or Akti-1/2.

Treatment of the SKOV3 cells with the topoisomerase I
inhibitor topotecan increased the percentage of cells in S-phase
(79.1£0.9%) compared to untreated control (Figure 2E left),
while only 4.8+0.3% of the cells remained in Gy/G,. However,
the combination of topotecan and LY294002 showed a
significant reduction in the percentage of cells in S-phase,
while the percentage of cells in Gy/G increased to 41.0+1.0%.
Akti-1/2 treatment showed a similar reversal of topotecan-
induced cell cycle shifts. Topotecan treatment of the IGROV 1
cells increased the percentage of cells in G,/M (46.9+0.1%)
compared to untreated control, with a corresponding decrease
in Gy/G; (264+00%) (Figure 2E right). Combination
treatment with LY294002 or Akti-1/2 reversed this effect by
shifting cells to the G/G-phase (LY294002: 47.0+0.4%; Akti-
1/2: 57.0£0.9%) compared to topotecan alone.
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Effect of PI3K/Akt pathway inhibition on the cytotoxic effects
of cisplatin and paclitaxel, gemcitabine and topotecan. Based
on the multiple drug effect equation of Chou and Talalay,
LY294002 enhanced the cytotoxic effect of cisplatin in a
synergistic manner in both the SKOV3 and IGROV 1 cells. The
combination index at ED5 (Cly5) for the SKOV3 cells was
0.42 and 0.30 for the IGROV 1 cells (Figure 3A). Combination
treatment with cisplatin and Akti-1/2 showed a similar
synergistic effect (SKOV3: CI;5=0.71; IGROV1: CI;5=0.19).

LY294002 also augmented the paclitaxel-induced decrease
in cell proliferation in a synergistic manner (SKOV3:
CI;5=0.79; IGROV1: CI;5=0.60) (Figure 3B). The enhanced
effect was additive with Akti-1/2 (SKOV3: CI;5=0.97;
IGROV1: CI;5=0.97).

In contrast, PI3K/Akt pathway inhibition antagonized,
rather than synergized, the effects of gemcitabine in both cell
lines. In the SKOV3 cells, the CI;5 for the combination of
gemcitabine and LY294002 or Akti-1/2 was 1.64 and 4.24,
respectively (Figure 3C). Similarly, in the IGROV1 cells
gemcitabine combined with LY294002 yielded a Cly5 of
27.01, and 1.55 for the combination with Akti-1/2.

Likewise, LY294002 and Akti-1/2 antagonized the effects
of topotecan in the SKOV3 cells (LY294002: ClI;5=1.67;
Akti-1/2: Cl;5=1.39) (Figure 3D). A lack of synergy was
observed in the IGROV1 cells when treated with topotecan
and LY294002 (CI;5=1.02) or Akti-1/2 (Cl;5=1.12).

Discussion

The hypothesis that PI3K/Akt pathway inhibition-induced
cell cycle arrest in Gy/G| can modulate the cytotoxic effects
of certain chemotherapeutic agents commonly used for the
treatment of ovarian and other carcinomas was investigated.
Antagonization of cytotoxic chemotherapy was demonstrated
by PI3K/Akt pathway inhibition when human ovarian cancer
cells were treated with a combination of LY294002 or Akti-
1/2 and gemcitabine or topotecan. Both chemotherapeutic
agents exert their main effects during the S and G,-phases of
the cell cycle (23). Treatment of the ovarian cancer cells with
gemcitabine or topotecan alone caused cell cycle arrest in S-
phase. However, when the cells were treated with either
agent and concomitant PI3K/Akt pathway inhibition, S-phase
accumulation was reversed and the cells were shifted to the
Gy/G;-phase. In the cell proliferation assays Chou and
Talalay median-effect principle analysis demonstrated an
antagonistic effect of LY294002 and Akti-1/2 on the effects
of gemcitabine and topotecan. These observations suggest
that Gy/G; arrest induced by LY294002 and Akti-1/2
precluded cells from progressing into the S and G,-phases,
and thus prevented gemcitabine and topotecan from exerting
their cytotoxic effects.

Since paclitaxel is mainly effective in the M-phase of the
cell cycle (23), PI3K/Akt pathway inhibition was also
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expected to antagonize its effects on cell proliferation.
However, LY294002 and Akti-1/2 enhanced the cytotoxic
effects of paclitaxel in a synergistic manner. Various
mechanisms could contribute to this observed synergy.
Although LY294002 and Akti-1/2 reversed paclitaxel-
induced M-phase accumulation, this reversal was not
complete and possibly suggests that a sufficient number of
cells were able to progress to the M-phase even in the
presence of the PI3K/Akt pathway inhibitors. Moreover, in
response to paclitaxel, cancer cells can activate the PI3K/Akt
pathway resulting in, for example, phosphorylation and
inactivation of the proapoptotic Bcl-2 family member Bcl-
associated agonist of cell death (BAD) (28). PI3K or Akt
inhibition prevents the activation of this important survival
mechanism, which may explain the synergistic effect of the
inhibitors on paclitaxel-induced cell proliferation. Other
studies have previously reported that PI3K/Akt pathway
inhibition can enhance paclitaxel effects (29-31).

Similarly, although PI3K/Akt pathway inhibition also
arrested cisplatin treated cells in Gy/Gy, in the cell proliferation
assays LY294002 and Akti-1/2 enhanced the cytotoxic effects
of cisplatin in a synergistic manner. Various cisplatin related
effects might contribute to this synergy. Cisplatin is a DNA
alkylating agent that crosslinks DNA and elicits its effects in a
rather cell cycle unspecific manner (23). In addition, similar to
paclitaxel, cisplatin can activate PI3K/Akt signaling as a
cellular survival mechanism (32-34). Various other studies have
demonstrated a similar effect of PI3K/Akt pathway inhibition
on cisplatin-induced effects (33, 35-38).

The data presented in this study might have important
implications for the design of clinical trials using PI3K/Akt
pathway inhibition in combination with chemotherapeutic
agents. Inhibition of this growth-promoting and apoptosis-
inhibiting pathway has been proposed as a strategy to
sensitize tumors to chemotherapy or to reduce or delay the
development of chemoresistance (19, 20). PI3K/Akt pathway
inhibitors are being studied in clinical trials for various
malignancies including ovarian cancer (39-42). It is currently
unclear which patients will benefit from treatment using
PI3K/Akt inhibitors, and whether combination with a
standard chemotherapeutic agent would be more effective.
Based on the present data, chemotherapeutics that are
primarily effective in the S or G,-phase such as gemcitabine
or topotecan might not be the ideal agents due to PI3K/Akt
pathway inhibition-induced Gy cell cycle arrest.

In summary, cell cycle analyses demonstrated that the
PI3K/Akt pathway inhibitors LY294002 or Akti-1/2 arrested
cells in G; phase, and furthermore reversed the cell cycle
effects of cisplatin, paclitaxel, gemcitabine and topotecan
when cells were treated in combination. In cell proliferation
studies, the inhibitors synergistically enhanced the cytotoxic
effects of cisplatin and paclitaxel, but failed to sensitize cells
to gemcitabine or topotecan.
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Figure 2. Effect of LY294002 and Akti-1/2 on cisplatin, paclitaxel, gemcitabine and topotecan-treated SKOV3 and IGROVI cells. SKOV3 and IGROV1
cells were treated with LY294002 or Akti-1/2 alone (A), or cisplatin (B), paclitaxel (C), gemcitabine (D) or topotecan (E) in the absence or presence
of inhibitor. Cell cycle distribution was quantified by flow cytometric analysis of propidium iodide-stained cells. Concentrations used: SKOV3:
LY294002, 20 uM; Akti-1/2, 5 uM; cisplatin, 20 ug/ml; paclitaxel, 10 nM; gemcitabine, 100 nM; topotecan, 100 nM. IGROV1: LY294002, 10 uM;
Akti-1/2, 5 uM; cisplatin, 5 ug/ml; paclitaxel, 10 nM; gemcitabine, 100 nM; topotecan, 250 nM. Results shown are representative of 3 or more
independent experiments performed in duplicate.
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Figure 3. Effect of LY294002 and Akti-1/2 on the cytotoxic effects of cisplatin and paclitaxel, gemcitabine and topotecan. SKOV3 and IGROV1 cells
were treated with LY294002 (uM) or Akti-1/2 (uM) alone, or cisplatin (ug/ml) (A), paclitaxel (nM) (B), gemcitabine (nM) (C) or topotecan (nM) (D)
alone or with the combination of inhibitor and chemotherapeutic agent. Cell proliferation was determined via the XTT cell viability assay. The
upper panel shows the dose response curve of single and combination drug treatment. The lower panel shows the Fa-CI curve. The CI at EDys is
indicated. Experiments were performed in quadruplicate or more, and results shown are representative of 2 or more independent experiments. A,

inhibitor alone; [ ], chemotherapeutic agent alone; @, inhibitor + chemotherapeutic agent.
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