
Abstract. In a wide spectrum of tumors, cell proliferation,
vascularity, apoptosis, cell adhesion, and cell-cycle
progression may indicate tumor progression. In this review
article, the literature regarding apoptotic markers and p53,
as well as cyclooxygenase-2, galectin-3, and pituitary tumor-
transforming factor, proliferative markers, angiogenesis,
including vascular endothelial growth factor and its receptor,
pituitary tumor-transforming gene, microarrays, stem cells,
and microenvironment and tumor heterogeneity are
presented. Only a particular group of selected biomarkers
show promise in differentiating pituitary tumors which will
behave in an aggressive manner. Therefore, the most common
and promising biomarkers and terms were analyzed,
proposing the need for uniform design and application of
methods and standardized criteria for the interpretation of
results. The new spectrum of biomarkers may shed light upon
the pathogenetic mechanisms and also may serve as
standardized diagnostic tool for daily pathologic practice. 

A number of biomarkers are documented to be of predictive
value with regard to clinical and radiological criteria for the
management of unpredictably behaving pituitary tumors.
Among these are the apoptotic index, inhibitory cell cycle

proteins, matrix metalloproteinases (MMPs) (1), p53 and p21,
and markers of angiogenesis, namely vascular endothelial
growth factor (VEGF) (2, 3-6) and proliferative markers, e.g.
Ki-67, and topoisomerases. Newer markers such as
cyclooxygenase-2 (COX-2) and galectin-3 have been added
to the list (4, 7-11). Initial results of the studies using these
other markers have also been inconsistent. The published
inconsistencies may in part be attributed to variations in the
definition of invasion. It is fascinating that in some studies,
presence or absence of tumor invasion is solely based on
preoperative radiological and/or intraoperative surgical
findings, whereas others define it as a histologically-proven
observation. Yet another factor may be the inclusion of a
variety of pituitary subtypes instead of single or distinct
pathological tumor types. Some markers are restricted to
specific cell types, such as galectin-3, which is expressed by
prolactin (PRL) and corticotropin (ACTH) -secreting cells,
but not by most other cell types. (8) Even though some of the
emerging biomarkers show promise as having predictive
value in pituitary tumors, the need for uniform inclusion
criteria and study design is discussed. Herein, a limited
spectrum of markers of pituitary adenomas, with respect to
their strength as predictors of tumor behavior is discussed. 

Apoptosis

Apoptosis, or programmed cell death, is characterized by a
rapid sequence of events leading to the elimination of
damaged cells (12). It is defined by morphological changes
including cellular shrinkage and nuclear demarcation. In
neoplasms, due to the disturbance of the normal balance
between mitotic and apoptotic activity which contributes to
increased tumor growth, apoptosis is generally suppressed.
Studies of apoptosis in pituitary tumors are limited in
number. Vidal et al. (13), examining more than 8,000
pituitary tumor biopsy specimens, reported that most
apoptotic activity was observed in corticotroph adenomas,
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with only occasional examples being seen in PRL- or
gonadotropin secreting adenomas. Several studies
investigated the relevance of apoptotic activity as a
clinicopathological marker (14, 15). Kontogeorgos et al. (16)
noted higher apoptotic activity in aggressive, drug-resistant
adenomas, indicating that apoptosis may be a useful
prognostic marker. Kulig et al. (15) reported similar results,
with a four-fold increase in apoptotic activity in pituitary
carcinomas compared with adenomas. Likewise, lower
expression of BCL2 antiapoptotic factor was seen in pituitary
carcinomas compared with adenomas and the non-tumoral
pituitary gland (15). In contrast, Ibrahim et al. (14) found
that apoptotic indices were not predictive of the growth rate
of non-functioning pituitary tumors. These findings were
consistent with those of Nakabayashi et al. (17), who found
no significant difference between apoptotic indices in
recurring and non-recurring adenomas. Last of all, Losa et
al. (18), in their relatively coherent series, found no
significant difference in apoptotic index between
Adrenocorticotrophic hormone (ACTH)-expressing macro-
and microadenomas. With respect to apoptotic index and its
correlation with clinicopathological parameters, results are
highly variable and fail to support its utility as a prognostic
indicator (61, 64-68). Apparently, Kontogoergos et al. (16)
showed that hormone-secreting adenomas had higher indices
than did non-functioning tumors; highest apoptotic indices
were observed in thyroid-stimulating hormone (TSH)-
secreting adenomas, followed by growth hormone (GH)-,
prolactin (PRL) - and mixed GH/PRL-secreting adenomas.
Correspondingly, Sambaziotis et al. (19) found that
functioning adenomas exhibit higher apoptotic indices than
non-functioning ones. On the contrary, another study showed
a higher apoptotic index in non-functioning tumors compared
with GH-secreting adenomas (33% versus 11%), a difference
not statistically significant (20). The expression of BCL2 and
BAX, anti-apoptotic and proapoptotic factors, respectively,
also correlates with apoptotic indices. The BCL2/BAX ratio
has been found to be higher in non-functioning adenomas,
highlighting the differences in the balance of anti- to
proapoptotic activity in these tumors (19). Although these
findings suggest that the BCL2/BAX ratio is a useful marker
of apoptosis and possibly of tumor behavior, Ozer et al.
found decreased expression of BCL2 in non-functioning as
well as in PRL -secreting adenomas (21). It was concluded
that down-regulation of the BAX protein was associated with
pituitary tumor progression (21). These discrepant findings
may be attributed to the evaluation of BCL2 and BAX
expression rather than the BCL2/BAX ratio, which might be
a better prognostic indicator. Similarly, although elevated p53
expression levels are shown to correlate with aggressive
tumor behavior, not all studies confirm these findings. (5, 21-
25) Therefore, the relevance of the apoptotic index and p53
expression to tumor behavior is debatable. 

p53

Until recently, apoptosis was not recognized by the use of
routine histological stains. Various descriptive terms
corresponding to the apoptotic events are found, even in
classic textbooks of pathology: ‘karyopyknosis’;
‘karyorhexis’ and ‘karyolysis’ referring to nuclear changes;
‘hyaline bodies’, ‘Camino bodies’, and ‘Shivata bodies’
describe cytoplasmic remnants; ‘cannibalism’, ‘cell-in-cell’
and ‘tiger-eye’ are used to illustrate the phagocytotic events
of late apoptotic phases; and lastly, ‘thanatosomes’ refer to
apoptotic cell remnants. All these terms should be abandoned
and substituted by the term ‘apoptotic figures’ (26). Electron
microscopy can demonstrate apoptotic cells with accuracy.
However, due to limited numbers of adenoma cells included
in tissue samples, isolation of apoptotic cells is difficult or
inexplorable. The spectrum of apoptosis in pituitary
adenomas has recently been described in detail (13).
Expression of p53 gene products is important for tumor
biology. Although p53 mutations has not been documented in
pituitary adenomas, p53 immunoreactivity have been found
to correlate with tumor invasiveness (11, 26). p53 expression
has been linked to aggressive tumor behavior (11, 26).

Pituitary adenomas are neoplasms with a low proliferation
rate, and thus, like mitoses, apoptosis is absent or difficult to
identify in routine stains (26). Thapar et al. (27)
demonstrated a significant association (p<0.001) between
tumor behavior and p53 expression, labeling of 0%, 15.2%,
and 100% being seen in non-invasive and invasive adenomas
and carcinomas, respectively, Wierinckx et al. reported
significantly higher p53 expression in ‘aggressive-invasive’
tumors compared with those with less aggressive behavior
(p=0.0001) (11). Ozer et al. showed that elevated p53
expression was an independent indicator of local relapse
(21), suggesting that p53 status is associated with tumor
progression. In contrast to these reports, other studies of p53
levels and tumor recurrence, invasiveness, and/or volume
found no correlations. Therefore, it is questionable in regard
to the relevance of p53 expression as a marker of recurrence
(5, 23, 24). Although there is an emerging significance of
p53/p21-dependent senescence pathways, this issue is not yet
clarified (28, 29). Therefore, additional research is needed to
clarify the association between p53 expression and pituitary
tumor behavior.

p27

p27 KIP1, a cyclin-dependent kinase inhibitor, is involved in
regulation of cell-cycle progression (2, 30, 31). The p27KIP1

gene has a DNA sequence similar to other members of the
‘CIP/KIP’ family which include the p21CIP1/WAF1 and
p57KIP2 genes. Moreover, due to this structural similarity the
‘CIP/KIP’ proteins share the functional characteristic of
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being able to bind several different classes of cyclin and
CDK molecules. For example, p27KIP binds to cyclin-D
either alone, or when complexed to its catalytic subunit
CDK4. In doing so, p27KIP1 inhibits the catalytic activity of
CDK4, which means that it prevents CDK4 from adding
phosphate residues to its principal substrate, the
retinoblastoma (pRb) protein. Increased levels of p27KIP1

protein typically cause cells to arrest in the G1 phase of the
cell cycle. Likewise, p27KIP1 is able to bind other CDK
proteins when complexed to cyclin subunits, such as cyclin
E/CDK2 and cyclin A/CDK2. 

In most cases, extracellular growth factors which prevent
cell growth cause an increase in p27KIP1 levels inside a cell.
For example, levels of p27KIP1 increase when transforming
growth factor (TGF) is present outside of epithelial cells,
causing growth arrest (32). In contrast, interleukin (IL-2)
causes p27KIP1 levels to decrease in T-lymphocytes. A
mutation in the IL-2 gene may lead to loss of control over
the cell cycle leading to uncontrolled cellular proliferation
(33-35). Loss of p27 expression has been observed in
metastatic canine mammary carcinomas (36, 37). Decreased
TGF-beta signaling has been suggested to cause loss of p27
expression in this tumor type (36).

In the earliest study of p27 KIP1 in human pituitaries,
Lloyd et al. found decreased p27 KIP1 expression in
pituitary neoplasms compared with the normal gland (30,
31). Inevitably, p27 KIP1 immunoexpression was inversely-
correlated with the staining for the proliferation marker Ki-
67, suggesting that p27 KIP1 is an additional predictive
marker of pituitary tumor behavior (30, 31). In the same way,
several studies found significantly lower p27 KIP1 levels in
non-functioning adenomas and other studies found higher
proliferation rates in these tumors (23, 38). In keeping with
these findings, Scheithauer et al. found that p27 KIP1
expression was lower in carcinomas compared with invasive
adenomas (23). Nakabayashi et al. found that p27 KIP1
expression was lower in recurrent adenomas compared with
non-recurrent ones (17). These results always show reduced
expression of p27 KIP1 and p21 in pituitary adenomas and
malignant tumors. However, investigation of aberrations in
p21 and p27 KIP1 genes showed no mutations in one study
(39) and in another study, no differences in p27 KIP1 protein
levels were detected in 18 pituitary tumors, five of which
actually had a polymorphism of p27 KIP1 (codon 109, Val-
�Gly) (40). Correspondingly, Jin et al. found no differences
in p27 KIP1 mRNA expression among non-tumorous,
adenomatous, and metastatic pituitary tumors (8). Thus, the
lower expression of these cell-cycle inhibitors may be caused
by post-translational mechanisms, such as increased
degradation (41). 

Investigating the expression of phosphorylated p27 KIP1,
the inactivated form of p27 KIP1, Korbonits et al. found that
corticotrophin-secreting adenomas exhibited higher levels

than other adenomas (41). The latter exhibited reduced
phosphorylated p27 KIP1 compared with normal pituitary,
whereas its levels were similar in normal pituitary and
corticotrophin-secreting tumors (41). The ratio of
phosphorylated p27 KIP1 to p27 KIP1 was significantly
higher in corticotroph-secreting adenomas compared with
metastatic tumors, invasive tumors, and TSH-secreting
adenomas (41). In pituitary carcinomas, both phosphorylated
p27 KIP1 and p27 KIP1 levels were decreased. The variable
ratio of phosphorylated p27 KIP1 to p27 KIP1 in pituitary
tumors may show that the balance between the
phosphorylated and unphosphorylated forms of p27 KIP1
protein may regulate tumor progression (41). Earlier studies
demonstrated reduced p27 KIP1 levels in ACTH-secreting
adenomas (2, 8, 38). Luteinizing hormone-expressing and
TSH-secreting adenomas stained more frequently for p27
KIP1; ACTH-secreting adenomas had the lowest levels of
p27 KIP1 protein in the study of Jin et al. (8). Similarly,
Bamberger et al. showed that p27 KIP1 negative cells
occurred more often in corticotrophin-secreting adenomas in
contrast to gonadotropin-secreting adenomas, in which p27
KIP1 expression was higher than in other pituitary adenoma
subtypes (2). The significance and mechanisms underlying
reduced p27 KIP1 levels in pituitary tumors is uncertain.
Whether reduced p27 KIP1 and/or p21 expression is a
primary event in pituitary tumor initiation and progression
or is secondary to other tumorigenic factors is unclear and
requires further analysis.

Topoisomerase 2 Alpha

Topoisomerases (type I and type II) are enzymes that wind
and unwind DNA, in order for DNA to control the synthesis
of proteins, and to facilitate DNA replication. The structure
of DNA is a double-stranded helix, wherein the four bases,
adenine, thymine, guanine, and cytosine, are paired and
stored in the center of this helix. While this structure provides
a stable means of storing the genetic code, Watson and Crick
noted that the two strands of DNA are intertwined, and this
would require the two strands to be untwisted in order to
access the stored information. They also foresaw that there
would be some mechanism to overcome this problem (12).
Type II topoisomerase cuts both strands of one DNA double
helix, passes another unbroken DNA helix through it, and
then re-anneals the cut strand. There are two subclasses of
this enzyme: type IIA and type IIB topoisomerases, which
share a similar structure and mechanisms. Examples of type
IIA topoisomerases include eukaryotic topo-II, Escherichia
coli gyrase, and E. coli topo IV. Examples of type IIB
topoisomerase include topo VI. Many drugs operate through
interference with the topoisomerases (42). The broad-
spectrum fluoroquinolone antibiotics act by disrupting the
function of bacterial type II topoisomerases. These small-
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molecule inhibitors act as efficient anti-bacterial compounds
by exploiting the natural ability of topoisomerase to create
breaks in chromosomal DNA. Topoisomerase inhibitors are
used in chemotherapy work by interfering with mammalian-
type eukaryotic topoisomerases in cancer cells. This induced
breaks in DNA that ultimately direct cells to programmed cell
death, i.e. apoptosis. This DNA-damaging effect, as well as
having curative properties, may lead to secondary neoplasms
in treated persons.

Several molecules are involved in the regulation of the cell
cycle. Topoisomerase II alpha (TOPOIIA) is a key enzyme
involved in DNA replication, cell-cycle progression and
chromosome segregation, which peaks through the G2 to the
M phase of the cell cycle, minimized at the end of mitosis and
is not found in resting cells. TOPOIIA expression correlates
with cell proliferation, and thus, it has been suggested as a
proliferation marker (43). TOPOIIA protein also represents a
molecular target for several inhibitors, including doxorubicin,
which is important for the treatment of some topoisomerases
(44, 45). The value of TOPOIIA in pituitary adenomas is low,
for the reported results are similar to that for Ki-67 (46, 47).
The question of whether TOPOIIA is a valuable biomarker of
tumor aggressiveness needs further studies. 

Cyclooxygenase-2 (COX-2)

COX-2, a key enzyme mediating prostaglandin synthesis, is
not only involved in inflammatory responses, but is implicated
in tumor invasiveness and angiogenesis (9). Its expression in
pituitary tumors was recently demonstrated. Increased COX-2
expression was particularly evident in pituitary carcinomas
compared with adenomas and normal pituitary, hence
suggesting an important role in tumor progression. Onguru et
al. found increased COX-2 expression in functioning versus
non-functioning tumors, both of which had lower levels of
COX-2 than did carcinomas (48). Bloomer et al. found COX-
2 expression in 83% of pituitary tumors (n=30) (7). Its
expression was significantly associated with that of luteinizing
hormone and TSH (7). On the contrary, in a larger series of
164 pituitary tumors, Vidal et al. (49) found GH, PRL, TSH,
and female gonadotrophs to express lower COX-2 levels than
male gonadotrophs and oncocytic and nononcocytic null-cell
adenomas. Analyses should be focused on several clinical
variables, including sex, in gonadotrophic tumors because
compared with other pituitary neoplasms, they express higher
levels of COX-2 (7, 49). There is also a significant association
between COX-2 expression and patient age; no correlations
were noted with patient sex or with tumor size and
invasiveness (49). COX-2 expression did, however, show a
strong correlation with Microvessel density (MVD). The role
of COX-2 in pituitary malignant transformation requires
further research because COX-2 is significantly highly-
expressed in pituitary carcinomas compared with adenomas.

Galectin-3

Galectin-3 has been implicated in several biological
processes, including tumor progression, apoptosis, and
metastasis (50). In a study of 162 pituitary tumors, including
14 carcinomas, Riss et al. found galectin-3 to be expressed
only in PRL- and ACTH-secreting tumors, with all other
tumor types being immunonegative (50). Moreover, galectin-
3 staining was found to be significantly higher in ACTH-
secreting carcinomas compared with adenomas (50). This
specific pattern of galectin-3 expression by PRL- and ACTH-
secreting tumors may be significant because many pituitary
carcinomas are PRL- or ACTH-producing carcinomas.
Additionally, higher galectin-3 expression was found in
functioning ACTH-secreting adenomas compared with silent
corticotrophin-secreting adenomas (8, 10). As galectin-3
appears to be a promising marker, validation studies to
crystallize its role as a marker of pituitary tumor behavior
are warranted. Studies of galectin-3 expression are limited in
number, but show promise (8, 10, 50). In as much as
galectin-3 is exclusively expressed in ACTH- and PRL-
secreting tumors, the most common form of pituitary
carcinoma, further studies may establish a role for galectin-
3 in tumor differentiation and aggressiveness.

Pituitary Tumor-transforming Gene (PTTG)

PTTG was isolated from experimental rat pituitary tumors
(51). PTTG expression is induced by estrogens and it
stimulates basic fibroblast growth factor (bFGF) production
(52). The human homologs of PTTG comprise of several
separate genes. PTTG is located on chromosome 5q33 and
is abundantly expressed in most human pituitary tumors (53),
as well as non-pituitary neoplasms. The role of PTTG in the
early transformation of pituitary cells through hyperplasia to
frank adenoma formation has been demonstrated in
experimental rat prolactinomas (52).

Subsequent studies have identified PTTG as the human
homolog of securin, a protein mediating sister chromatid
separation during mitosis (54). Nonetheless, its expression in
pituitary tumors has been demonstrated by many studies (55-
60). Recent studies support the role of PTTG in p21-mediated
senescence, in accordance with the predominantly benign
phenotype of pituitary neoplasms. When PTTG mRNA
expression was compared in 54 pituitary tumors, Zhang et al.
found no correlation with radiological tumor stage in
clinically non-functioning adenomas, but did note
significantly higher levels in hormone-secreting invasive
tumors compared with non-invasive ones (53). These results
suggested different mechanisms of PTTG action and/or
expression in these two groups. Additionally, Hunter et al.
showed that PTTG mRNA levels were higher in GH-secreting
adenomas than in non-functioning tumors, with an increase
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of 2.7-fold (59). Although PTTG levels were higher in these
tumors compared with PRL- and ACTH-secreting adenomas,
no statistical significance was found (59). Several studies also
investigated correlations between the expression of PTTG and
other markers relevant to pituitary tumors, particularly VEGF
and bFGF, because PTTG promotes angiogenesis in many
settings (55, 56, 61). A study of 103 pituitary adenomas
showed a significant positive correlation between PTTG and
VEGF mRNA levels, as well as between PTTG and VEGF
receptor (KDR) expression levels (55). Yet another study
found many tumor cells to exhibit colocalization of PTTG
with VEGF, as well as a high correlation between PTTG
expression and the number of CD34-blood vessels in GH-
secreting pituitary adenomas (61). These results suggest a
promising role for PTTG in the regulation of pituitary
angiogenesis. Studying the utility of PTTG in distinguishing
between recurrent and non-recurrent tumors, Filippella et al.
found a cutoff value of 3.3%, with 60% sensitivity and 76%
specificity (58). Nevertheless, there was no significant
correlation between PTTG immunopositivity and tumor size
or grade, patient age or sex, or tumor treatment (58). Further
studies are required to determine the importance of PTTG in
pituitary tumor development. 

Recent studies support the role of emerging technologies in
finding new markers of the biology and behavior of pituitary
adenomas. Ruebel et al., by using microarray analysis,
demonstrated differential gene expression profiles for various
pituitary adenoma subtypes and uncovered novel genes of
possible value as predictive markers (62). Using microarray
technology to analyze PRL-expressing tumors, Wierinckx et
al. found a set of diagnostic markers that included PTTG (11).
The complexity of interactions between several molecular and
cellular pathways in pituitary tumor development and
progression may account for the current lack of success in the
search for a single predictive marker. Emerging techniques
make feasible the identification and validation of a prognostic
marker set that may aid the clinician in predicting tumor
behavior. The most conclusive observation, with respect to
PTTG, appears to be its up-regulation of VEGF and FGF
expression, both these being overexpressed in various
malignancies (55, 56, 61). Further studies into the role and
prognostic value of PTTG in pituitary tumors are necessary. It
will also be important to investigate the PTTG and p21 levels
and the potential association between these molecules in
various pituitary adenoma subtypes in light of recent findings
of PTTG-induced p21-mediated premature senescence in
mouse models (28, 29).

Proliferative Marker Ki-67 

Ki-67 has been widely used as an immunohistochemical
marker in the study of pituitary tumors; many studies
investigated its potential links to other, newer biomarkers.

Several studies suggest that Ki-67 values greater than 3%
predict more aggressive tumor behavior; on the other hand,
no firm consensus has been reached regarding a precise
cutoff value so far (63). The issue is confounded by
considerable overlap of Ki-67 between indolent and
aggressive adenomas. Therefore, the predictive value of this
marker remains an issue, with respect to aggressive behavior.
Similarly, whereas it is generally believed that a high Ki-67
labelling index (LI) is a predictor of recurrence, there are
numerous reports of high Ki-67 LIs in non-recurring tumors.
Review of the current literature reveals that the very
definition of recurrence affects the outcome of studies
investigating a correlation with Ki-67 labeling (63). 

To summarize, using more uniform criteria will, with no
doubt, yield more dependable results. There are consistent
findings of several studies with uniform criteria for
recurrence that successfully correlate Ki-67 LI with tumor
regrowth. Although the Ki-67 LI-alone at times fails as a
predictor of recurrence, it may prove useful when
combined with information regarding tumor behavior or
with other biomarkers. Ki-67 labeling and tumor size,
when extracted from data regarding function, are
interrelated, partly due to the slowly growing nature of
most pituitary adenomas. Slowly growing non-functioning
pituitary tumors which might become symptomatic when
sufficiently voluminous often have very low Ki-67 LIs,
therefore skewing the association of tumor size with Ki-67
labeling. Likewise, tumor subtype, growth rate, and the Ki-
67 LI may show wide fluctuations (64). In order to
propose a reproducible numeric spectrum for pituitary
tumours, criteria should be agreed which will enhance the
consistency of findings. 

Neither clinicians nor neurosurgeons can rely on the Ki-
67 LI as a prognostic marker; therefore this emphasizes the
urgent need for new markers. Emerging studies using
deoxyribonucleic acid and microribonucleic acid microarray
analyses show much promise in identifying valuable
prognostic markers (62, 65, 66). In fact, recent microarray
studies showed that using a set of markers is superior to the
use of single markers as prognostic indicators of tumor
behavior, particularly for aggressiveness (11). Battoni et al.
studied the entire microribonucleic acid content of pituitary
adenomas and revealed a set of 29 differentially expressed
microribonucleic acids predictive of tumor histotype, size,
and drug treatment (65). Interestingly, several of these were
implicated in cell proliferation and apoptosis. Microarray
studies have also identified differential expression of genes,
thus far, not investigated as prognostic indicators (62).
Emerging data will, under no doubt, aid researchers in
gaining a deeper understanding of pituitary tumor
development and progression. Critically assessed, the results
of such studies will certainly aid clinicians in the
management of aggressive pituitary tumors (63).
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Angiogenesis

Angiogenesis is defined as the formation of new blood
vessels and is associated with tumor progression (13). It is
axiomatic that tumor growth requires neovascularization to
supply tumor cells with the necessary nutrients and oxygen.
Therefore, tumor vascularity is often associated with tumor
growth, aggressive behavior, and metastatic potential (13).
The utility of markers of angiogenesis as prognostic
indicators of pituitary tumors is addressed by several studies
investigating expression of VEGF, endothelial growth factor,
COX-2, and hypoxia-inducible factor-1a (HIF-1a).

VEGF. VEGF is an important angiogenic factor that mediates
endothelial cell proliferation, vascular permeability and cell
motility. Its expression is related to tumor angiogenesis and
often to aggressive behavior (67). Findings of VEGF
correlations with tumor invasiveness and proliferation are
inconsistent, indicating that VEGF may not directly contribute
to tumoral invasion, but may regulate pathways that increase
tumor volume or mediate invasiveness (4, 55, 68-72). This
notion is supported by the observation that VEGF expression
is not strictly associated with endothelium and vessels, but also
occurs in adenoma cells as well (4, 67). Expression of VEGF
receptors in pituitary adenomas has also been investigated.
Higher expression of fetal liver kinase-1, a form of VEGF
receptor that mediates mitogenesis and affects endothelial cell
morphology, was associated with extracellular extension (55).
Furthermore, fetal liver kinase-1 expression was significantly
higher in non-functioning compared with functioning tumors
(55). Other studies regarding the expression of VEGF and its
receptors in the various pituitary adenoma subtypes are limited.
In one study, VEGF expression differed in the subtypes, thus
implicating different mechanisms of VEGF expression and/or
action (72). A therapeutic benefit of VEGF targeting in
pituitary adenomas was recently demonstrated in an animal
study (73). Anti-VEGF treatment resulted in inhibition of
pituitary adenoma growth associated with decreased serum
PRL levels in a mouse model of multiple endocrine neoplasia
type-1. Additionally, inhibition of VEGF secretion was found to
be associated with the therapeutic effect of somatostatin
analogs on non-functioning pituitary adenomas (73). Because
of contradictory findings, the utility of serum VEGF as a
marker of pituitary tumor behavior remains unclear. The
potential for VEGF as a marker of aggressive tumor behavior
in pituitary neoplasms is inconclusive when compared with
other types of neoplasms because the former often behave as
benign, non-malignant entities. 

MVD. Some biomarkers, such as CD31, CD34 and VEGF,
are used for the assessment of tumoral MVD (67). It was
shown by some studies that MVD of the anterior pituitary is
lower than that of normal pituitary, whereas in others, some

endocrine tumors had a higher MVD (67). Therefore, the
correlation between the expression of VEGF and bFGF in
pituitary tumor aggressiveness is uncertain. But some studies
showed a positive relation between aggressive behavior of
pituitary tumor and MVD (74-76). Findings of likely
relations between pituitary tumor invasiveness and MVD are
generally scarce (75). In addition, extensive variability exists
in the findings of various studies which concentrated in
tumor types and specific MVD values. 

HIF-1α. Hypoxia-inducible factors (HIFs) are transcription
factors that respond to changes in available oxygen in the
cellular environment, specifically, to decreases in oxygen, or
hypoxia (77). Most, if not all, oxygen-breathing species
express the highly-conserved transcriptional complex HIF-1,
which is a heterodimer composed of an alpha- and a beta-
subunit, the latter being a constitutively expressed aryl
hydrocarbon receptor nuclear translocator (ARNT) (78, 79).
HIF-1 belongs to the aryl hydrocarbon receptor nuclear
translocator (PER-ARNT-SIM PAS) subfamily of the basic
helix-loop-helix family of transcription factors. The HIF
signaling cascade mediates the effects of hypoxia, a state of
low oxygen concentration on cells. Hypoxia often keeps cells
from differentiating. However, it also promotes the formation
of blood vessels, and is important for the formation of a
vascular system in embryos, and tumors. Hypoxia in wounds
also promotes the migration of keratinocytes and the
restoration of the epithelium (80). HIFs play a central role in
the regulation of metabolism of Man (81) and are vital to
development. In mammals, deletion of the HIF-1 genes
results in perinatal death. HIF-1 has been shown to be vital
to chondrocyte survival, allowing these cells to adapt to low-
oxygen conditions within the growth plates of bones. 

The alpha subunits of HIF are hydroxylated at conserved
proline residues by HIF prolyl-hydroxylases, allowing their
recognition and ubiquination by the von Hippel-Lindau (VHL)
E3 ubiquitin ligase, which labels them for rapid degradation
by the proteasome (82). This occurs only under normoxic
conditions. Under hypoxic conditions, HIF prolyl-hydroxylase
is inhibited, since it utilizes oxygen as a co-substrate (83).
Hypoxia also results in a buildup of succinate, due to
inhibition of the electron transport chain in the mitochondria.
The buildup of succinate further inhibits HIF prolyl-
hydroxylase action, since it is an end-product of HIF
hydroxylation. Similarly, inhibition of electron transfer in the
succinate dehydrogenase complex due to mutations in the
succinate dehydrogenase (SDH) gene B (SDHB) or succinate
dehydrogenase (SDH) gene D (SDHD) can cause a build-up
of succinate that inhibits HIF prolyl-hydroxylase, termed as
pseudohypoxia under stabilizing HIF-1α. HIF-1α, when
stabilized by hypoxic conditions, up-regulates several genes to
promote cell survival under low-oxygen conditions. These
include genes for glycolytic enzymes, which allow ATP
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synthesis in an oxygen-independent manner, and VEGF, which
promotes angiogenesis. HIF-1α acts by binding to HIF-
responsive elements (HREs) in promoters that contain the
sequence NCGTG. It has been shown that a muscle KINASE-
ANCHORING PROTEIN (mAKAP) organized E3 ubiquitin
ligases, affecting stability and positioning of HIF-1α inside its
site of action in the nucleus. Depletion of mAKAP or
disruption of its targeting to the perinuclear region altered the
stability of HIF-1α and transcriptional activation of genes
associated with hypoxia particularly in cardiomyocytes. This
‘compartmentalization’ of oxygen-sensitive signaling
components may change the reaction to hypoxia (84). 

The advanced knowledge of the molecular regulatory
mechanisms of HIF-1α activity under hypoxic conditions
contrasts sharply with the paucity of information on the
mechanistic and functional aspects governing nuclear factor κB
(NF-κB)-mediated HIF-1α regulation under normoxic
conditions. However, HIF-1α stabilization is also found in non-
hypoxic conditions through a mechanism which was recently
revealed. It was shown that NF-κB is a direct modulator of
HIF-1α expression in the presence of normal oxygen pressure.
Small interfering RNA (siRNA) studies for individual NF-κB
members revealed differential effects on HIF-1α mRNA levels,
indicating that NF-κB can regulate basal HIF-1α expression. It
was also shown that when endogenous NF-κB is induced by
tumor necrosis factor α (TNFα) administration, HIF-1α levels
change in an NF-κB-dependent manner (85). 

Recently, several drugs have been developed which act as
selective HIF prolyl-hydroxylase inhibitors (86). The most
notable of these include FibroGen’s compounds FG-2216
and FG-4592, both of which are intended as orally acting
drugs for the treatment of forms of anemia. By inhibiting
HIF prolyl-hydroxylase, the activity of HIF-1α in the
bloodstream is prolonged, which results in an increase in
endogenous production of erythropoietin. Both of these
drugs made it through to phase II clinical trials, but these
were suspended temporarily in May 2007 following the
death of a trial participant from fulminant hepatitis. However,
it is unclear whether this death was caused by FG-2216. The
hold on the study was lifted in early 2008 as the Food and
Drug Administration (FDA) reviewed and approved a
thorough response from FibroGen (87). 

HIF activity is also involved in angiogenesis required for
cancer tumor growth, so HIF inhibitors are also under
investigation for anticancer effects (88). HIF-1α is up-
regulated under hypoxic conditions and in turn up-regulates
VEGF expression. This pathway is thought to be involved in
the vascularization of tumors growing under hypoxic
conditions (89). Kim et al. found no significant correlation
between the expression of VEGF and HIF-1α; their co-
localization was seen in only a few cells (89). Thus, hypoxia-
induced VEGF expression may not be an important
vasculogenic pathway in pituitary adenomas. Similarly, Vidal

et al. showed that HIF-1α expression did not correlate with
MVD (49), thus suggesting that despite HIF-1α–mediated
regulation of VEGF in other tumor types, its expression in
pituitary tumors may be affected by alternate pathways.

Examination of a series of pituitary tumors (n=155) for
HIF-1α expression showed it to be limited to the nuclei of
tumor and endothelial cells, with non-tumoral cells being
immunonegative (49). No significant correlation was found
between its expression and patient age, sex, or tumor size.
With respect to tumor subtype, studies of HIF-1α expression
have demonstrated significantly higher levels in GH- and
PRL-secreting adenomas and carcinomas, whereas the lowest
levels were detected in ACTH-secreting adenomas (89-91).
The findings of elevated HIF-1α expression in pituitary
carcinomas and its decreased expression in ACTH-secreting
adenomas are of particular interest and highlight the need for
further studies into its value as a predictive biomarker.

Matrix Metalloproteinases (MMPs)

Metalloproteinases (or metalloproteases) constitute a family of
enzymes from the group of proteases, classified by the nature
of the most prominent functional group in their active site.
These are proteolytic enzymes whose catalytic mechanism
involves a metal (92). Most metalloproteases are zinc-
dependent, but some use cobalt. The metal ion is coordinated to
the protein via three ligands. The ligands coordinating the
metal ion can vary with histidine, glutamate, aspartate, lysine,
and arginine. The fourth coordination position is taken up by a
labile water molecule. There are two subgroups of
metalloproteinases: exopeptidases, (metalloexopeptidases) and
endopeptidases (metalloendopeptidases). Well-known metallo-
endopeptidases include A Disintegrin And Metalloprotease
(ADAM) proteins and matrix metalloproteinases. Treatment
with chelating agents such as EDTA leads to their complete
inactivation. EDTA is a metal chelator which removes zinc,
which is essential for the enzyme’s activity. They are also
inhibited by the chelator orthophenanthroline (92). 

MMPs are proteolytic enzymes that break down basement
membranes and connective tissues, thus facilitating invasive
growth (92). They do so by breaking down the extracellular
matrix and selectively remodeling it (92). In a recent
microarray analysis and gene clustering study, Hussaini et al.
found a robust, eight-fold increase in MMP-9 expression in
invasive, compared with non-invasive adenomas (93), a result
in keeping with the findings of earlier studies (3, 92, 94, 95).
Several studies established that increased expression and/or
activity of MMP-9 and/or MMP-2 corresponded to an
invasive tumor phenotype and higher radiological tumor
grade (3, 66, 92, 94, 96). Yet other studies investigating a
possible correlation between pituitary tumor invasiveness and
MMP-9 expression failed to show any association (97-99).
Other members of the MMP family, such as MMP-1, -2, and
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-3, have also been shown to be differentially expressed in
pituitary adenomas (3, 92, 97). The role of MMPs as
clinicopathological markers of pituitary adenomas has not
been established, despite considerable support for this notion.
Discrepancies may be rooted in variability in definition of
tumor parameters, especially of invasiveness, because this is
often variably defined based on radiological, surgical, and/or
microscopic findings. Nonetheless, MMPs offer much
promise as predictors of tumor behavior. Standardization of
approaches to the measurement of MMP levels and activity
may clarify some of these contradictory findings.

Microarrays

MicroRNAs (miRNAs) are small 22-nucleotide-long, single-
stranded, non-coding RNA molecules. They post-
transcriptionally regulate the expression of downstream
mRNAs by targeting the 3’ untranslated regions (100, 101).
After the discovery of miRNAs that form a class of
conserved genes, hundreds of miRNA genes have been
identified. So far more than 6,000 miRNAs encoded by
virus, plant and animal species have been recorded in the
miRBase bank (102, 103). A large class formed by miRNAs
are negative gene regulators controlling a group of biological
functions, i.e. cell proliferation, differentiation, signaling
pathways, apoptosis and metabolism (104, 105). Additional
evidence propose that some miRNAs might have oncogenic
or tumor suppressor functions (106), and play an important
role in tumorigenesis (107). Prior studies have shown that
expression of miR-15a and miR-16-1 in pituitary adenomas
is lower than that in the normal pituitary tissues. These
markers could be potentially useful diagnostic markers,
improving the classification of pituitary adenomas. However,
the role of transcriptional regulation of miRNAs and their
target genes in the pathogenesis of pituitary adenomas
remains largely unknown (108).

A recent study has indicated that altered miRNA
expression may be involved in GH-secreting pituitary
adenoma transformation (108). Furthermore, some
differentially expressed miRNAs are associated with tumor
diameter, lanreotide treatment, and responsiveness to
somatostatin analogs (SSA). Conclusively, these results will
facilitate our understanding on the mechanism of SSA
treatment for acromegaly. Further studies are needed to
predict the targets of up-regulated and down-regulated
miRNAs and their co-factors in pituitary adenomas. Studying
the targets of de-regulated miRNAs may elucidate-molecular
mechanisms involved in pituitary adenoma pathogenesis.

Pituitary Stem Cells 

The pituitary gland is the master endocrine regulator in the
human body. It plays an important role in such vital

physiological processes as growth, reproduction,
metabolism, and immune response. The adenohypophysis,
the secretory anterior lobe of the gland, contains five
different types of hormone-secreting cells: lactotrophs
(secreting PRL), somatotrophs (secreting GH),
corticotrophs (secreting ACTH), gonadotrophs (secreting
FSH and LH), and thyrotrophs (secreting TSH). The
pituitary gland of newborns already presents a full set of
terminally differentiated hormone-producing cells (109,
110). However, the postnatal gland undergoes extensive
remodeling during one’s lifetime. Soon after birth, the
adenohypophysis enters a phase of growth that results in a
dramatic increase in the size of the gland (111). The adult
pituitary gland has the ability to adapt its cellular
composition in response to changing physiological
conditions, and this ability is thought to be mediated via
the hypothalamus. For instance, the number of GH-
secreting cells doubles during puberty, whereas the number
of PRL-secreting cells expands and contracts several-fold
during pregnancy, lactation, and weaning (111). The
pituitary gland also appears to repopulate cells after tissue
loss (112, 113). Proposed mechanisms include mitoses of
differentiated cells, trans-differentiation between
phenotypes, and the differentiation of pituitary stem cells.
However, there is no conclusive in vivo evidence that any
of these processes actually occur (114). 

The existence of pituitary stem cells in the adult pituitary
gland is supported by such findings as postnatal
proliferation, differentiation based on environmental
alterations, and development of hormone-producing cells
after specific lesions in the pituitary. Stem cell
characteristics, including renewal, proliferation abilities, and
the presence of stem cells markers, have been demonstrated
in adult pituitary cells from mammals. However, the
proliferative ability observed is so far limited, and the
potential for differentiation into hormone-secreting cells
remains to be conclusively proven (111-113). Stem cell
markers have been detected in animal models of pituitary
tumorigenesis; however, a direct connection with tumor
formation has not been demonstrated. Research into the
capacity of ‘pituitary stem cells’ to differentiate in vitro and
in vivo will clarify the mechanisms for regulation of these
cells. As pituitary stem cells are better-understood, clinical
applications, such as the treatment of pituitary adenomas and
the implantation of pituitary stem cells for hormonal
deficiencies, may be developed (115).

Current evidence supports the role of stem cells in the
repair and plasticity of different organs in the human body
such as the heart and the brain (116-118). The stem cells in
these organ systems display the fundamental characteristics
of a stem cell. These characteristics include self-renewal
capacity, lack of specialization, and pluripotency, with the
ability to differentiate into different cell phenotypes. In
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culture, stem cells form colonies of undifferentiated,
pluripotent cells that contain unique stem cell surface,
cytoplasmic, and nuclear markers. In addition, these cells
characteristically form sphere-like structures which in the
example of neuronal stem cells (NSCs) are called
neurospheres. Similar to these other organ systems, the
plasticity of the pituitary gland and its alterations during
adult life may be secondary to the activity of adult stem cells
present in the gland (112, 119-124). Stem cell markers such
as SOX2 (sex-determining region Y-box 2) (123), nestin
(124), SCA1 (stem cell antigen-1) (125), and CD13322 have
been identified in subpopulations of cells in the adult
pituitary gland of animal models. In addition, ‘pituispheres’
have been generated in vitro in these models (120, 122).
These findings support a potential role for pituitary stem
cells in adult pituitary plasticity. 

The adenohypophysis contains not only hormone-
producing cells but also a substantial proportion of cells that
do not express hormonal markers (110, 111, 114). These
non–hormone-secreting cells are called chromophobes.
These cells do not stain with the periodic acid–Schiff stain
because of the absence of secretory hormone-containing
granules. The chromophobes were the first group of cells to
be considered for the role of pituitary stem cell by
Yoshimura et al. in 1969 (114). In their study,
chromophobes were purified from one-year-old mice and
transplanted into the hypophysiotrophic area of the
hypothalamus after surgical resection of the animal’s own
pituitary gland. The authors reported that pituitary-like
structures formed via proliferation and differentiation of
chromophobes into acidophils and basophils. 

In a follow-up study by Otsuka et al. chromophobes
differentiated in vitro into mature acidophils and basophils
after the addition of hypothalamic hormones (126). However,
the authors were unable to demonstrate one of the
fundamental characteristics of a stem cell: the capacity of a
single-cell to originate more than one lineage of cells.
Furthermore, the authors did not report whether the
regenerated pituitary tissue was endocrinologically active in
the animal models after transplantation (114). The failure to
demonstrate pluripotency may be partially explained by the
heterogeneity of the cell group classified as chromophobes.
This group includes agranular cells such as follicular cells
(FS) cells, marginal zone cells, degranulated hormonal cells,
and mesenchymal and immune cells (112). The
heterogeneous ability of agranular cells to differentiate into
acidophils and basophils (114, 126) supports the hypothesis
that chromophobes might display stem cell characteristics
(112). However, only a small subpopulation of
chromophobes actually displays these characteristics (112-
114). Therefore, the individual study of such cells reflects
the current trend in pituitary stem cell research in an attempt
to identify this subpopulation. 

The occurrence of plurihormonal and null cell-type
adenomas and the minimal mitotic activity present in the
hyperplastic pituitary gland support the hypothesis that
pituitary stem cells are a potential cellular source of pituitary
adenomas (127). Alterations in the hormonal environment
might be associated with changes in the normal pattern of
growth/differentiation of these cells and therefore promote
pituitary tumorigenesis.

Most of the pituitary pathophysiological data has been
obtained in animal models. The study of human pituitary
tissue still presents several limitations, including the
anatomic inaccessibility of the pituitary gland, lack of
functional human cell lines in culture, paucity of reliable
animal models, and unique murine tumor growth
characteristics (127). For instance, the higher mitotic activity
and expansion of murine pituitary tissue must be considered
before the results are analyzed and extrapolated as being
representative of the human pituitary gland (128). However,
animal studies have provided important information about
pituitary physiology and the mechanisms of pituitary
tumorigenesis. We discuss which adult pituitary cell lineages
might have a pituitary stem cell role and the potential
participation of these cells in pituitary tumorigenesis. In
addition, we present possible future clinical applications such
as the development of new treatment strategies for pituitary
adenomas and hormone deficiencies.

Folliculostellate cells (FSC). Ultrastructural features of
follicular structures reveal elongate or stellate cells known as
FSCs, attached to each other via terminal bars at their apical
surface and by desmosomes at their lateral cell membranes that
form major parts of the adenohypophysial parenchyma (129,
130). FCSs occupy an approximately central position within
every acinus in the adult human gland. Electron
microscopically, these specific cells are furnished with a small
nucleus and inconspicuous nucleolus, numerous free
cytoplasmic polyribosomes but scant rough endoplasmic
reticulum (RER), small Golgi apparatus. Additionally, there
might be a few intermediate filaments, and/or glycogen
particles. Immunohistochemically, they are immunoreactive for
S-100 and for glial fibrillary acidic protein (GFAP) (131-133).
Unfortunately, these immunoreactivity patterns do not co-exist
and are only temporary, as related to phases of the FSC life
cycle. Some immunoreactivity was found to be associated with
EMA and galectin-3 immunoreactivities (50, 134). 

The unexpected diversity of functions, from hormone
production to immune roles, coupled with morphological
variations within FSC, compelled some investigators to
assume a dual derivation of FSC as pituitary and hemopoetic
(dendritic) cells (135). In an extensive study, formation of
follicles within the pituitary primordium was noted as early
as six weeks of gestation (136). At this time, the stubby villi
fill most of the small lumina. Later (8-10 weeks of
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gestation), the morphology of the follicles is not much
different from that seen in the adult gland. In the fetal gland,
the follicles may contain FSCs possessing a few small
secretory granules, fulfilling the criteria of endocrine
differentiation, but not more differentiated forms.

Different developmental phases of antenatal and postnatal
life exhibit different architectural structures showing gradual
evolution of the pituitary acinus. This is a late event starting
close to term, and the pituitary in the newborn may exhibit only
focal emergence of the subsequent microcompartmentalization.
The newborn adenohypophysis contains no cells
immunoreactive for S-100 or GFAP. Several GFAP-positive
cells appear in the cleft area, within the small embryonic
remnants of the Rathke’s pouch. The late appearance of S-100
and GFAP immunoreactivities result most likely from the
previously described mechanism (129). It was found that
follicles are not stationary structures: new FSCs are formed by
glandular cells around single-cell necroses by forming terminal
bars and desmosomes, thereby isolating the debris (129).
Subsequently, they dismantle their endocrine machinery, taking
up the non-endocrine phenotype of FSC. This process was
interpreted to be ubiquitous as well as reversible (137). This
particular reversibility most probably may be explained as both
the FSC becoming a progenitor null-cell, followed by
differentiation to participate in tissue repair or in hyperplastic
processes, and tumorigenesis (137).

As for extensive use of immunohistochemistry, electron
microscopy, and immunoelectron microscopy led to the
concept of an inflexible one cell–one hormone, thus five-cell-
type model (138). Therefore, the use of modern techniques
open new horizons in understanding of new adenoma types
and previously undisclosed cell types belonging to or
resident in the human adenohypophysis (138). Making use
of modern techniques resulted in recognition of new
adenoma types and previously undisclosed cell types
belonging to or resident in human adenohypophysis. All the
morphological, in vitro biochemical, and genetic data, the
neoplastic potential make the small FSC more than just an
equal member of the pituitary cell population: it emerges as
a pluripotent pituitary-specific adult stem cell (137). 

Microenvironment 

In microinvasion and proliferation of pituitary tumors, cross-
talk exists between intracellular pathways and complex
microenvironmental factors, processes that can be modulated
at various levels. The signaling pathways of growth,
angiogenic factors and hormones are intricate; therefore,
alterations induced upon key molecules can lead to aberrant
proliferation. The demonstrated overactivity of protein
kinase-B (AKT) and mitogen-activated protein (MAP) kinase
(MAPK) pathways qualifies them as valuable targets for
inhibition, mediated by somatostatin analogs. An increasing

body of evidence suggests clinically significant implications
of PTTG1 in correlation with aggressive phenotypes or
survival rate, thus PTTG1 is an interesting candidate
biomarker for malignancy, tumor staging and subsequent
therapeutic interventions. Future work should focus on the
understanding over the molecular mechanisms that control
pituitary tumor development, where intracellular signaling
molecules will constitute not only diagnostic/prognostic
markers, but also novel therapeutic targets (139).

Inflammation and Tumor

Among pathogenetic mechanisms and markers outlined
above, same research suggests that HIF induction in
normoxia is likely to have serious consequences in disease
settings with a chronic inflammatory component (85). It has
also been documented that chronic inflammation is self-
perpetuating and that it distorts the microenvironment as a
result of aberrantly active transcription factors. Ultimately,
alterations in growth factor, chemokine, cytokine and
reactive oxygen species (ROS) balance occur within the
cellular milieu that in turn provide the axis of growth and
survival needed for de novo development of cancer and
metastasis. The results of a recently published study have
numerous implications for a number of pathologies where
NF-kB and HIF-1 are de-regulated, including rheumatoid
arthritis and cancer (85). Therefore, it is thought that
understanding the cross talk between these two key
transcription factors, NF-κB and HIF, will greatly enhance
the process of drug development (85). 

HIF activity is involved in angiogenesis required for
cancer tumor growth, HIF inhibitors are, thus, under
investigation for their anticancer effects (83, 140). (e.g.
phenethyl isothiocyanate (141).

Tumor Heterogeneity

There is much evidence to support the notion that pituitary
tumors are clonal lesions caused by intrinsic pituitary cell
defects, most of which are based on X chromosome
inactivation (142, 143). In support of this concept, it is
unusual to find hyperplasia of the anterior pituitary gland
surrounding an adenoma (which might be expected if the
adenoma arose as the result of an external hormonal
stimulus), although occasional examples have been described
(47). Multiple synchronous adenomas have been described
in the pituitary gland, including tumors of different cell
types, although they are extremely rare (144-146). A
multiclonal origin has been proposed for these tumors, and
there is increasing evidence to suggest that at least some
sporadic tumors may also be multiclonal (143, 147-149).
Genetic studies of pituitary adenomas have revealed that
most of the mutations that have been identified in other

ANTICANCER RESEARCH 32: 4639-4654 (2012)

4648



malignancies are usually absent, and the molecular events
leading to adenoma formation are thus still poorly
understood (147, 150-153). Although pituitary adenomas
occur in multiple endocrine neoplasia type-1 (MEN1) (154),
loss of heterozygosity at the MEN1 gene locus is uncommon
in sporadic adenoma (150, 152). Similarly, although pituitary
GH-expressing adenomas occur as part of the Carney
complex, one of the genes responsible for encoding an
enzyme for cAMP-dependent protein kinase type I-alpha
regulatory subunit is (PRKAR1A), which does not appear to
be involved in the development sporadic pituitary tumours
(155). Deletions in the region of 13q14 have been identified
in pituitary adenomas, suggesting the presence of a tumor
suppressor gene at this locus (151, 152, 156). It has also
been suggested that amplification of the transforming protein
p21 (HRAS) and of the regulator gene that codes for a
transcription factor (CMYC), and inactivation of the tumor
suppressor genes Rb1, Tp53, and nucleoside diphosphate
kinase An encoding metastasis suppressor gene NM23, may
represent mechanisms by which pituitary tumors progress,
but there is as yet no evidence of their consistent
involvement in pituitary adenoma invasion or in pituitary
carcinomas (147, 157-160). Certain cell-specific genetic
abnormalities have been identified, up to 40% of GH-
secreting adenomas have Gs protein (GSP) mutations,
resulting in activation of the Gs α subunit (147, 148, 161).
Inactivation of p16 has been identified in up to 80% of
adenomas (particularly in large tumors in two recent studies,
possibly as a result of CDKN2A methylation (162, 163). A
novel oncogene, PTTG, is overexpressed in a wide range of
pituitary adenomas and immunohistochemistry for PTTG
protein is positive in most adenomas, but absent from normal
pituitary cells (53). The precise role of PTTG in oncogenesis
is uncertain; PTTG may interact with FGF to stimulate
angiogenesis, or it may activate p53 to cause apoptosis (53,
59). A recent large study found an association between
cyclin-D1 genotype and tumor grade in sporadic pituitary
adenomas, (164) but the clinical relevance of this finding
remains uncertain until it is reproduced in other populations
with these tumors. A novel pituitary tumor-derived, N-
terminally truncated isoform of FGF receptor-4, ptd-FGFR4,
was identified. (165). ptd-FGFR4 is not expressed in normal
pituitary tissues, and has a distinctive cytoplasmic residence.
It has a transforming effect, both in vivo and in vitro, and
targeted expression of ptd-FGFR4 in transgenic mice results
in pituitary tumors that morphologically resemble PRL-
secreting adenomas in humans, in the absence of PRL cell
hyperplasia (165). 

Conclusion 

We explored various biomarkers which may be involved in
pituitary gland tumor induction and progression. Their study

is very useful because they can provide information related
to tumor cell proliferation and behavior, and which might
lead to therapeutic applications. We emphasize the need for
more consistent tumor markers and definitions. A wide
variety of molecules affect tumor development in the
pituitary. Hence the unavoidable requirement to develop a
wide variety of biomarkers, rather than reliance on single
ones, has emerged. In conclusion, newer techniques
including DNA and microRNA microarrays and recent data
about tumor microenvironment and tumor heterogeneity will
indisputably provide new candidates, important to pituitary
tumorigenesis.
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