Abstract. The anticarcinogenic potential of vitamin D is attributed to antiproliferative and prodifferentiative effects on cells for a wide variety of carcinomas. The biological effects of 1,25(OH)2D (calcitriol) are mediated through a soluble receptor protein termed vitamin D receptor (VDR). However, thus far there have been no studies evaluating the association between VDR expression and vulvar cancer. Using immunohistochemical analysis, VDR expression was evaluated separately in the nucleus, cytoplasm and membrane, in vulvar cancer samples and adjacent non-pathological vulvar tissue from 48 squamous cell carcinoma patients with no prior therapy, and the association between VDR and overall survival was investigated. Overall, among the 48 vulvar cancer cases, nuclear and cytoplasmic VDR expression was present in 47 (97.9%) and 23 (47.9%) cases respectively. The median nuclear VDR expression was significantly higher as compared to the cytoplasmic VDR in the vulvar cancer tissue. No significant correlation between VDR values and the age of the patients was detected. Nuclear and cytoplasmic VDR in the vulvar cancer tissue were also compared according to the tumor size, and no significant association between mean tumor VDR and tumor size was detected. There was no association between cytoplasmatic VDR expression and OS, but better OS was observed in patients with reduced nuclear VDR expression as compared to those with high VDR expression. VDR may be considered as a useful pathological marker.

Vitamin D is a liposoluble vitamin, like A, E and K. It is obtained from food such as fish, liver, milk and eggs or it is endogenically synthesized from cholesterol (1-3). Synthesis starts in the liver, where cholesterol is dehydrogenated to 7-dehydrocholesterol (7-DHC) (4), which is binds to vitamin-D-binding-protein (DBP) and transported via the blood circulation to the skin. Here cholecalciferol is synthesized by light in the 290-315 nm UV-B range (5), and then it is bonded to DBP and circulates back to liver. The active metabolite is hydroxylated in the kidney to 1,25-dihydroxycholecalciferol (1,25(OH)2D, calcitriol) (6-9).

Although the conversion of 25(OH)D primarily takes place in the kidney, several studies have shown that, 1α-hydroxylase is also present in other tissues such as prostate (10), colon (11, 12), pancreas (13), parathyreoid (14) and breast (15). Several studies have demonstrated the ability of vitamin D to perform autocrine and paracrine functions in carcinomas such as breast, colon and prostate cancer (10, 12, 15-20). Deficiency of vitamin D correlates with these carcinomas (21-24).

The anticarcinogenic potential of vitamin D is attributed to the strong antiproliferative and prodifferentiative effects shown in melanoma, osteosarcoma and breast cancer cells from the above mentioned carcinomas (25-28). The biological effects of 1,25(OH)2D are mediated through a soluble receptor protein termed vitamin D receptor (VDR). VDR binds 1,25(OH)2D with high affinity and high selectivity (29). In the target cell, the interaction of 1,25(OH)2D with the VDR initiates a complex cascade of molecular events culminating in alterations in the rate of transcription of specific genes or gene networks (29-31).

Squamous cell carcinoma of the vulvar is a rare disease with an annual incidence of 1.5-4 per 100,000 women in Germany (32). Vulvar cancer accounts for 3% to 5% of all genital carcinomas affecting women following endometrial, ovarian and cervical cancer (33). Eighty-five-90% of vulvar carcinomas are squamous cell carcinomas (34), the remainder are melanomas, adenoacarcinomas and sarcomas (35). Vulvar intraepithelial neoplasia (VIN) is the most common premalignant affliction of the vulvar, emanating from a HPV-Infection (36).

Since 1970 the incidence of carcinoma in situ, attributed to VIN III, has nearly doubled (37, 38), while invasive carcinoma tends to increase in the last few years (39, 40). VDR expression has been studied in carcinomas of the breast (41), lung (42) and the colon (43). However, there has

Anticancer Research. 2012. 32(2): 283-290
been no study evaluating the VDR expression in vulvar cancer. 48 samples of squamous cell carcinoma of the vulvar were evaluated for the presence of VDR.

Patients and Methods

Study participants and setting. The pathological samples consisted of a consecutive series of 48 patients who had received primary surgical treatment between 1995 and 2009 at the Helios Hospital Krefeld, Germany. The study population consisted of patients with histologically proven squamous cell carcinoma of the vulvar of different stages and adjacent non-pathological vulvar tissue. The patients were aged between 25 and 87 years. It is reasonable to assume that disruption of the vitamin D signaling and metabolic pathways may occur during tumor development. Women with a history of liver and kidney diseases, osteoporosis, diabetes mellitus, endometriosis or pregnancy were excluded from the study. None of the patients were receiving vitamin D supplements.

Immunohistochemistry. Immunohistochemistry was performed with a VDR-specific polyclonal antibody, C-20: sc-1008 (Santa Cruz Biotechnology, Heidelberg, Germany). Sections of five micrometer thickness on slides were deparaffinized and rehydrated (Figure 1). The slides were incubated with the VDR-specific antibody by a fully automated slide preparation system.

Scoring and cut-off selection. Immunohistochemical expression of VDR was assessed semi-quantitatively with regards to the intensity and proportion of positively stained tumor cells. The proportion of tumor cells and healthy vulvar tissue expressing VDR, in the nucleus, cytoplasm and membrane was recorded separately, at four intensity levels: none (0), weak (1), moderate (2) or strong (3) and was assigned an immunohistochemical score for each type of VDR expression (Table I) (Figures 2a-d, 3). This is an established technique of scoring, used in clinical practice in our institute of pathology within the context of scoring steroid hormone receptors (estrogen receptor, progesterone receptor) in breast cancer (44). No consistent scoring methods have previously been used to study VDR in vulvar cancer.

Statistical analysis. Statistical analysis was performed using the statistical package SPSS Version 18.0 (Statistical Package for Social Sciences, SPSS GmbH, München, Germany). Mann-Whitney, Fisher’s Exact and Chi-square tests were used to compare the categorical variables. A p-value of less than 0.05 was considered statistically significant.

Survival analysis was performed according to the Kaplan-Meier method and survival differences were tested by log-rank test.

Results

VDR expression. Overall, among the 48 vulvar cancer cases studied, nuclear and cytoplasmic VDR expression was present in 47 (97.9%) and 23 (47.9%) cases respectively. The median nuclear VDR expression was significantly (p=0.001) higher in the vulvar cancer tissue (4.7±3.0) as compared to the cytoplasmatic VDR in the vulvar cancer tissue (1.7±2.4) (Figure 4).

In four cases a high expression of membrane VDR was demonstrated in vulvar cancer tissues. The percentage of immunoreactive cases for the nuclear VDR in the non-pathological vulvar tissue was very high (91.7%, corresponding to 44 cases out of 48). Regarding the expression of cytoplasmatic VDR in the non-pathological vulvar tissue, only 4.2% of positive cases, corresponding to 2 out of 48 were observed (Table II).

Within the vulvar cancer tissue and non-pathological vulvar tissue, the nuclear VDR expression was characterized by strong immunoreactivity (4.7±3.0), whereas the non-pathological vulvar tissues expressed nuclear VDR immunoreactivity of 3.8±2.1. The difference between nuclear VDR expression in the vulvar cancer and non-pathological vulvar tissue was significant (p=0.030) (Figure 5).

Correlation between VDR and age or histological characterization. No significant correlation between the VDR values and the age of the patients was detected.
Figure 2. Immunohistochemical staining of paraffin-embedded sections of vulvar cancer tissue (magnification ×20). a) Weak staining of nuclear VDR. b) Strong staining of nuclear VDR. c) Staining of cytoplasmatic VDR. d) Staining of membranous VDR.

Table II. VDR expression in vulvar cancer and healthy vulvar tissue.

<table>
<thead>
<tr>
<th>Score</th>
<th>Nucleus/ tumor</th>
<th>Cytoplasm/ tumor</th>
<th>Nucleus/ healthy tissue</th>
<th>Cytoplasm/ healthy tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 (2.1%)</td>
<td>25 (52.1%)</td>
<td>4 (8.3%)</td>
<td>46 (95.8%)</td>
</tr>
<tr>
<td>1</td>
<td>5 (10.4%)</td>
<td>4 (8.3%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>5 (10.4%)</td>
<td>6 (12.4%)</td>
<td>8 (16.7%)</td>
<td>1 (2.1%)</td>
</tr>
<tr>
<td>3</td>
<td>11 (22.9%)</td>
<td>3 (6.3%)</td>
<td>13 (27.1%)</td>
<td>1 (2.1%)</td>
</tr>
<tr>
<td>4</td>
<td>7 (14.6%)</td>
<td>3 (6.3%)</td>
<td>9 (18.8%)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8 (16.7%)</td>
<td>6 (12.5%)</td>
<td>11 (22.9%)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7 (14.6%)</td>
<td>-</td>
<td>2 (4.2%)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1 (2.1%)</td>
<td>1 (2.1%)</td>
<td>1 (2.1%)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3 (6.3%)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

n=48 n=48 n=48 n=48
mean±SD 4.7±3.0 1.7±2.4 3.8±2.1 0.1±0.5

Figure 3. Immunohistochemical staining of paraffin-embedded sections of vulvar healthy tissue (magnification ×20).
The expression of nuclear VDR in well-differentiated vulvar cancer was 4.8±3.2 while in poorly-differentiated vulvar cancer it was 4.5±3.0. This difference was statistically not significant. There was also a trend towards an increased expression of cytoplasmatic VDR in the well-differentiated versus poorly-differentiated vulvar cancer. However, the difference was not statistically significant. Nuclear and cytoplasmatic VDR in vulvar cancer tissue were also compared according to the tumor size, and no significant association between mean tumor VDR and tumor size was detected (Table III).

Discussion

The VDR assay allowed reliable quantification of the protein and render it possible to detect reasonable differences among the groups.

The expression of nuclear VDR in the pathological tissue revealed a significantly higher expression of the VDR than in non-pathologic vulvar tissue. Similar results were previously demonstrated for breast cancer (15, 45). However conflicting results have been published with lower VDR expression in malignant breast tissues (46) and of nuclear VDR in non-small cell lung cancer (NSCLC) patients on which an even distribution of high and low cytoplasmatic VDR expression was observed (42).

In concordance with other cancer studies, VDR was found to be present in the cytoplasm of the studied vulvar cancer patients, but significantly less expression of the cytoplasmatic VDR was found in the non-pathological vulvar tissue compared to vulvar cancer. The nuclear VDR expression in the non-pathological vulvar tissue and the vulvar cancer was higher than the cytoplasmatic VDR expression. Similar observations of VDR in patients with ovarian cancer and expression of cytoplasmic VDR were reported by Silvagno et al. (47), who also found that high VDR expression was associated with better overall survival (OS).

In our study VDR expression showed no significant correlation to the OS. There was a trend for the OS of the vulvar cancer patients. The patients who died of vulvar cancer had a lower VDR expression in comparison to those.

Table III. Comparison of nuclear and cytoplasmatic VDR and tumor grading.

<table>
<thead>
<tr>
<th>Grading</th>
<th>Nuclear VDR</th>
<th>Cytoplasmatic VDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 1</td>
<td>n=1</td>
<td>n=1</td>
</tr>
<tr>
<td>Mean</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>G 2</td>
<td>n=23</td>
<td>n=23</td>
</tr>
<tr>
<td>Mean±SD</td>
<td>4.8±3.2</td>
<td>2.4±2.8</td>
</tr>
<tr>
<td>Median</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Min-max</td>
<td>0-12</td>
<td>0-6</td>
</tr>
</tbody>
</table>

\(p\)-value 0.775 0.581
who died of a different cause. Patients with high nuclear VDR expression have been shown to have a higher survival rate in NSCLC while the level of cytoplasmic VDR expression had no influence on OS (42). Due to the limitations of the present small retrospective study, definite conclusions concerning the OS could not be drawn.

Although nuclear VDR expression showed no statistically significant differences in relation to tumor size and grading; a trend for higher expression of cytoplasmatic VDR in well differentiated vulvar carcinoma compared to cases with poor differentiation was found.

In colon cancer cells, Shabahang et al. demonstrated an inhibiting effect of 1.25(OH)2D with well-differentiated carcinomas showing inhibition of cell proliferation as compared to poorly-differentiated carcinomas (48). Holick et al. showed that 1.25(OH)2D may inhibit cell proliferation in healthy and malignant prostate-, breast- and colon tissue and may induce cell differentiation (49). Some of the studies suggested a protective effect of locally produced 1.25(OH)2D in the pathogenesis of various malignancies. Vitamin D up-regulation of VDR expression in malignant melanoma cells has been reported (50). A higher number of patients in our study may perhaps have demonstrated a correlation between the differentiation of vulvar cancer and the expression of VDR. However, due to the very small number of patients with well-differentiated vulvar cancer in the present study (n=1), no definite conclusions could be drawn.

Membrane-bound VDR (mVDR) first described in literature 1981 (51) was also detected in four of the present cases of vulvar cancer. The mVDR transmits signals via changes in the intracellular calcium levels (52, 53) and represents a secondary mode of molecular signalling in addition to the nuclear VDR (30). Calcitriol regulates transcription by a nuclear VDR and can also interact with a membrane VDR by a rapid cellular reaction (54). To our knowledge, expression of mVDR in vulvar cancer has not been previously reported.

The expression of VDR in breast cancer is correlated with the anti-proliferative effects of calcitriol, so that the intensity of VDR expression in tumor cells may be considered a prognostic marker for the response to therapy with calcitriol or vitamin D analogues (55).

Further studies should be conducted to evaluate vitamin D supplementation and its effect on the pathogenesis of gynecological tumors. In vivo studies showed that active vitamin D analogues may block proliferation and tumor progression of epithelial tumor cells (56). This approach may also be useful in the prevention of vulvar cancer. For example, in the near future vitamin D analogues may be used for the treatment of vulvar intraepithelial neoplasia to prevent progression to invasive carcinoma. This promising hypothesis, however, will require further evaluation through clinical trials.

References

56 Trémezaygues L and Reichrath J: From the bench to emerging new clinical concepts: Our present understanding of the importance of the vitamin D endocrine system (VDES) for skin cancer. Dermatoendocrinol 3(1): 11-17, 2011.

Received September 19, 2011
Revised November 8, 2011
Accepted November 9, 2011