
Abstract. Recent studies have implicated genetic and
epigenetic aberrations resulting in aberrant activation of the
Wingless-Int (Wnt) pathway and thus influencing the initiation
and progression of multiple myeloma (MM). Of major
importance, these findings may lead to novel treatment
strategies exploiting targeted modulation of Wnt signaling.
This review describes the current status of knowledge
concerning the role of Wnt pathway alteration in MM and
outlines future lines of research and their clinical perspectives.

Multiple Myeloma

Multiple myeloma (MM), a well-known but still incurable
disease of the blood, is a hematologic malignancy of B-
lymphocytes which is characterized by clinical heterogeneity,
such as anemia, bone disease, renal dysfunction and
prolonged infections (1-3). In the past, for most patients with
MM, chemotherapy with melphalan and prednisone or high
dosage chemotherapy with stem-cell transplantation were the
only therapeutic options (4, 5). During recent years, major
effort has been put into immunotherapeutic approaches for
this malignancy (4). Due to high mortality rates and high
relapse rates among transplant patients with MM, new
therapeutic strategies are required.

In the past few years, major progress has been made in the
treatment of MM by introducing novel therapeutic agents
such as thalidomide, lenalidomide and bortezomib. In newly

diagnosed patients, the combination of lenalidomide and
dexamethasone has shown an effective response rate of 91%.
Nevertheless, MM remains an incurable disease (6, 7).

The Wingless-Int (Wnt)/β-catenin pathway has been
shown to play an important role in the regulation of cell
proliferation, differentiation and apoptosis (8-10). Recently,
it was demonstrated that the Wnt pathway is aberrantly
activated in a considerable fraction of MMs. Thus, Wnt/β-
catenin signaling molecules are attractive candidates for
developing novel targeted therapies for this disease.

Wnt Signaling Pathway
Wnt (wingless) proteins constitute a family of cysteine-rich
glycosylated proteins that contribute to lymphopoiesis and
early stages of both B- and T-cell development (11). They
function as extracellular signaling molecules that may activate
the Wnt/β-catenin signaling pathway by binding to the
extracellular domain of Frizzled receptors. In addition to their
extracellular Wnt-binding domain, Frizzled receptors have
seven transmembrane-spanning sequences and a C-terminal
tail. Wnt proteins regulate cell proliferation, cell morphology,
cell motility and cell fate. To date, more than 14 Wnt
members have been identified in humans and more than 8
mammalian Frizzled genes are known (12). Wnt signaling
results in the activation of intracellular signaling cascades
which are associated with several forms of cancer (11). 

Binding of Wnt to either Frizzled and the low-density
lipoprotein receptor-related proteins (LRP) 5 and 6, or to
Frizzled protein alone results in the stabilization of β-
catenin, the major mediator of canonical Wnt signaling
(Figure 1) (13, 14). Frizzled receptors have no enzymatic
motifs on their intracellular domains, therefore intracellular
signaling molecules have to be recruited or released (12).
These are members of the Dishevelled (Dvl) family. Three
members of Dvl, including Dvl-1, Dvl-2 and Dvl-3, have
been characterized (15). They lack any known enzymatic
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activity but function as molecular adaptors on Frizzled
receptors due to their protein-protein interaction domains
and/or heterotrimeric G-proteins (12, 14). β-Catenin is
associated in a cytoplasmic complex together with the
adenomatous polyposis coli (APC) protein, the cytoplasmic
serine/threonine kinase glycogen synthase kinase-3β (GSK-
3β), and axin (Figure 1) (12, 16). In unstimulated cells, axin
in its phosphorylated form is able to bind β-catenin
effectively. Upon Wnt signaling, however, axin is
dephosphorylated by the protein phosphatase 2A (PP2A).
The dephosphorylated form of axin binds β-catenin less
efficiently than it does the phosphorylated form, thereby
promoting the release of β-catenin (17). A complex of axin
with one of the three iso-enzymes of casein kinase I (CKIα,
δ or ε) phosphorylates β-catenin on serine 45. This step is
independent of GSK-3β and initiates the phosphorylation-
degradation cascade of β-catenin. In the subsequent step, β-
catenin is phosphorylated at serine 33/37 by GSK-3β (15).

The phosphorylated β-catenin is subsequently recognized
by the E3 ubiquitin ligase subunit β-transducin repeat-
containing protein (β-TrCP) and thereby targeted for
ubiquitination and subsequent degradation by the proteasome
(16, 18, 19).

In the presence of Wnt signaling, the phosphorylating
activity of GSK-3β is inhibited leading to the stabilization
of β-catenin (20). This is mediated by the intracellular
protein Dvl through a Frizzled receptor (16). The APC-
GSK-3β-Axin activity is dissociated and unphosphorylated
β-catenin accumulates in the cytoplasm (16, 20). From
there, free β-catenin is able to translocate into the nucleus
where it interacts with TCF and LEF transcription factors
(20). Dvl not only stabilizes β-catenin in the cytoplasm, but
is also required in the nucleus where it interacts between c-
Jun and β-catenin, respectively. This mediates the
formation of a Dvl–c-Jun-β–catenin-TCF transcriptional
complex, binding to the promoter of Wnt target genes (14).
For example, β-catenin may stimulate cell-cycle
progression and differentiation by Wnt/β-catenin target
gene expression of genes, including c-myc, cyclin D1 and
fibronectin (11, 14). 

β-Catenin

β-Catenin is a 92 kDa protein consisting of several structural
domains (Figure 1) (12, 21). The N-terminal region mediates
binding activity by phosphorylation sites for GSK-3β and β-
catenin (12). The central domain contains 13 incomplete
conserved Armadillo repeat motifs (‘Arm’ amino acid
repeats) facilitating protein-protein interactions of, e.g.
cadherins, β-catenin, the APC protein, axin, or lymphoid-
enhancing transcription factor (LEF)-1/T cell transcription
factor (TCF) (12, 21). A positively charged groove in a
superhelix of this central domain is hypothesized to interact

with acidic regions of APC, TCF transcription factors and
cadherin cell-adhesion molecules (12). The C-terminal region
encodes a transcriptional transactivation domain. Both the
central domain and the C-terminal region are involved in the
signaling activity of β-catenin (21). 

β-Catenin acts as a structural protein at cell–cell adherens
junctions where it links cadherins to the actin cytoskeleton
(11). In addition to β-catenin, there are two other catenins
known as α-catenin and γ-catenin (plakoglobin). β-Catenin
associates with E-cadherin and α-catenin, forming a
cadherin–catenin protein complex under in vivo conditions
(21). Furthermore, β-catenin acts as a central molecule in the
Wnt pathway, influencing membrane structure and the shape
of a cell (11). Thus, β-catenin has a dual cellular function in
mediating cell–cell adhesion as well as Wnt signaling (21).

Wnt Pathway Signaling in MM

MM depends on the bone-marrow microenvironment for
growth and survival. The tumor is characterized by extensive
bone loss and osteolytic lesions located at sites of medullary
plasmacytomas, suggesting that myeloma cells secrete
factors that alter the biology of bone remodeling. Wnt
signaling is essential for the maintenance of osteoblast and
osteoclast homeostasis, and thus, coupled bone turnover (8,
20). Recent data highlight the importance of the local
microenvironment in the effect of Wnt signaling on the
development of myeloma bone disease and demonstrate that,
despite a direct effect on increasing tumor growth at
extraosseous sites, increasing Wnt signaling in the bone-
marrow microenvironment can prevent the development of
myeloma bone disease and inhibit myeloma growth within
bone in vivo (22).

Emerging evidence suggests that production of Wnt-
signaling inhibitors DKK1, sFRP2 and sFRP3 by myeloma
cells contributes to the development of osteolytic lesions
through the direct suppression of osteoblast differentiation
(20, 23). In addition to enhanced osteolysis, MM cells also
suppress bone formation, at least in part, through an
inhibition of the canonical Wnt pathway by secreting
Frizzled-related protein 2 sFRP-2 (24). Recently, a
consistent, close correlation between DKK1 expression by
myeloma cells and the occurrence of focal osteolytic bone
lesions was demonstrated in MM patients. In addition, data
was provided for a novel functional link between β-catenin
and aurora kinase A, underscoring a critical role of these
pathways in disease progression (20, 25).

In contrast, it was shown that bortezomib, a novel drug
used to treat MM, induces osteoblast differentiation via Wnt-
independent activation of the β-catenin/TCF pathway,
suggesting that proteasome inhibition therapy of MM may
function, in part, by subverting tumor-induced suppression of
canonical Wnt signaling in the bone microenvironment (26).
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DKK1 and MM Bone Disease

DKK1 is a negative regulator of the canonical Wnt signaling
pathway. Wnt signaling mediated by LRP5/6 is required for
the maintenance of normal bone density in adults. Stimulation
of osteoblast differentiation (27, 28), regulation of osteoblast
proliferation (17, 29) and apoptosis (16, 30-32) and induction
of osteoblast activity (33) are thought to be the main
mechanisms by which Wnt signaling increases bone mass due
to increased bone formation. In addition, Wnt signaling may
also increase bone mass by affecting osteoclast function (33-
35) and, thereby, decreasing bone resorption.

When DKK1 is neutralized, the Wnt pathway is activated
and Wnt target genes are expressed, leading to activation and
differentiation of osteoblastic cells and therefore BHQ880, a
human, anti-DKK-1 neutralizing antibody, has the potential
to act as a bone anabolic agent and perhaps reduce the
incidence of skeletal-related events (36).

MM cells, but not plasma cells, from healthy donors and
patients with monoclonal gammopathy of undetermined
significance or other plasma cell dyscrasias involving the
bone marrow, express the Wnt-signaling antagonist DKK1
(34, 36). Previously, it was reported that secretion of DKK1
by MM cells likely contributes to osteolytic lesions in this
disease by inhibiting Wnt signaling. The mechanisms
responsible for activation and regulation of DKK1 expression
in MM are not yet known (31). DKK1 expression changes
may be traced in MM cells to perturbations in the JNK
signaling cascade, which is differentially modulated through
oxidative stress and interactions between MM cells with
osteoclasts in vitro. Despite its role as a tumor suppressor
and mediator of apoptosis in other cell types including
osteoblasts, the data suggest that DKK1, a stress-responsive
gene in MM, does not mediate apoptotic signaling, is not
activated by TP53 and its forced overexpression may not
inhibit cell growth or sensitize MM cells to apoptosis
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Figure 1. Schematic overview of the Wnt pathway revised according to David M. Eisenman (43) without (A) and with (B) Wnt activation.



following treatment with thalidomide or lenalidomide (36).
Specific strategies to modulate persistent activation of the
JNK pathway may be beneficial in preventing disease
progression and treating myeloma-associated bone disease
by inhibiting DKK1 expression (25). Recent findings suggest
DKK1 as a serum biomarker for screening against a variety
of cancers, and anti-DKK1 antibodies as potential tools for
diagnosis and treatment of cancer (37).

Targeting the Wnt Pathway in Myeloma

The Wnt/β-catenin pathway has been shown to play an
important role in the regulation of cell proliferation,
differentiation and apoptosis (8-10). Lymphomas may show
aberrant activation of the pathway (20), which therefore
represents an attractive candidate for targeted therapeutic
intervention in these tumors. More recently, a study investigated
the apoptotic effects of ethacrynic acid (EA) and the antifungal
agent ciclopiroxolamine (CIC), another drug that inhibits
Wnt/β-catenin signaling, on the myeloma cell line OPM-2 (23).
EA is already used clinically as a diuretic agent. Glutathione-S-
transferase (GST), which is overexpressed in human tumors in
the form of GST-P, couples glutathione (GSH) with electrophilic
compounds and detoxifies the cell (38). GSH acts as a reducing
agent and antioxidant. The binding of EA to GSH can enhance
the cytotoxicity of chemotherapeutic agents (39). CIC is used
topically for the treatment of yeast infections in humans and is
degraded by glucoronidation (40). It acts as a chelator of
polyvalent metal cations (e.g. Fe3+ and Al3+), resulting in the
inhibition of the metal-dependent enzymes in the metabolism
of the cell. Furthermore, it blocks the cell cycle near the G1/S
phase boundary (40).

Treatment of OPM-2 cells and the three lymphoma cell
lines, OCI-LY8-LAM-53, SU-DHL-4 and Raji, led to a
significant decrease of viability in these tumor cell lines but
not in PBMCs derived from healthy donors (23). These
results suggest a selective induction of apoptosis by CIC and
EA in lymphoma and myeloma cells. 

A recent study used a 96-well plate-based TOPflash
reporter system to screen the Gen-plus drug library
(Microsource, Gaylordsville, CT, USA), which contained
960 compounds (20). This screen identified EA and CIC as
Wnt/β-catenin inhibitors. Given that the canonical Wnt
signaling pathway is activated in lymphoma and myeloma
cells (20), the study investigated whether EA and CIC may
induce apoptosis and reduce the viability of lymphoma and
myeloma cell lines. The effect of EA was studied in primary
cultures derived from patients with chronic lymphocytic
leukemia. Similar data as for cell lines were obtained for
primary cells. The study showed a significant induction of
apoptosis by CIC and EA in lymphoma and myeloma cells.
Taken together with previous results (20), these data
suggested that EA and CIC can inhibit Wnt/β-catenin

signaling in lymphoma and myeloma cell lines. In addition,
EA was also shown to be effective in primary cultures
derived from patients with chronic lymphocytic leukemia.
These results are in accordance with a recent report (13) that
the canonical Wnt signaling pathway is activated in MM
through constitutively active β-catenin (23).

Aberrant activation of Wnt/β-catenin signaling promotes the
development of several types of cancer. Recently, it was
demonstrated that the Wnt pathway is also activated in
lymphoma and myeloma (11, 13, 22, 23, 26). Therefore, the
Wnt/β-catenin signaling molecules are attractive candidates for
the development of targeted therapies in these diseases. To this
extent, it was recently confirmed that the diuretic agent EA and
the antifungal agent CIC inhibit Wnt/β-catenin signaling (20).
Patients with myeloma are currently treated with drugs such as
doxorubicin and thalidomide or with novel compounds such as
bortezomib and lenalidomide. Recently, these compounds were
tested in combination with CIC and EA. CIC, lenalidomide and
EA were more effective than thalidomide in decreasing the
viability of myeloma cell lines. In addition, EA and CIC
decreased the viability of lymphoma cells (20). In OPM-2
cells, the combination of CIC and EA plus bortezomib did not
further decrease the viability of OPM cells. Interestingly, the
addition of thalidomide and lenalidomide indicated a
synergistic effect of these drugs with EA and CIC. Moreover, it
was demonstrated that β-catenin expression is down-regulated
when CIC and EA are added to lymphoma cells. These results
revealed a significant selective induction of apoptosis by CIC
and EA in both lymphoma and myeloma cells and suggested a
synergistic effect when CIC and EA are combined with
thalidomide or lenalidomide in myeloma cells. Interestingly,
recently, similar results were obtained using drugs chemically
similar to EA and CIC (41, 42).

In conclusion, the Wnt signaling pathway seems to be of
major importance in myeloma. Influencing this pathway is a
novel treatment strategy and should be investigated in further
studies for future clinical use in patients with MM.
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