
Abstract. Cytokine signaling is involved in pain and opioid-
receptor signaling. In this prospective study, we studied the
plasma cytokine levels in order to identify candidate
biomarkers for predicting resistance to morphine treatment in
a cohort of opioid-treatment-naïve cancer patients. We
analyzed pain rating and the plasma concentrations of 26
cytokines at baseline and after morphine treatment using a
multiplex immunoassay system for the following cytokines:
eotaxin, colony stimulating factor, granulocyte (G-CSF),
colony stimulating factor granulocyte-macrophage (GM-
CSF), interferon α2 (IFN-α2), IFN-γ, interleukin 1α (IL-1α),
IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12
(p40), IL-12 (p70), IL-13, IL-15, IL-17, IP-10, monocyte
chemotactic protein 1 (MCP-1), macrophage inflammatory
protein 1α (MIP-1α), MIP-1β, tumor necrosis factor-α (TNF-
α) and TNF-β. No correlation was observed between the
clinical characteristics and the numerical rating scale for pain
at baseline or among patients who developed resistance to
morphine treatment. Interestingly, the plasma concentration of
MIP-1α significantly decreased during morphine treatment
(day 8 vs. baseline, p=0.03). Regarding the baseline plasma

cytokine concentrations, none of the cytokine levels were
correlated with the numerical rating scale for pain at
baseline; however, the baseline plasma concentrations of
eotaxin, IL-8, IL-12 (p40), IL-12 (p70), MIP-1α and MIP-1β
were significantly lower in patients who required a high dose
of morphine or who developed resistance to morphine
treatment. In conclusion, this is the first report revealing that
the plasma concentrations of several cytokines were
significantly modulated during treatment and were correlated
with treatment outcome of morphine. Our results suggest that
plasma cytokine levels may be promising biomarkers for
morphine treatment and that they warrant further study. 

Approximately 80% of advanced-stage cancer patients suffer
from pain as a result of their disease, and more than 10
million cancer patients are thought to be treated with opioids
worldwide (1). Therefore, controlling chronic, severe pain
caused by cancer is considered a very important issue for
improving the quality of life of cancer patients. Since the
degree of pain sensation and the outcome of morphine
treatment varies widely among individuals, pharmacogenetic,
pharmacokinetic and pharmacodynamic biomarkers of opioid
treatment, such as genetic determinants, have been
investigated intensively to improve the effectiveness of
morphine treatment (2). Several genetic variants associated
with varying pain sensitivity have been identified in the
general population, including of the genes for μ-opioid
receptor (OPRM1); δ-opioid receptor (OPRD1);
catecholamine-O-methyltransferase (COMT); guanosine
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triphosphate cyclohydrolase 1/DOPA-responsive dystonia
(GCH1); melanocortin-1 receptor (MC1R); transient receptor
potential cation channel, subfamily V, member 1 (TRPV1);
and transient receptor potential cation channel, subfamily A,
member 1 (TRPA1) (2, 3). With regard to morphine treatment,
the most investigated genetic variant is OPRM1 118A>G. The
OPRM1 gene is the main target of morphine, and the
118A>G variant leads to a change in amino acids (asparagine
to aspartic acid) at position 40 of the extracellular receptor
region, affecting a putative glycosylation site of the receptor
and suggesting that the different sensitizing to pain is
biologically reasonable (2). Many studies have evaluated the
correlation between OPRM1 118A>G and the outcome of
morphine treatment; however, a recent meta-analysis showed
no consistent associations between the OPRM1 118A>G
genotype and most of the phenotypes in a heterogeneous set
of eight clinical studies, except for weak evidence of an
association with less nausea and increased opioid dosage
requirements in homozygous carriers of the G allele (4).
Other genetic variants (such as variations in COMT; MC1R;
ATP-binding cassette, sub-family B, member 1 [ABCB1]; and
UDP glucuronosyltransferase 2B7 [UGT2B7]) and
combinations of such variants have been examined in several
studies (2, 5). However, plasma cytokine levels have never
been used as biomarkers for morphine treatment to date. 

Meanwhile, emerging evidence has indicated that cytokine
signaling is closely involved in pain and that bidirectional
interactions exist between cytokine and opioid-receptor
signaling (6, 7). In addition, the overexpression of cytokines
and chemokines is frequently observed in many types of
cancer (8, 9). However, few studies have evaluated the plasma
concentrations of cytokines in association with pain scale
ratings or the outcome of morphine treatment. Thus, we
hypothesized that the plasma concentrations of some
cytokines may be modulated or correlated with morphine
treatment in cancer patients. In this prospective study, we
examined the plasma concentrations of 26 cytokines to
explore candidate biomarkers capable of predicting resistance
to morphine treatment.

Materials and Methods   

Patients. This prospective study started in July 2009 and enrollment
was completed in March 2011 at the Kinki University Faculty of
Medicine and Sakai Hospital, Kinki University Faculty of Medicine.
Clinicopathological features including age, sex, ECOG performance
status (PS), type of primary malignant neoplasm, metastatic sites,
white blood cell count (WBC), hemoglobin (Hb) level, platelet
count (PLT), and albumin (Alb) and C-reactive protein (CRP) levels
were recorded. The numerical rating scale (NRS) for pain (10, 11)
and the required doses of morphine were evaluated at baseline and
on days 1 and 8 of morphine treatment. Morphine treatment was
performed according to the standard method including titration
(NCCN Guidelines™, Adult Cancer Pain) (12). Resistance to

morphine treatment on day 1 (early phase) or on day 8 (stationary
phase) was defined as the requirement of a high morphine dose (>30
mg) and the persistence of pain after morphine treatment (NRS ≥6)
on days 1 or 8, respectively. The present study was approved by the
Institutional Review Boards of both centers, and written informed
consent was obtained from all the patients. 

Preparation of plasma samples. Blood samples were collected
before the initiation of morphine treatment (baseline) and on day 8.
The separated sera were stocked at –80˚C until further use.
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Table I. Clinical characteristics of study patients. 

Characteristic Total
n=44

No. of patients %

Age, years Median 69
Range 40-85

Gender Male 22 50
Female 22 50

PS 0 0 0
1 9 20
2 24 55
3 10 23
4 1 2

Cancer type Lung 19 43
CRC 8 18
Gastric 4 9
CUP 4 9
Pancreatic 2 5
Breast 2 5
GB 1 2
RCC 1 2
Lymphoma 1 2
PCC 1 2
Skin 1 2

Metastatic Sites (n) 0 4 9
1 19 43
2 13 29
3≥ 8 18

WBC (/μl) <5000 8 18
5000-9999 22 50
≥10000 14 32

Hb (g/dl) <8.5 3 7
8.5-11.9 27 61
≥12 14 32

PLT (104/μl) <10 0 0
10-29 24 55
≥30 20 45

Alb (g/dl) <2.5 4 9
2.5-3.4 20 45
≥3.5 20 45

CRP (mg/dl) <1 12 27
1.0-4.9 16 36
≥5 16 36

CRC, colorectal; CUP, cancer of unknown primary; GB, gallbladder;
RCC, renal cell carcinoma; Lymphoma, malignant lymphoma; PCC,
malignant pheochromocytoma.  



Antibody suspension bead array system. The plasma concentrations
of 26 cytokines were determined using commercially available
antibody suspension bead arrays (MILLIPLEX™ Human Panel 1
Pre-mixed 26 Plex #MPXHCYTO60KPMX26; Millipore, Billerica,
MA, USA). The markers used in this panel were as follows: eotaxin,
colony stimulating factor, granulocyte (G-CSF), colony stimulating
factor, granulocyte-macrophage (GM-CSF), interferon, α2 (IFN-
α2), IFN-γ, interleukin 1α (IL-1α), IL-1-β, IL-2, IL-3, IL-4, IL-5,
IL-6, IL-7, IL-8, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-
17, IP-10, monocyte chemotactic protein 1 (MCP-1), macrophage
inflammatory protein 1α (MIP-1α), MIP-1β, tumor necrosis factor-
α (TNF-α) and TNF-β. Data was obtained using a Bio-Plex
suspension array system® (Bio-Rad Laboratories, Hercules, CA,
USA) according to the manufacturer’s instructions. The method has
been previously described (13-14).

Statistical analysis. Statistical analyses were performed to test for
differences between groups, using Student’s t-test or Fisher’s exact
test. A p-value of <0.05 was considered statistically significant. All
analyses were performed by JMP (SAS Institute, Cary, NC, USA).

Results

Patient results. A total of 50 patients with opioid-treatment-
naïve and histologically confirmed malignant neoplasms,
who were scheduled to undergo opioid treatment were
eligible for enrollment in this study. Five patients were
excluded from the analysis because of early cancer death
within two weeks, and one patient was excluded because of
absence of a plasma sample. Thus, 44 patients were included
in the final analysis (Figure 1A). Of the 44 patients, 75% had

a PS of 0–2 and 43% had advanced lung cancer (Table I).
Forty-seven percent of the patients had metastatic lesions in
two or more organs. The laboratory data for WBC, Hb, PLT,
Alb and CRP are also shown (Table I).

Clinical characteristics and outcome of morphine treatment.
We evaluated whether the clinical characteristics were
associated with the NRS for pain at baseline or among
patients who had developed resistance to morphine treatment
on days 1 or 8. Age, sex, PS, tumor type, metastatic sites,
WBC, Hb, PLT, Alb and CRP were examined (Table II).
Twenty-five patients (57%) had severe pain (NRS ≥6) at
baseline. Resistance to morphine treatment was observed in
11 patients (25%) on day 1 and 14 patients (32%) on day 8.
None of the examined clinical characteristics were associated
with the NRS for pain or the outcome of morphine treatment.
These results suggest that predicting the outcome of morphine
treatment based on clinical parameters may be difficult.

Plasma concentrations of cytokines at baseline and changes
after morphine treatment. We examined the changes in the
plasma concentrations of 26 cytokines at baseline and after
morphine treatment (Table III). The baseline plasma
concentrations seemed to vary widely among individuals; for
example, the plasma concentrations of G-CSF and IL-6
varied from 0 to 2332 pg/ml and 0 to 1879 pg/ml,
respectively. During morphine treatment, the plasma MIP-1α
level decreased significantly (baseline: 7.2±19.3 pg/ml, day
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Figure 1. A: Flow diagram of analyzed patients. B: Plasma concentrations of MIP-1α (left panel) and IL-12 (p40, right panel) at baseline and after
morphine treatment (day 8). 



8: 2.3±7.4 pg/ml, p=0.03). Although the difference was not
significant, the plasma IL-12 (p40) level also decreased
(baseline: 7.0±17.4 pg/ml, day 8: 2.7±7.6 pg/ml, p=0.07)
(Figure 1B). Since the results were obtained from paired
samples of the same individuals at baseline and after
treatment, morphine treatment was thought to reduce these
plasma concentrations. MIP-1α and IL-12 (p40) could be
novel biomarkers for monitoring the effects of morphine
treatment, although further studies are needed.

Baseline plasma cytokine concentrations and required dose
of morphine. We analyzed whether the baseline plasma
cytokine levels were associated with the required dose of
morphine. IL-8, IL-12 (p40) and MIP-1α were significantly
lower in patients who required a high dose (>30 mg) of
morphine on day 1 after titration (p=0.03, p=0.01 and
p=0.02, Table IV). Meanwhile, the concentration of eotaxin
was significantly lower in patients who required a high dose
of morphine on day 8 (p=0.00026). 

Baseline plasma cytokines and outcome of morphine
treatment. Finally, we analyzed whether the baseline plasma
cytokine levels were associated with the outcome of
morphine treatment. None of the cytokine levels were

correlated with the NRS for pain at baseline (Table V).
However, several cytokines, including IL-12 (p40), IL-12
(p70), MIP-1α and MIP-1β, were significantly lower in
patients who developed resistance to morphine treatment on
day 1 compared with the levels in patients whose pain was
well controlled after morphine treatment (p=0.03, p=0.03,
p=0.02 and p=0.01, respectively). Interestingly, the plasma
concentrations of IL-12 (p40) and MIP-1α were identified
by both changes and outcome of morphine treatment,
suggesting that these cytokines may be closely involved in
opioid signaling. Meanwhile, the concentration of eotaxin
was significantly lower in patients with resistance to
morphine treatment on day 8 (baseline: 53.8±26.0 pg/ml, day
8: 34.6±9.0 pg/ml, p=0.0009). Collectively, the baseline
plasma concentrations of several cytokines were significantly
associated with the outcome of morphine treatment. 

Discussion 

MIP-1α was identified as a macrophage inflammatory
protein that has inflammatory and neutrophil chemokinetic
properties (15). MIP-1α plays various roles in inflammatory
responses by binding to receptors, including chemokine (C-
C motif) receptor 1 (CCR1) and CCR5 (16). Cellular sources
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Table II. Relationship between clinical characteristics and resistance to morphine treatment.

Characteristic Pain scale* (Baseline) Treatment outcome (day 1) Treatment outcome (day 8)

Mild Severe p-value Well Resistant** p-value Well Resistant** p-value
controlled controlled

Age (years) 65< 5 8 0.75 9 4 0.71 9 4 1.00 
65≥ 14 17 24 7 21 10

Gender Male 11 11 0.54 16 6 1.00 14 8 0.75 
Female 8 14 17 5 16 6

PS 0-2 12 21 0.16 24 9 0.70 21 12 0.46 
3-4 7 4 9 2 9 2

Tumor types Lung ca. 10 9 0.36 15 4 0.73 11 8 0.33 
Others 9 16 18 7 19 6

Metastatic sites (n) 0-1 10 13 1.00 17 6 1.00 13 10 0.11 
2≥ 9 12 16 5 17 4

WBC (/μl) <10000 14 16 0.53 24 6 0.29 21 9 0.74 
≥10000 5 9 9 5 9 5

Hb  (g/dl) <10 6 13 0.23 15 4 0.73 14 5 0.53 
≥10 13 12 18 7 16 9

PLT (104/μl) <30 11 13 0.78 16 8 0.29 16 8 1.00 
≥30 8 12 17 3 14 6

Alb (g/dl) <3.5 10 14 1.00 21 3 0.08 16 8 1.00 
≥3.5 9 11 12 8 14 6

CRP (mg/dl) <5 13 15 0.75 19 9 0.28 20 8 0.74 
≥5 6 10 14 2 10 6

Comparisons are between mild vs. severe pain groups and well-controlled vs. resistant to morphine treatment groups. *Pain was evaluated using
the numerical rating scale for pain (NRS). Severe pain was defined as NRS ≥6. **Resistance group was defined as the requirement of a high dose
of morphine (>30 mg) and persistent pain (NRS ≥6) after morphine treatment. The p-values were calculated using the Fisher’s exact test.



and regulators of human MIP-1 are inducible in most mature
hematopoietic cells and osteoblasts, astrocytes, microglia
(fetal), epithelial cells, mesangial cells, fibroblasts, and
vascular smooth muscle cells (16). We found that the plasma
MIP-1α concentration decreased significantly during
morphine treatment. In line with our findings, several studies
have demonstrated that morphine directly down-regulates the
expression of MIP-1β in leukocytes, astrocytes and astroglial
cells in vitro (17-19). This effect was thought to be mediated
through the opioid mu (μ) receptor (19). We hypothesized
that morphine down-regulates the secretion of MIP-1α from
mature hematopoietic cells, resulting in a decrease in the
plasma concentrations of MIP-1α during morphine
treatment. Thus, the concentration of MIP-1α may be useful
as a pharmaco-dynamic biomarker of morphine treatment. 

On the other hand, we found that the plasma concentrations
of cytokines, including eotaxin, IL-8, IL-12 (p40), IL-12
(p70), MIP-1α and MIP-1β, are significantly correlated with
the outcome of morphine treatment. The underlying

mechanism explaining why these plasma concentrations of
cytokines were lower in patients with resistance to morphine
treatment remains unclear. Two possible hypotheses can be
considered. Firstly, crosstalk between cytokine-signaling and
opioid receptor-signaling may be involved. Accumulating
evidence has indicated that stimulation of MIP-1α to its
receptor CCR1 induced the internalization of μ-opioid
receptors and severely impaired the μ-opioid receptor-
mediated inhibition of cAMP accumulation in μ-opioid
receptor/HEK293 cells (20). In addition, the prolonged
activation of opioid receptors inhibited the function of
chemokine receptors on leukocytes via a calcium-independent
protein kinase C pathway (21). These studies indicate a direct
link between these signaling pathways. Secondly, many
leucocyte subpopulations in the peripheral blood, including
lymphocytes, monocytes, and granulocytes, produce opioid
peptides, such as met-enkephalin, β-endorphin, dynorphin, and
endomorphins, in inflammatory peripheral tissue (22). Opioid
peptides can bind to opioid receptors on sensory neurons and
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Table III. Plasma concentrations of cytokines at baseline and changes after morphine treatment. The plasma cytokine concentrations at baseline
(before) and after (day 8) morphine treatment are shown as the minimum, maximum, and mean±SD. Comparisons between baseline and after
treatment concentrations were evaluated using the t-test. 

Cytokine Baseline After treatment* Baseline vs. After
(pg/ml)

Range Mean±SD Range Mean±SD

Min Max Min Max p-value

Eotaxin 7.8 115.6 47.7±23.7 2.7 114.5 42.7±23.5 0.10 
G-CSF 0.0 2331.9 265.1±363.4 12.0 4452.1 329.5±653.2 0.57 
GM-CSF 0.0 13.5 2.6±2.5 0.0 17.7 2.7±2.9 0.75 
IFN-α2 1.4 76.3 16.5±15.6 0.0 37.2 16.5±8.0 1.00 
IFN-γ 0.0 86.6 7.7±16.9 0.0 68.2 6.4±12.2 0.62 
IL-1α 0.0 581.9 82.8±118.5 0.0 594.8 88.4±113.8 0.63 
IL-1β 0.0 4.9 0.5±1.3 0.0 4.5 0.3±1.0 0.40 
IL-2 0.0 4.7 0.2±0.8 0.0 17.1 0.5±2.6 0.41 
IL-3 0.0 2.1 0.1±0.3 0.0 0.0 0.0±0.0 0.28 
IL-4 0.0 67.4 2.5±11.2 0.0 10.4 0.3±1.6 0.21 
IL-5 0.0 1.4 0.1±0.2 0.0 0.8 0.1±0.2 0.89 
IL-6 0.0 1878.7 49.2±282.4 0.0 75.2 13.4±20.1 0.41 
IL-7 0.0 17.7 0.7±3.2 0.0 3.4 0.1±0.5 0.14 
IL-8 0.0 280.7 24.7±52.5 0.0 247.5 29.8±53.9 0.48 
IL-10 0.0 1880.7 50.5±284.4 0.0 751.7 22.1±112.9 0.28 
IL-12 (p40) 0.0 70.7 7.0±17.4 0.0 40.8 2.7±7.6 0.07 
IL-12 (p70) 0.0 31.3 3.1±6.9 0.0 33.9 2.7±6.9 0.55 
IL-13 0.0 7.8 0.3±1.4 0.0 7.4 0.2±1.1 0.58 
IL-15 0.0 10.5 0.8±2.1 0.0 15.1 1.2±3.1 0.34 
IL-17 0.0 18.8 2.2±4.1 0.0 16.3 2.5±4.2 0.55 
IP-10 199.9 18071.6 1303.0±2727.9 158.4 20000.0 1377.7±2965.7 0.53 
MCP-1 92.3 2346.5 316.0±357.0 84.1 1772.6 346.7±346.2 0.67 
MIP-1α 0.0 85.6 7.2±19.3 0.0 42.9 2.3±7.4 0.03 
MIP-1β 0.0 90.4 16.7±20.3 0.0 56.5 13.8±13.9 0.44 
TNF-α 0.4 175.2 12.3±29.3 0.2 98.5 9.5±14.9 0.37 
TNF-β 0.0 9.9 0.7±1.7 0.0 3.0 0.3±0.7 0.15 



elicit potent exogenous or endogenous analgesia in
inflammatory tissue (23). Since chemokines regulate the
migration of opioid peptide-containing leucocytes (23), the
antinociceptive effects of chemokines may be involved in the
outcome of morphine treatment.

Taken together, these results suggest that the plasma
concentrations of several cytokines were correlated with
resistance to morphine treatment. Our results provide novel
insight into the relation between plasma cytokine levels and
morphine treatment, which warrants for further study.
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Table V. Relationship between baseline plasma cytokine concentrations and resistance to morphine treatment.

Cytokine Base line plasma concentration

Pain scale* Treatment outcome (day 1) Treatment outcome (day 8)

(pg/ml) Mild Severe p-value Well Resistant** p-value Well Resistant** p-value
controlled controlled

Eotaxin 49.2±23.2 46.5±24.6 0.71 49.6±22.3 41.9±28.1 0.42 53.8±26.0 34.6±9.0 0.0009 
G-CSF 186.8±191.7 324.6±447.8 0.18 280.4±408.3 219.3±177.1 0.50 253.4±415.5 290.0±225.2 0.71 
GM-CSF 2.9±3.4 2.3±1.6 0.45 2.7±2.7 2.2±1.9 0.56 2.6±2.1 2.6±3.3 0.98 
IFN-α2 19.1±22.1 14.5±7.7 0.39 17.8±17.2 12.5±8.8 0.19 14.4±9.2 21.0±24.1 0.33 
IFN-γ 10.6±24.3 5.4±7.7 0.38 8.6±19.1 4.9±7.0 0.35 8.3±20.1 6.2±6.7 0.61 
IL-1α 78.7±102.8 85.9±131.2 0.84 71.6±91.5 116.1±178.9 0.44 76.3±97.5 96.6±158.0 0.66 
IL-1β 0.5±1.3 0.5±1.3 0.85 0.6±1.4 0.3±1.0 0.51 0.4±1.2 0.7±1.5 0.53 
IL-2 0.3±1.1 0.1±0.4 0.57 0.2±0.9 0.0±0.1 0.20 0.1±0.3 0.4±1.3 0.33 
IL-3 0.1±0.5 0.0±0.0 0.37 0.1±0.4 0.0±0.0 0.28 0.0±0.0 0.2±0.6 0.36 
IL-4 1.8±7.6 3.0±13.5 0.70 3.3±12.9 0.0±0.0 0.16 3.6±13.5 0.0±0.0 0.16 
IL-5 0.1±0.3 0.1±0.1 0.76 0.1±0.3 0.1±0.1 0.58 0.1±0.3 0.1±0.1 0.75 
IL-6 8.7±12.0 80.1±374.8 0.35 64.4±325.8 3.7±9.1 0.29 69.8±341.8 5.1±8.6 0.31 
IL-7 1.6±4.7 0.1±0.7 0.21 1.0±3.7 0.0±0.0 0.13 1.1±3.8 0.0±0.0 0.13 
IL-8 16.0±24.0 31.2±66.3 0.30 22.7±39.1 30.4±83.1 0.77 19.3±38.2 36.1±75.1 0.44 
IL-10 100.5±431.1 12.5±45.2 0.39 66.3±328.1 3.2±6.5 0.28 72.8±343.9 2.6±5.8 0.27 
IL-12 (p40) 10.6±22.2 4.2±12.4 0.27 9.0±19.7 0.9±2.6 0.03 6.0±14.2 9.2±23.3 0.64 
IL-12 (p70) 4.3±8.8 2.1±4.9 0.34 3.8±7.8 0.7±1.3 0.03 3.0±7.1 3.3±6.7 0.89 
IL-13 0.3±1.2 0.3±1.5 1.00 0.4±1.6 0.0±0.0 0.13 0.4±1.7 0.1±0.2 0.27 
IL-15 1.0±2.8 0.6±1.3 0.53 0.9±2.3 0.5±1.2 0.50 0.9±2.4 0.5±1.1 0.39 
IL-17 1.4±2.8 2.8±4.8 0.24 2.4±4.5 1.6±2.5 0.43 2.0±4.4 2.6±3.2 0.63 
IP-10 950.7±893.8 1570.7±3544.0 0.41 902.9±845.3 2503.3±5253.4 0.34 948.8±904.7 2062.0±4677.3 0.39 
MCP-1 333.7±229.2 302.5±434.2 0.76 346.5±405.8 224.3±93.8 0.12 366.6±420.8 207.5±89.7 0.06 
MIP-1α 11.8±26.2 3.8±11.1 0.23 9.6±21.8 0.0±0.0 0.02 8.0±18.7 5.7±21.2 0.73 
MIP-1β 19.8±22.0 14.3±19.1 0.39 19.8±22.1 7.5±9.3 0.01 16.8±21.1 16.6±19.3 0.97 
TNF-α 15.2±39.0 10.0±19.7 0.60 14.2±33.7 6.3±4.0 0.19 15.3±35.2 5.8±3.4 0.16 
TNF-β 0.3±0.6 0.9±2.2 0.19 0.7±1.9 0.4±1.1 0.50 0.6±1.9 0.8±1.4 0.73 

The baseline plasma cytokine concentrations were analyzed between mild vs. severe pain groups and well-controlled vs. resistant to morphine
treatment groups using the t-test. *Pain was evaluated using the numerical rating scale for pain (NRS). Severe pain was defined as NRS ≥6.
**Resistance was defined as the requirement for a high dose of morphine (>30 mg) and persistent pain (NRS ≥6) after morphine treatment. The p-
values were calculated using the t-test. 
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