
Abstract. Artemisinin has been shown to be an effective
antimalarial and anticancer compound. Dimers of
artemisinin have been synthesized and shown to be potent
antimalarials compared with monomers. In the present study,
we investigated the effect of two artemisinin dimers (dimer-
alcohol and dimer-hydrazone) on rat mammary adeno-
carcinoma cells (MTLn3) in vitro and in vivo compared with
that of the artemisinin monomer dihydroartemisinin (DHA).
We found that the dimers are considerably more potent than
DHA in killing MTLn3 cells in vitro and suppressing the
growth of MTLn3 breast tumors in vivo.

The antimalarial artemisinin has been shown to have
anticancer properties (1, 2). Presumably, cancer cells contain
excessive free iron compared to normal cells. Artemisinin
selectively kills cancer cells by forming free radicals
intracellularly when reacted with iron (1). Recently, dimers
of artemisinin have been synthesized in various laboratories.
These dimers have been shown to have potent antimalaria
and anticancer properties (3-20). In the present study, we
investigated the anticancer activities of two artemisinin
dimers synthesized in our laboratory, dimer-hydrazone
(Dimer-Sal) and dimer-alcohol (Dimer-OH) and compared
them with the artemisinin monomer dihydroartemisinin
(DHA). These compounds were tested in vitro on rat breast
adenocarcinoma MTLn3 cells and on the growth of MTLn3
breast tumors in the rat.

Materials and Methods
Animals. Female Fisher-344 rats (Charles River Laboratories,
Wilmington, MA, USA), ranging in body weight from 130 to 150 g
at the initiation of experiments, were used.  Experiments were
carried out in a specific pathogen-free laboratory. Rats were fed
Purina rat chow and given water ad libitum during the course of the
experiments. All animal-use procedures had been reviewed and
approved by the Animal Use and Care Committee of the University
of Washington prior to experiments.

Synthesis of dimers. All starting materials and reagents for organic
synthesis were purchased from Sigma-Aldrich (St. Louis, MO, USA),
except for artemisinin that was purchased from Shaanxi Sciphar
Biotechnology Co., Ltd (Xi’an, P.R. China), and used without further
purification. Matrix assisted laser desorption ionization time of flight
mass spectrum (MALDI-TOF/MS) was recorded on a Bruker Biflex
III MALDI-TOF/MS spectrometer. 1H-NMR spectra were recorded
on a Bruker Datatronics Avance AV Series NMR operating at 300
MHz. Dimer-OH was synthesized according to a published procedure
(16). Dimer-Sal was synthesized by reacting dimer-hydrazine and
salicylaldehyde also according to a published procedure (12). Dimer-
Sal: 1H-NMR (300 MHz, CDCl3) δ 9.75 (br s, 1H), 8.31 (s, 1H), 7.28
(dt, J=7.8 and 1.5 Hz, 1H), 7.17 (dd, J=7.8 and 1.5 Hz, 1H), 6.99 (d,
J=7.8Hz, 1H), 6.87 (t, J=7.8 Hz, 1H), 5.33(s, 1H), 5.27 (s, 1H), 4.21
(m, 1H), 2.8-2.6 (m, 3H), 2.4-2.1 (m, 3H), 2.07-1.77 (m, 8H), 1.7-1.5
(m, 3H), 1.5-1.15 (m including singlets at δ 1.37 and 1.33, 16H), 1.02-
0.85 (m, 14H); LRMS (MALDI), m/z [M+H]+=739.6. Chemical
structures of Dimer-Sal, Dimer-OH and DHA are shown in Figure 1.

Procedures of in vitro experiment. MTLn3 cells (a gift from D. Jeffrey
Segall of the Albert Einstein College of Medicine, Bronx, NY, USA)
were grown in Eagle’s alpha-modified minimum essential medium
(MEM, Catalogue Number: 12561056, Invitrogen, Frederick, MD,
USA) containing 10% fetal bovine serum (ATCC, Manassas, VA, USA)
at 37˚C in an atmosphere of 5% CO2 and 100% humidity. At
approximately 95% confluency, cells were passaged in 7 T-25 flasks at
a density of approximately 10,000 cells/mL. Each flask contained 5 ml
of medium. After 24 h of incubation, the medium was replaced with
fresh medium with 1 mg/mL of holotransferrin (Fortune Biologicals,
Inc., Gaithersburg, MD, USA). Cells were further incubated for 1 h.
For zero hour count, cells from one flask were trypsinized and counted
using a hemocytometer. Cells from other flasks were treated with 0,
0.02, 0.05, 0.1, 0.5, and 2 μM of test compounds DHA, Dimer-Sal or
Dimer-OH) freshly dissolved in dimethyl sulfoxide (DMSO). The final
concentration of DMSO in each flask was 1%. Dihydroartemisinin was
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a gift from Holley Pharmaceuticals (Chongqing, P. R. China). After 72
h of incubation under the conditions described above, cells from each
flask were trypsinized and counted. Each dose response study was
performed three times.

Procedures of in vivo experiment. MTLn-3 cells were grown in Eagle’s
alpha-modified MEM supplemented with 10% fetal bovine serum
(ATCC). Subcutaneous breast tumors were produced by implanting
approximately 106 cells from exponentially growing cultures into the
flank of an animal. After implantation, rats were monitored on a daily
basis to check for tumor development. When the tumors had grown to
approximately 1 cm in diameter, daily drug treatment began.

Rats were randomly assigned to one of three drug-treatment
groups: Dimer-Sal (n=9), Dimer-OH (n=7) and DHA (n=8). The
dosage for each drug was 20 mg/kg/day. Drugs were dissolved in
olive oil and intubated in a volume of 1 ml/kg using an 8-French
feeding tube. A control group (n=13) was similarly given daily
intubation of 1 ml/kg of olive oil. Daily drug treatment continued
for 5 days. Tumor size was measured daily. The length, width and
height (in mm) of the ellipsoidal tumor were measured with a
caliper. Tumor volume was calculated using the formula: length ×
width2 × π/6. Data from each rat were expressed as the ratio of
change in tumor volume from day one, i.e., that was measured
immediately before the first treatment was administered. 

Data analysis. IC50 of Dimer-Sal, Dimer-OH and DHA on MTLn3
cells were calculated from the dose-response data. Data were
analyzed using one-way ANOVA and differences between
treatments were compared by the Newman-Kuel’s test. Tumor
growth curves from the treatment groups were compared using the
nonparametric method of Krauth (21), comparing the levels of the
curves (ao) using a one-tailed Mann-Whitney U-test. A difference
at p<0.05 was considered statistically significant.

Results
Log dose-response curves of MTLn3 cells to Dimer-Sal,
Dimer-OH and DHA are presented in Figure 2 a and b. The
IC50 (mean±SD, n=3) of Dimer-Sal, Dimer-OH and DHA

were 52±1, 43±1, and 360±180 nM, respectively. Thus, both
Dimer-Sal and Dimer-OH are significantly more potent than
DHA in inhibiting the growth of MTLn3 cells in vitro.

Results of the in vivo experiment are presented in Figure
3. Compared to the control, Dimer-Sal (p<0.01), Dimer-OH
(p<0.01), and DHA (p<0.05) significantly retarded the
growth of MTLn3 tumors in the rat. Furthermore, both
Dimer-Sal (Dimer-Sal vs. DHA, p<0.01) and Dimer-OH
(Dimer-OH vs. DHA, p<0.01) are significantly more potent
than DHA. In addition, the response to Dimer-OH was
significantly different from that to Dimer-Sal (p<0.01). The
effect of Dimer-OH on tumor size appeared to last longer.

Discussion

We have shown in both in vitro and in vivo experiments that
artemisinin dimers are more potent than the monomer in regard
to cancer cell toxicity and suppression of tumor growth. There
has been one more animal cancer study of artemisinin dimers.
Galal et al. (8) reported that daily subcutaneous injection (25-
50 mg/kg/day) of a dimer caused a significant growth delay of
HL-60 human leukemia xenografts in the mouse.

Artemisinin dimers have been tested in many different
cancer cell lines and found to be effective in either suppressing
their growth or causing cell death (apoptosis) (e.g. 3, 4, 20). In
general, cancer cell cytotoxicity of dimers is more potent than
that of the monomers. The increase in potency varies from 10-
to 100-fold (4, 10, 13, 20). Artemisinin dimers have also been
shown to be as or even more potent than some
chemotherapeutic agents, such as doxorubicin (19). However,
the dimers have been shown to be much less toxic to normal
cells than cancer cells (13, 18). Posner et al. (17) reported a
high therapeutic index (>150) for some of the dimers they
synthesized. The highly selective cytotoxicity of artemisinin
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Figure 1. Chemical structures of Dimer-Sal, Dimer-OH and DHA.



dimers towards cancer cells makes them an attractive option
for development of cancer treatment.

The mechanism of action of artemisinin dimers on cancer
cells is not known. However, it must be pointed out that the
presence of two endoperoxides in one molecule would not
guarantee its effectiveness towards cancer cells. Other factors
also play a role on its potency. For example, not all dimers tested
were found to have an effective antiproliferative effect on cancer
cells and those that do also have different potencies towards
different cancer cell lines (e.g. 8, 12, 19). In the present study,
we also found that Dimer-OH has a slight but significantly more
potent effect than Dimer-Sal in vitro and in vivo.

Beekman et al. (5) speculated that the spatial positions of
the active groups are an important consideration. They found
that non-symmetric DHA dimers are more potent than
symmetric dimers in killing EN2 cancer cells. The linkers of
the dimers also play an important role. Chadwick et al. (7), in
testing their C10 carba artemisinin dimers, found that
changing the number of carbon atoms in the linker changed
the potency of the dimer in killing HL-60 cells: dimers with
more carbon atoms in their linkers were more active. Jung et
al. (11) reported that linker size affected the potency of their
artemisinin dimers. Jeyadevan et al. (10), from their study on
artemisinin phosphate ester dimers, concluded that the nature
of the linker in the dimers played an important role in their
antiproliferative effect on cancer cells. Furthermore, it is also
not known why the dimers are more potent than monomers.
One possibility is that dimers, with two active groups, after

activation by iron, can form cross-linking of biological
molecules, which could cause a more devastating effect on
cellular functions leading to cell death. Interestingly, Beekman
et al. (6) concluded that the ether linkage of their artemisinin
dimers was the component that kills cancer cells, whereas the
endoperoxides only played a minor role. However, Stockwin
et al. (20) found that both the antioxidant L N-acetylcysteine
and the iron-chelator desferroxamine were able to block the
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Figure 2. Log dose-response plots of DHA and (a) Dimer-Sal and (b) Dimer-OH effects on MTLn3 cells in vitro. 

Figure 3. Effects of Dimer-Sal, Dimer-OH and DHA on growth of
MTLn3 tumors in the rat. Data from each rat were expressed as the
ratio of change in tumor volume from day one, which was measured
immediately before the first treatment was administered. 



cancer cell cytotoxicity of their dimers, which would suggest
an involvement of the endoperoxide moieties. They suggested
that formation of reactive oxygen species causes endoplasmic
reticulum stress leading to apoptosis.

Therefore, artemisinin dimers cannot be considered as a
single group of compounds with similar general properties.
The arrangement of atoms in the molecules, the chemical
characteristics of the linkers, and the in vivo pharmacokinetics
of a compound can determine the cytotoxic effectiveness and
action of the compound on cancer cells.
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