
Abstract. Background: Mesenchymal stem cells (MSCs)
have attracted great interest in cancer therapy since the
discovery of their tumor tropism. This study was performed
to investigate the effects of TNF-related apoptosis-inducing
ligand (TRAIL)-engineered MSCs on hepatocellular
carcinoma (HCC) cells (HepG2) under different culture
conditions. Materials and Methods: MSCs engineered with
non-secreting TRAIL (MSCTRAIL-GFP) (GFP, green
fluorescence protein) and secreting TRAIL (MSCstTRAIL)
were used for the direct co-cultures, and conditioned media
(CM) from corresponding cultures were applied to HepG2 as
indirect co-cultures. Immunoblotting, ELISA and FACS
analysis were used to detect the expression of TRAIL and
TRAIL receptors. Cell death was assessed using live/dead
assay. Results: Death receptor (DR) 5 was identified on the
HepG2 cells. The expression of TRAIL was confirmed in the
cell lysates (MSCTRAIL-GFP >MSCstTRAIL) and the
conditioned media (MSCstTRAIL >MSCTRAIL-GFP). Higher
cell death was observed in high MSC/HepG2 ratio co-
cultures. HepG2 cell death was proportionally related to CM
from MSCTRAIL-GFP and MSCstTRAIL. Conclusion: MSCs
exhibit intrinsic inhibition of HepG2 which is potentiated by
TRAIL-transfection.

Hepatocellular carcinoma (HCC) is one of the leading causes
of cancer death in the world (the second in men and the sixth
in women) (1), and the second leading cause of cancer death
in China (2). Only 20% of HCCs are amenable to curative
treatment (3). Surgical resection and liver transplantation are
the only curative options available, with 5-year survival rates
of 36-70% and 60-70% respectively (4-6). Systemic

chemotherapy can increase the median survival of patients
with unresectable HCC to approximately 14 months (7). If
untreated, median survival is 6-12 months (8, 9) with few
surviving beyond 3 years. Of the fatalities, the majority of
HCC patients die from the recurrence of metastasis or
therapy-related life-threatening complications. To a
significant extent, current conventional cancer therapies are
symptomatic and passive in nature. The major obstacle
limiting the effectiveness of conventional therapies for cancer
is their tumor specificity. Thus, it is critical to explore
efficient remedy strategies specifically targeting tumor tissue.

Since the discovery of the tumor-oriented homing capacity
of mesenchymal stem cells (MSCs), the application of
specific anticancer gene-engineered MSCs has held great
potential for cancer therapies. Tumor-directed migration and
incorporation of MSCs have been demonstrated in a number
of pre-clinical studies in vitro using transwell migration
assays and in vivo using animal tumor models. The homing
capacity of MSCs was demonstrated with almost all tested
human cancer cell lines, such as lung cancer (10), malignant
glioma (11-13), Kaposi’s sarcomas (14), breast cancer (15,
16), colon carcinoma (17), pancreatic cancer (18, 19),
melanoma (20) and ovarian cancer (15). Engineered with
tumor-specific anticancer genes, MSCs are capable of
producing anticancer agents locally and constantly. TNF-
related apoptosis-inducing ligand (TRAIL, also known as
Apo2L) is a member of the TNF super-family. It was
originally identified and cloned on the basis of its sequence
homology to the extracellular domain of CD95 ligand
(CD95L) and TNF (21, 22). TRAIL is one of few anticancer
proteins which selectively cause apoptosis of transformed or
tumor cells through the activation of death receptors (DR),
with no effects on healthy cells (23). Five TRAIL receptors
are known, TRAIL receptor 1 (DR4); 2 (DR5); 3 (decoy
receptor 1, DcR1); 4 (DcR2) and a soluble receptor,
osteoprotegerin (OPG) (24). As a component part of
developing a dual-targeted therapeutic strategy, this study
was performed to detect the sensitivity of human HCC cells
(HepG2) to TRAIL-engineered MSCs under various culture
conditions.
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Materials and Methods
Cells and culture conditions. MSCs were isolated from human
pancreas and ex vivo expanded as previously described (25). Human
pancreases were obtained (with consent) from adult heart-beating
cadaver organ donors through the organ procurement program of the
British Columbia Transplant Society (BCTS, Vancouver, Canada).
Pancreatic dutal tissue taken from the Ricordi chamber during islet
isolation was utilized as the starting material. Primary culture was
initiated by seeding chopped ductal tissue onto 100 mm culture
dishes (CellBind, Corning, Acton, MA, USA). Subculture was
performed once newly grown cells reached sub-confluence. Based
on the minimal criteria for defining human MSCs established by the
International Society of Cellular Therapy (ISCT), these MSCs were
verified by both membrane biomarker determination and functional
differentiation. They fulfilled the characteristics of human MSCs,
exhibiting positive expression of CD44+, CD73+, CD95+, CD105+

and negative of CD34–. The results of adipogenic and osteogenic
differentiation also met the requirements. The MSCs were cultured
in MEM with 10% FCS, 2 mM L-glutamine and 1% penicillin-
streptomycin solution (all from Invitrogen, Carlsbad, CA, USA) and
incubated at 37˚C in a humidified, 5% CO2 atmosphere. The cells
used in this study were limited within passages 5 to 7.

The human liver HCC cell line (HepG2, HB-8065) was
purchased from American Type Culture Collection (ATCC,
Manassas, VA, USA). The HepG2 cells were maintained as
suggested by ATCC and their culture condition was kept consistent
with the MSCs. The cells used in the present study were limited to
within 3 passages.

Flow cytometric analysis. The expression of TRAIL receptors on
the HepG2 cells was detected by flow cytometry. Sub-confluent
HepG2 cells were detached with 0.25% trypsin and washed with
PBS. A total of 1-5×105 cells were resuspended in 200 μl PBS for
each reaction, and then 10 μl of primary antibody solution (25
μg/ml) (antibodies to human DR4, DR5, DcR1, DcR2 or isotype
IgG; R&D Systems, Minneapolis, MN, USA) was added to each
eppendorf tube and incubated at 4˚C for 30 min. The cells were
washed 3 times with PBS and re-suspended in 200 μl PBS. The
phycoerythrin-conjugated secondary antibody (R&D Systems) was
then added to each reaction and the cells were incubated for 30 min
at 4˚C in the dark. After being washed 3 times with PBS, the cells
were resuspended with 500 μl PBS in FACS analysis tubes for flow
cytometric analysis (FACSCalibur, Becton Dickinson, Heidelberg,
Germany). The mean fluorescence intensity of each receptor was
assessed on the live cell population. The reference gating location
was determined by both isotype IgG and secondary antibody
controls with the aid of CellQuest software.

TRAIL-bearing vector transfection of MSCs. TRAIL-bearing
expression plasmids were used for the transfection, avoiding viral
vectors with a view to potential clinical studies. Two types of
plasmids were used, non-secreting TRAIL (TRAIL-GFP, Addgene
plasmid 10953) and secreting TRAIL (stTRAIL; Advanced Protein
Technologies, Richmond, Canada). The transfections were
performed with TransIT-2020 (Mirus, Madison, WI, USA) as
suggested by the manufacturer. Briefly, the MSCs were plated at
6×105 per well in six-well plates in 3 ml of MEM medium and
dated as day 0. On day 1, the cells were transfected with 2.5 μg of
TRAIL-GFP or stTRAIL DNA (each well) respectively. The control

cells were treated with TransIT-2020 reagent without plasmid DNA.
For the direct co-culture experiments, the transfected MSCs were
harvested with 0.25% trypsin-EDTA (Invitrogen) on day 2. For the
purpose of indirect co-culture and the assessment of TRAIL
expression, conditioned media and transfected MSCs were collected
on day 3.

Immunoblotting and ELISA analysis. Immunoblotting analysis was
used to detect the cellular expression of TRAIL in the MSCs. The
MSCs transfected with TRAIL-GFP or stTRAIL or mock infected
were harvested in lysis solution. Whole-cell lysates (50 μg) were
separated through 12% denaturing SDS-polyacrylamide gel
electrophoresis and transferred to a nitrocellulose membrane. The
membrane was incubated overnight with rabbit anti-TRAIL
antibody (1:1000; Santa Cruz Biotechnology, Santa Cruz, CA,
USA). This was followed by a 1 h incubation with goat-anti-rabbit
IgG conjugated to horseradish peroxidase (HRP) (1:2500). The blot
was developed using enhanced chemiluminescence detection
(Amersham Bioscience, Baie d’Urfe, Quebec, Canada). For the
sequential reprobing of the same blot, the membrane was stripped of
the initial primary and secondary antibodies with stripping buffer
(62.5 mM Tris-HCl, pH 6.8, 2% SDS, 100 mM β-mercaptoethanol)
at 55˚C for 30 min and followed by sequential incubations with anti-
GFP antibody (1:1000; Abcam, Cambridge, MA, USA) and
secondary antibody respectively.

The soluble TRAIL in the culture supernatants was measured
using enzyme-linked immunosorbent assay (ELISA) as per the
manufacturer’s instruction (Santa Cruz). Conditioned media collected
from the corresponding cultures were equally concentrated using
10,000 MWCO (cat # 42406; Millipore, Millerica, MA, USA) and
protein concentrations were determined using a Lowry based method
(DC assay; Bio-Rad, Mississauga, ON, USA). All the samples were
studied together in duplicate. The protein samples (4.8 μg each in
dH2O) were added into 384-well ELISA plates, and the covered
plates were incubated for 5 h at 37˚C. The wells were then blocked
with 5% milk in Tris-buffered saline (TBS: 10 mM Tris-HCl, 140
mM NaCl, pH 7.4) for 1 h at room temperature. After washing with
wash buffer (0.05% Tween-20 in TBS), 20 μl rabbit anti-TRAIL
antibody (1:100, Santa Cruz, sc-7897) was added to each well. After
overnight incubation at 4˚C, the wells were washed 5 times with
wash buffer. Secondary antibody (20 μl goat-anti-rabbit IgG-HRP,
1:1000; Jackson Immunolabs, West Grove, PA, USA) was added and
incubated for 1 h at room temperature. After washing 5 times, 20 μl
ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) was
added into each well and incubated for 30 min at room temperature.
Absorbance was measured at 405 nm using an ELISA reader. A
qualitative comparison was made with corresponding controls. 

Fluorescence microscopy. The cell viability was detected using a
live/dead Viability/Cytotoxicity Assay Kit (Invitrogen) as per the
manufacturer’s instruction with a slight modification. Briefly, a total
of 1×105 HepG2 or HepG2 and MSC cells were plated onto 24-well
plates in 500 μl of MEM medium on day 0. For the indirect co-
cultures the media were replaced with 50 or 100% conditioned
media on day 1. On day 3 for the direct and day 4 for the indirect
co-cultures, the cultures were washed twice with PBS. Freshly
prepared working solution (250 μl per well on the 24-well plates,
containing 1 μM calcein AM and 2 μM EthD-1) was then added
directly to the cultures and incubated at room temperature for 10
min in the dark. The images were taken using a fluorescence
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microscope (I×71; Olympus, Markham, Ontario, Canada) and the
related analysis was performed through ImageJ (provided online by
the National Institute of Health of USA).

Statistical analysis. Numerical data were expressed as
mean±standard error. Statistical differences between the means for
the different groups were evaluated with Prism 4.0 (GraphPad
software, La Jolla, CA, USA) using the Student’s t-test with the
level of significance at p<0.05.

Results

TRAIL expression in engineered MSCs. Figure 1
demonstrates the TRAIL expression in the cell lysates by
immunoblotting with a specific anti-TRAIL antibody. The
blotting results with anti-GFP antibody distinguished non-
secreting TRAIL from the secreting form. ELISA analysis
confirmed the presence of soluble TRAIL in the culture
supernatants (Figure 2). The TRAIL content in the
supernatants from the MSCstTRAIL was significantly higher
than that from the MSCTRAIL-GFP (p<0.05).

TRAIL receptor expression in HepG2 cells. As shown in Figure
3, almost all the tested HepG2 cells expressed DR5 receptor
and a small percentage of HepG2 cells had DcR2 receptor. 

MSCTRAIL-mediated HepG2 cell death in direct co-cultures.
Figure 4 displays the MSC-mediated cell death in direct
mixed co-culture under different conditions. A summary is

presented in Figure 5. The percentages of dead cells were
much higher in the high MSC/HepG2 ratio co-cultures than
in the low MSC/HepG2 ratio co-cultures for all three types
of MSCs (i.e. native MSCs, MSCTRAIL-GFP and MSCstTRAIL).
TRAIL-induced additional cell death was only observed in
the high MSC/HepG2 ratio co-cultures in the order of
MSCTRAIL-GFP > MSCstTRAIL>native MSCs. 

MSCTRAIL-mediated HepG2 cell death in indirect co-
cultures. As shown in Figure 6 and Figure 7, HepG2 cell
death was proportionally related to CM from secreting and
non-secreting TRAIL transfected MSCs. Marked cell death
was not detected with CM from native MSCs under the
current experimental conditions. 

Discussion

A death domain in the intracellular region of DR4 and DR5
can recruit death-inducing signaling complex (DISC) upon
TRAIL stimulation, and therefore, activate downstream
caspase cascade leading to cell death by apoptosis. No intact
death domain is present in the intracellular region of DcR1,
DcR2 and OPG, so they are unable to induce apoptosis, even
though they were able to compete with DR4 or DR5 for
binding with TRAIL (26) and overexpression of DcR1 and/or
DcR2 blocks TRAIL-mediated apoptosis in some cell types
(27).

TRAIL and its receptors are important components of the
extrinsic pathway of apoptosis. Recent studies have
demonstrated TRAIL-induced apoptosis in HCC cells (28,
29) and increasing interest has been focused on MSCs as
therapeutic tools and gene carriers for the treatment of HCC
(30). To make use of MSCs as anticancer agent vehicles,
MSCs must be appropriately transfected with selected
anticancer genes. The presence of death receptors in cancer
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Figure 1. Immunoblotting analysis of TRAIL in MSC cell lysates. Cells
were harvested 2 days after transfection with different TRAIL-bearing
plasmids. Left panel: signals with anti-TRAIL antibody; right panel:
signals with anti-GFP antibody on the same blotting membrane and
control: mock infected. The protein size markers are shown on the left.

Figure 2. ELISA analysis of TRAIL in MSC culture media. Conditioned
media from MSC, MSCTRAIL-GFP and MSCstTRAIL collected two days
after transfection. Mean±SEM of four independent experiments.



cells is a prerequisite determinant for TRAIL to induce
apoptosis in targeted cancer cells (31). In the present study,
HepG2 cells were verified as DR5 dominant death receptors;
the expression of TRAIL-GFP and stTRAIL was confirmed
by immunoblotting and ELISA analysis. However, the
presence of DR5 does not necessarily indicate the sensitivity
of HepG2 cells to TRAIL and functional assessments are
needed toward developing targeted therapeutic strategies. 

In the light of ultimate application for therapeutic
purposes, it is essential to understand any possible factors
related to the interactions between MSCs and tumor cells.
These factors include the forms of transfected anticancer
genes, required MSC numbers (ratio), direct and/or indirect
effects, as well as the effects of native MSCs. As shown in
Figures 4 and 5, moderate cell death independent of TRAIL

transfection was observed in the low MSC/HepG2 ratio co-
cultures, while remarkable cell death was exhibited in the
high MSC/HepG2 ratio co-cultures and TRAIL transfection
induced additional cell death. The results indicated that
MSCs alone play a major role in this MSC-mediated HepG2
cell death, although the cell type of the dead cells was not
identified in the current study. In addition to the expression
of the transfected anticancer genes, native MSCs secret a
number of cytokines, which may contribute to their intrinsic
anticancer effects (32). The innate antitumor effects of MSCs
were previously recognized in experimental Kaposi’s
sarcoma (14), hepatic and pancreatic cancer studies (18, 33).
The direct effects of MSCs on tumor cell viability are mainly
attributed to their intrinsic antitumor properties. However, it
is worth noting that MSCs possess both pro- and anti
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Figure 3. FACS analysis of TRAIL receptors on HepG2 cells. The reference gate was set according to isotype IgG and secondary antibody controls.
The graph represents one of three parallel assessments.



tumorigenic effects (32, 34). Direct co-culture is capable of
determining their dominant effect on particular cancer cells
on a cellular level. The present results lay a basic foundation
for the development of MSC-based strategies to treat HCC.

Theoretically, MSCs transfected with the secreting form of
TRAIL may be more efficient at inhibiting tumor cell growth
than the MSCs transfected with the non-secreting form of
TRAIL. This viewpoint was not fully supported by the current
co-culture study, even though the higher percentage of dead
cells was displayed in the indirect co-culture with conditioned
media from MSCstTRAIL. It is likely that the presence of MSCs
play a major part in MSC-mediated HepG2 cell death. Mueller
et al.’s recent study on colorectal carcinoma demonstrated that
TRAIL-transfected MSCs overcome TRAIL resistance in

selected cell lines (35). Further in vivo studies are required to
investigate the therapeutic potential of engineered MSCs in a
real HCC microenvironment.

The live/dead assay has the advantage of being
straightforward and reflecting the intact status of detected cells
at any given time-point. It is also possible to exhibit cell-to-cell
interactions under co-culture conditions. In the present study,
a tendency was noticed that more HepG2 cell died in the MSC
concentrated area, even though this trend was not quantitatively
evaluated. However, the drawback of the live/dead assay is that
it only applies to the cells which remain on the culture surface
during the staining. The detached cells, most of which are dead
cells, are not included in the assessment. Multiple assessments
and in vivo experiments are required in further studies.

Sun et al: MSC-mediated HepG2 Cell Death
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Figure 4. Cell viability of direct co-cultures. Assessment on day 3 after plating on day 0. Column 1 (brightfield): whole population of cells which
were still attached to the surface; column 2: live cells stained with calcein are green; column 3: dead cells stained with EthD-1 show red; column
4: merged images. Original magnification, ×400.



In conclusion, the intrinsic properties of MSCs play an
important role in the induction of HepG2 cell death under
co-culture conditions. MSC-mediated HepG2 cell death is
potentiated by TRAIL gene transfection. This study provides
additional information on a cellular level contributing to the
development of MSC-based strategies to treat hepatocellular
carcinoma.
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Figure 7. Summary of HepG2 cell viability of indirect co-cultures. Mean±SEM for three independent experiments. 
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