
Abstract. Rho kinase (ROCK) proteins are Rho-GTPase
activated serine/threonine kinases that function as modulators
of actin-myosin cytoskeletal dynamics via regulation of Lin11,
Isl-1 & Mec-3 domain (LIM) kinase, myosin light chain (MLC),
and MLC phosphatase. A strong correlation between
cytoskeletal rearrangements and tumor cell invasion, metastasis,
and deregulated microenvironment interaction has been
reported in the literature, and the utilization of pharmacological
inhibitors of ROCK signaling for the treatment of cancer is
actively being pursued by a number of pharmaceutical
companies. Indeed, in many preclinical models ROCK inhibitors
have shown remarkable efficacy in reducing tumor growth and
metastasis. Interestingly, ROCK signaling has been shown to be
either pro-apoptotic or pro-survival in a cell type and context
dependent manner, though the molecular mechanisms
controlling ROCK-mediated cell fate decisions are unknown.
This review summarizes the many pleiotropic roles of ROCK
signaling in survival and apoptosis, and suggests that controlled
modulation of ROCK activity in tumor cells has the potential to
significantly affect tumor survival and patient outcome.

ROCK Proteins

Rho associated protein kinases (ROCK, also known as Rho
kinase) belong to a family of serine/threonine kinases
modulated by interactions with Rho GTPases to serve as key

regulators of actin cytoskeletal dynamics, and therefore
control cell migration and motility (1). Specifically, ROCK
proteins promote the formation of stress fibers and focal
adhesions (Figure 1), but have also been implicated in
diverse processes such as cell junction integrity and cell
cycle control (2). ROCK activity is responsible for
stabilization of actin microfilaments as well as promoting
cellular contraction and cell substratum contact. ROCK
stimulates actin polymerization via an inhibitory
phosphorylation of the actin severing LIM kinase (Figure 2).
ROCK promotes cellular contraction and attachment via an
activating phosphorylation of myosin light chain (MLC) to
increase myosin ATPase activity, and an inhibitory
phosphorylation of MLC phosphatase leading to increased
activation of MLC (Figure 3). Additionally, numerous other
downstream targets of ROCK proteins have been identified
including, but not limited to, intermediate filaments,
ezrin/radixin/moesin (ERM) family proteins, collapsing
response mediator protein 2 (CRMP2), calponin and adducin.

Two paralogs of ROCK have been identified in mammals
(ROCK1 and ROCK2). These proteins were originally
isolated as RhoA-GTP interacting proteins, and share 65%
overall identity and 92% identity in their kinase domains (1).
ROCK1 and ROCK2 are widely expressed from C. elegans
to mammals and demonstrate both overlapping and unique
tissue expression patterns and signaling functions within the
cell. ROCK1 and ROCK2 knockout mice show distinct
phenotypes, suggesting these proteins perform, at least to
some degree, non-overlapping roles during development.
ROCK1 knockout mice exhibit failure of eyelid and ventral
body wall closure resulting in lethality soon after birth (3),
while ROCK2 knockout mice exhibit embryonic lethality due
to intrauterine growth retardation and placental dysfunction
(4). The generation of heterozygote ROCK1 and ROCK2
mice leads to viable, fertile litters with no obvious
phenotypic abnormalities, however a detailed examination of
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ROCK1(+/–) mice revealed reduced neointima formation
following carotid artery ligation correlating with decreased
vascular smooth muscle cell proliferation and survival,
decreased levels of proinflammatory adhesion molecule
expression, and decreased leukocyte infiltration (5).
Moreover, ROCK1(+/–) mice exhibit increased resistance to
perivascular fibrosis, accompanied by decreased expression
of tissue growth factor-beta, connective tissue growth factor
and type III collagen (6). ROCK2(+/–), but not ROCK1(+/–),
mice demonstrate no obvious cardiac phenotype, however
they display decreased platelet endothelial cell adhesion
molecule staining of endothelial cells in the lung, suggesting
that ROCK2 plays a strong role in capillary development (7).

Deregulation of Rho/ROCK signaling has been reported
across diverse tumors types. For instance, Rho-signaling
proteins are elevated in, and contribute to the metastatic
behavior of a variety of tumors (8-12). Several preclinical
and clinical studies have utilized inhibitors of Rho/ROCK
signaling for anticancer therapeutics in prostate, lung,
melanoma, glioblastoma and many other tumor types with
remarkable success (13-17). Many of the positive outcomes
claimed from targeting Rho/ROCK signaling have been
attributed to a reduction in invasion/metastatic potential of
the cancer cells; however a wealth of findings have
demonstrated that ROCK proteins are key modulators of cell

survival and apoptosis, suggesting that cell viability may also
be affected by ROCK inhibition. 

An Overview of Apoptosis

Apoptosis is a controlled form of cell death that involves cell
shrinkage, membrane blebbing, cellular disintegration,
chromosome condensation, and subsequent removal of the
apoptotic fragments by phagocytosis (1). This process is
initiated by activation of caspase cystein proteases which cleave
a large number of downstream protein targets to induce orderly
morphological and biochemical changes within the cell,
involving reorganization of actin microfilaments, microtubules,
and intermediate filaments. The initial stages of apoptosis
involve partial detachment of the cell from the extracellular
matrix (ECM) due to caspase-mediated cleavage of focal
adhesion kinase (FAK) as well as other structural proteins
linking actin to focal adhesions (18). Following focal adhesion
disassembly at the cell periphery, extensive cellular retraction
occurs due to a loss of stress fibers and reorganization of actin
microfilaments to form short fibers that bundle together and
increase the tensile strength of the cell. As a consequence of
retraction, cells undergoing apoptosis round up and reassemble
new focal adhesion complexes ventral to the retracted cell body.
Moreover, the formation of dynamic membrane protrusions
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Figure 1. ROCK activity in actin polymerization. MS1 endothelial cells were sham treated or treated with 10 μM of the ROCK1 and 2
pharmacological inhibitor Y27632. Cells were then stained with FITC-labelled phalloidin, which specifically binds to polymerized actin
microfilaments. Disruption of total ROCK activity results in a dramatic reduction in the quantity of polymerized actin.



called blebs is driven by modulation of actin-myosin activity,
creating hydrodynamic forces during contraction to induce
collapse at points of structural weakness within the cell (19, 20).
Occurring concomitant with this process is caspase-8 mediated
activation of deoxyriboneuclease, which catalyzes
internucleosomal DNA cleavage (21). Finally, apoptotic bodies
of varying size and composition are produced in an
actin/myosin dependent manner and are phagocytized by nearby
cells and scavenging immune cells, to be ultimately degraded
by lysosomal enzymes (22). 

Apoptosis can be activated in the cell by two major
processes: the intrinsic and extrinsic apoptotic pathways. The
extrinsic apoptotic pathway responds to secreted death
ligands (such as apoptosis stimulating fragment [Fas] ligand,
tumor necrosis factor [TNF] alpha and tumor necrosis factor
alpha related apoptosis inducing ligand [TRAIL]) that bind
specifically to transmembrane death receptors (such as TNF-
R, Fas and TRAIL-R) in the target cell, initiating a signal for
apoptosis. Death ligand activation of these receptors induces
the formation of a death-inducing signaling complex (DISC)
composed of the death ligand, a trimeric death receptor and
death domain containing adaptor proteins which trigger
cleavage of caspases into their active form (23). This process
leads to further rounds of caspase cleavage and activation,
resulting in cellular apoptosis. 

The intrinsic apoptotic pathway is initiated as a p53
induced cascade in response to DNA damage, defective cell
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Figure 3. ROCK control of cellular contractility. Actin filaments in
association with myosin motor proteins control cellular movement, cell
division and other biological processes across all cell types. ROCK
promotes cellular contraction and attachment via an activating
phosphorylation of myosin light chain (MLC) to increase myosin
ATPase activity, and an inhibitory phosphorylation of MLC phosphatase
leading to increased activation of MLC.

Figure 4. Essential role of ROCK in apoptosis. ROCK proteins are
activated by caspase cleavage and promote the cleavage of procaspases
into their active caspase forms. ROCK activity is necessary for multiple
aspects of both intrinsic and extrinsic apoptosis including death receptor
activation via ezrin, radixin, and moesin (ERM) proteins, apoptotic bleb
and body formation, nuclear and organelle fragmentation, and DNA
fragmentation. Moreover, ROCK phosphorylates and inhibits
phosphatase and tensin homology (PTEN), thus blocking the pro-survival
phosphoinositide 3-kinase (PI3K) pathway.

Figure 2. ROCK control of actin polymerization. A: Individual subunits
of ATP-bound globular actin (G-actin) assemble into long filamentous
polymers (F-actin), creating a double helix structure. Hydrolysis of the
ATP destabilizes the polymer, causing dissolution of F-actin polymers
into G-actin monomers. B: ROCK stimulates stabilization of actin
polymerization via an inhibitory phosphorylation of Lin11, Isl1, Mec3
(LIM) domain kinase (LIMK), which when active promotes ADP/cofilin-
mediated actin severing.



cycle progression, or other severe cell stresses. This pathway
is regulated by the fine balance of B-cell CLL/lymphoma 2
(Bcl2) family proteins within the cell (24). The Bcl2 proteins
are apoptotic regulatory proteins that modulate mitochondrial
membrane permeability, with some members being pro
apoptotic and others anti-apoptotic. Under normal
conditions, the anti-apoptotic Bcl2 proteins (such as Bcl2,
Bcl-xl, BclW, bifunctional Bcl2 family protein 1 [Bfl1],
myeloid leukemia cell differentiation protein 1 [Mcl1], Bcl2
related protein A1 [A1], and Bcl2 homologue of ovary
[Boo]) maintain mitochondrial integrity by counteracting the
activation and function of pro-apoptotic Bcl2 family
members (such as Bcl2 associated X protein [Bax], Bcl2
homologous antagonist killer [Bak], BclX5, Bcl2 associated
death promoter [Bad], BH3 interacting domain death agonist
[Bid], Blc2 interacting killer [Bik], and hara-kiri [Hrk])

whose role is to induce mitochondrial damage. When pro-
apoptotic Bcl2 proteins are activated, cytochrome-c is
released from the mitochondria where it binds with apoptotic
protease activating factor 1 (Apaf-1), forming the
apoptosome. The activation of initiator caspases by the
apoptosome begins a cascade of cleavage events ultimately
leading to cellular apoptosis. 

Role of ROCK Proteins in Apoptosis/Survival

Both disassembly and excessive crosslinking of the actin
microfilament cytoskeletal architecture has been extensively
demonstrated to induce apoptosis in numerous cell types
(25-28) through modulation of signaling components such
as Bcl2 activation (29), death receptor activation (30, 31),
caspase activation (32), and p53 signaling (33). Moreover,
an intimate association exists between cytoskeletal
dynamics, the extracellular microenvironment, cell-to-cell
adhesions and cell-to-substratum adhesions, where
alterations in any of these components could be detrimental
to the survival of the cell (34). ROCK protein signaling
reportedly acts in either a pro- or anti-apoptotic fashion
depending on cell type, cell context and microenvironment.
For instance, ROCK proteins are essential for multiple
aspects of both the intrinsic and extrinsic apoptotic
processes, including regulation of cytoskeletal-mediated cell
contraction and membrane blebbing, nuclear membrane
disintegration, modulation of Bcl2-family member and
caspase expression/activation and phagocytosis of the
fragmented apoptotic bodies (discussed extensively below,
Figure 4). In contrast, ROCK signaling exhibited pro-
survival roles in a number of experimental studies (Figure
5) (14, 15, 35-40). Though a wealth of data exists to suggest
both pro- and anti-survival roles for ROCK proteins, the
molecular mechanisms that modulate these pleitropic roles
are largely unknown. 

ROCK Protein Regulation of Apoptosis

Essential roles of ROCK proteins in apoptosis. ROCK
proteins are direct targets of caspase activity, whereby
caspase 2 and 3 cleavage of ROCK proteins occurs in early
apoptosis, thus removing the ROCK autoinhibitory C-
terminal domain. This results in constitutive kinase activity
of ROCK and its subsequent regulation of actin-myosin
cellular contraction (41-47). Of note, ROCK cleavage also
occurs early in apoptosis in a caspase-independent manner
during endothelial release of microparticles and during
invasion of colorectal cancer cells (48, 49). Granzyme-B has
been shown to directly cleave ROCK2 in a caspase-
independent manner, leading to cytotoxic lymphocyte
granule-induced apoptosis (46). Whether via a caspase
dependent or independent route, ROCK cleavage is an
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Figure 5. Role of ROCK activity in cell survival. ROCK activity is
necessary for progression from the G1 to S-phase of the cell cycle by
controlling the expression of cyclins, cyclin dependent kinases (CDKs),
and numerous other cell cycle regulators. Additionally, ROCK activity has
been shown to promote CDK2 and cyclin E translocation into the nucleus.



essential step for apoptosis given that pharmacological
inhibition of its kinase activity effectively abrogates
apoptosis in a number of cell types.

In blebbing cells, caspase-cleaved ROCK-mediated
phosphorylation of MLC is increased, thereby inducing
contraction of cortical actin within the cell (50 19, 44, 45).
Indeed, transfection of cells with either a truncated
(constitutively activated) ROCK1 gene or overexpression of
a wild type ROCK2 gene is sufficient to induce MLC-
mediated membrane blebbing independently of apoptotic
stimuli (44, 51). Studies using cytoskeletal or ROCK
inhibitors have identified multiple stages in apoptotic
blebbing. For instance, caspase independent blebbing
(zeiosis) occurs immediately after cytochrome c release from
the mitochondria into the cytoplasm, whereby surface
swellings at the active edges of cells form small blebs that
dynamically extend and retract (52). This early phase of
apoptotic blebbing, which occurs at the point where adherent
cells begin to retract away from their neighbors and partially
detach from the substratum (53), is critically dependent on
ROCK/MLC cytoskeletal signaling (52). Late phase blebbing
leads to morphologically distinct blebs that are relatively
stable, fewer in number than those seen during early
blebbing, exhibit an absence of visible organelles, and
contain a distinct layer of endoplasmic reticulum which
envelops chromatin. Formation of these late blebs is
efficiently blocked with Latrunculin A (an actin
microfilament inhibitor), Blebbistatin (an inhibitor of myosin
II), or Nocodazole (a microtubule inhibitor); however
pharmacological inhibition of ROCK proteins only partially
prevents the formation of late blebs (52). 

In hypertrophic cardiomyocytes, Rho/ROCK signaling is
necessary for apoptotic DNA fragmentation via activation of
p53 and Bax (54). Conversely, inhibition of RhoA or ROCK
protein signaling in heptatic stellate cells increases DNA
fragmentation and condensation of nuclear chromatin (55).
These limited data suggest that a more thorough examination
is necessary before any consensus can be made regarding the
role of ROCK proteins in apoptotic DNA fragmentation.
Apoptotic nuclear disintegration, an actin microfilament-
dependent and microtubule-independent process, requires
ROCK modulation of the actin-myosin contractile force
coupled with a ROCK-independent caspase-mediated
degradation of nuclear lamin proteins (56). In addition to
regulating nuclear disintegration, ROCK signaling is
necessary for Golgi organelle fragmentation in apoptotic
adrenal medulla pheochromocytoma cells (57). In this model,
overexpression of constitutively active ROCK proteins
induces Golgi fragmentation even in the absence of apoptotic
stimuli. Moreover, ROCK proteins regulate protein traffic to
and from cellular organelles during the apoptotic cascade.
For instance, when myeloid leukemia cells become
apoptotic, activated extracellular signal regulated kinase

(ERK) is unable to translocate into the nuclei.
Pharmacological inhibition of ROCK signaling is not only
capable of rescuing these cells from apoptosis, but
successfully restores the nuclear translocation of activated
ERK (58). Furthermore, in apoptotic myeloid leukemia and
fibroblast cells, caspase-independent ROCK signaling leads
to nuclear exclusion of C1/C2 heterogenous nuclear
ribonucleoproteins (hnRNPs), which play important roles in
the packaging of nascent transcripts, alternative splicing and
translational regulation (59). ROCK-mediated control of
protein localization is well documented, as modulation of
actin polymerization by ROCK has been shown to regulate
nuclear localization of serum response factor (SRF) and sex
determining region Y-box 9 (Sox9) during non-apoptotic
conditions (60, 61). ROCK control of subcellular protein
localization could potentially be a commonplace mechanism
by which rapidly changing cytoskeletal dynamics during
apoptosis alters cellular function. 

Apoptotic body formation is driven by actin-myosin
contraction initiated by caspase-mediated activating cleavage
of ROCK1. In fibroblast and B-lymphoma cells this process
is prevented by pharmacological inhibition or small
interfering RNA (siRNA) knockdown of ROCK1, but not by
inhibition of ROCK2 (57, 62). Moreover, ROCK activation is
necessary for efficient phagocytosis of fragmented apoptotic
bodies, and has been demonstrated to control the expression
of N-acetylglucosamine (GlcNAc), a carbohydrate that serves
as a major phagocytic marker (57, 63).

ROCK control of extrinsic apoptosis. The extrinsic apoptotic
receptor Fas is linked to the actin cytoskeleton via an
interaction with ezrin, radixin and moesin (ERM) proteins,
whose function is to connect transmembrane proteins to the
cytoskeleton (64, 65). The disruption of actin cytoskeleton
dynamics or down-regulation of either ezrin or moesin
inhibits extrinsic apoptotic signaling by blocking Fas
aggregation and redistribution of Fas into lipid rafts, and by
preventing association of flavin adenine dinucleotide (Fad)
associated protein with death domain (FADD) with its
procaspases (31, 64, 66). These data suggest that ligand-
mediated activation of the extrinsic apoptotic pathway
initiates a cytoskeleton driven clustering of the activated
death receptor with its downstream death domain proteins
and their associated caspases. This process is dependent on
ROCK signaling as pharmacological inhibition or siRNA
downregulation of ROCK proteins blocks clustering of FAS
proteins to lipid rafts, inhibits ROCK-mediated
phosphorylation of ezrin and disrupts procaspase 8 and 10
association with FAS and FADD (64, 66-68). A similar
ROCK-driven cytoskeletal regulation has been demonstrated
for extrinsic apoptotic induction following ligand driven Fas
receptor clustering (69, 70). In addition to modulating death
receptor activity, ROCK signaling controls the expression
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levels of several extrinsic apoptotic regulators.
Pharmacological inhibition of ROCK signaling results in a
decrease in Fas, FasL and TRAIL expression during
androgen induced apoptotic regression of prostate cancer
cells and following cisplatin cytotoxicity in neuroblastoma
cells (71-73). In contrast, ROCK inhibition reportedly
enhances FasL expression in melanoma tumors (35). 

ROCK control of intrinsic apoptosis. ROCK proteins
perform a key role in cell cycle inhibition and impinge on
the p53-driven intrinsic apoptotic cascade at multiple points
from initial activation to output. However, the ROCK-
mediated regulation of cell cycle and intrinsic apoptotic
regulators seems to function in a cell type and context
specific manner as conflicting results have been reported
throughout the literature. Moreover, unlike that seen for
ROCK regulation of the extrinsic apoptotic pathway, few
consistent mechanisms have been proposed as to how
ROCK proteins control intrinsic apoptotic regulation. ROCK
inhibition has been shown to increase phosphorylation of
p53 in neuronal cells, suggesting that ROCK signaling
promotes murine double minute oncogene 2 (Mdm2)-
mediated ubiquitination and degradation of p53 (74, 75). In
contrast, fasudil treatment following nephropathy leads to
decreased p53 expression, suggesting the opposite (76). No
direct physical association has been reported in the literature
between ROCK and p53, indicating that ROCK mediated
regulation of p53 levels is likely modulated through indirect
signaling crosstalk. For instance, ROCK activity has been
shown to regulate phosphoinositol-3-kinase (PI3K)/Ak
transforming (AKT) signaling (a negative regulator of p53
stability) through ROCK-dependent assembly of focal
adhesions (77). A large proteomic screen demonstrated that
ROCK2 physically associates and is activated by the
serine/threonine kinase Polo-like kinase (Plk1) (78, 79), an
important regulator of mitotic events such as centrosome
maturation, mitotic entry, spindle formation, sister
chromatid cohesion, and cytokinesis. This interaction could
modulate p53 status given that Plk1 is a strong inhibitor of
p53 function through a direct physical interaction between
the two proteins (80). Moreover, Plk1 induces an inhibitory
phosphorylation on the Sumo E3 ligase topoisomerase I-
binding protein (Topors) leading to inhibition of p53
sumyolation and its subsequent ubiquitination and
degradation (81). Another possibility that deserves further
study involves ROCK/LIMK mediated regulation of tubulin-
dynein motor protein transport into the nucleus. p53 has
been shown to localize to cellular microtubules, and
transport of p53 into the nucleus following DNA damage is
tubulin-dynein motor protein depedent (82-84). ROCK
activity has repeatedly been demonstrated to control
microtubule activity in a number of systems ranging from
cell protrusions to tubulin-dynein vesicular trafficking (85-

87), but whether p53 nuclear localization is regulated via
this ROCK/LIMK/motor protein process has yet to be
determined. 

In a number of studies, ROCK signaling reportedly
controlled Bcl-2 family member gene expression in favor of
apoptosis (54, 73, 88-90) and modulates activation of
multiple caspases (54, 64, 67, 77, 88, 91). ROCK modulation
of Bcl2 expression may occur via the PI3K mediated
pathway (discussed below) or through c-jun N-terminal
kinase (JNK) activation. The JNK pathway is primarily
activated by cytokines or exposure to various environmental
stresses and plays an important role in regulating stress-
induced apoptosis by triggering cytochrome c release from
the mitochondria through modulation of Bcl2 and Bcl-xl
activity (92). It has been demonstrated that ROCK1 directly
phosphorylates JNK-interacting protein (JIP)-3, a scaffolding
protein responsible for recruitment and activation of JNK
protein, leading to subsequent triggering of apoptosis (93).
This process can be prevented by sequestration of ROCK1
into stress granules, thus blocking ROCK1 interaction with
JIP3 and protecting cells from apoptosis (94). 

ROCK Protein Regulation of Cell Survival

Control of cell survival by Rock proteins. Inhibition of ROCK
promotes survival following balloon surgery and stent
implantation of the carotid artery (95, 96), in autologous vein
grafts (97), in pulmonary hypertension (98-100), following
renal damage (101-106), in vaculogenic erectile dysfunction
(107-110) and in diabetic retinal microvasculopathy (111).
While it is highly likely that the effects of ROCK inhibition
on numerous disease models are multifactorial, few
mechanisms have been proposed to explain such observations.
The PI3K/Akt pathway plays a central role in promoting cell
survival by regulation of the activity and expression of Bcl2
family members, forkhead box 0 (FoxO) transcription factors,
and p53 stability (112). PI3K activation is countered by
phosphatase and tensin homolog (PTEN), a phosphatase that
dephosphorylates proteins and phosphoinositide substrates
(113). Activation of ROCK proteins by caspase cleavage or
oncogene overexpression induces a direct phosphorylation of
PTEN by ROCK, leading to the increased phosphatase activity
and enhanced protein stability of PTEN. Activated PTEN then
directly counters the pro-survival PI3K/AKT pathway,
suggesting that ROCK activation blocks cell survival (41, 114-
116). In addition, the PI3K/Akt pathway promotes the nitric
oxide-mediated survival of endothelial cells by stimulating the
expression of endothelial nitric oxide synthase (eNOS), the
enzyme that converts the amino acid arginine to nitric oxide
(117). Thus, ROCK-mediated activation of PTEN leads to a
subsequent decrease in nitric oxide (NO) production and
reduced cell survival of endothelial cells (118, 119), however
ROCK’s regulation of NO-driven survival is reportedly
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PI3K/Akt independent in some cells and involves activation of
the PKC pathway (120-122). 

ROCK signaling regulates chemotherapy resistance in
several tumor cell types, and thus affects overall tumor
resilience and survival. For instance, in multiple myeloma
cells, ROCK-mediated attachment to the extracellular matrix
is an essential component of cell adhesion-mediated drug
resistance, a process whereby integrin interactions lead to up-
regulation of anti-apoptotic Bcl2 family members and
overexpression of multidrug resistant genes (123). Similarly,
inhibition of ROCK activity leads to enhancement of
cisplatin-induced cytotoxicity in lung carcinoma cells through
a focal adhesion kinase-independent mechanism (124).
Conversely, following cisplatin injury to a panel of cultured
neuroblastoma cells, pharmacological inhibition of ROCK
activity resulted in increased cell survival, rapid acquisition
of a chemoresistant phenotype and enhanced in vivo tumor
survival. The increased chemoresistance in ROCK-inhibited
neuroblastoma cells was attributed primarily to enhanced
DNA damage repair, with observable alterations in the
expression of multidrug resistance genes, p53, p21, Bcl2
family members and death receptors and their ligands (73).

ROCK Protein Regulation of Proliferation

Control of cell cycle progression by ROCK proteins. siRNA
or pharmacological inhibition of ROCK blocks the G1/S
transition in a number of cell types. Indeed, ROCK
signaling promotes cell cycle progression into the S phase
through a diverse array of downstream targets including
upregulation of cyclin A/D1/D3 and cyclin dependent
kinase (CDK) 2/4/6, nuclear translocation of CDK2 and
cyclin E, and downregulation of the cell cycle inhibitors
cyclin dependent kinase 4 inhibitor B (CDKN4B),
CDKN2A, CDKN2C, CDKN2D (p21), CDKN1A, and
CDKN1B (125-130) ROCK utilizes multiple downstream
signaling cascades to modulate proliferation where it
activates Ras/MAPK to regulate cyclin D and p21
expression, and, alternatively, LIM Kinase 2 to regulate
cyclin A expression (128). Moreover, ROCK increases the
expression of the F-box protein s-phase kinase-associated
protein 2 (Skp2) which is required for the degradation of
the cell cycle inhibitor p27(Kip1) (126, 128). Inhibition of
ROCK signaling leads to cell cycle arrest in the G1 phase,
decreased JNK, extracellular signal-regulated kinase
(ERK), Ephrin-related tyrosine kinase (ELK), early growth
response protein 1 (Egr1), and globin transcription factor
(GATA) transcription factor activation, decreased c-FBJ
murine osteosarcoma viral oncogene homolog (c-fos), jun
proto-oncogene (c-jun), FasL, and Bcl2 expression, and
increased Bax expression (15, 35, 39, 96, 131-134).
Alternatively, a handful of papers suggest ROCK activity is
capable of blocking cell cycle progression under certain

conditions. For instance, during phorbol ester-induced
apoptosis in prostate cancer cells, increased expression of
the cell cycle inhibitor p21 is dependent on ROCK-
mediated regulation of cytoskeleton dynamics (135).
Additionally, pharmacological inhibition of ROCK activity
in human Wharton’s jelly stem cells leads to
downregulation of the pro-apoptotic Bax gene and the cell
cycle regulators p21 and p53, as well as upregulation of the
anti-apoptotic Bcl2 gene (89, 90), suggesting ROCK can
inhibit cell cycle progression under certain conditions. 

In addition to the requirement of early growth factor-
mediated progression through the cell cycle,
microenvironment-dependent changes in cell shape and
cytoskeleton regulation modulate the G1/S transition
whereby the major mitogenic-responsive pathways such as
Ras, Rho, and PI3K are regulated by integrin mediated cell
adhesion to the ECM (136). Disrupted integrin signaling is
responsible for the change from anchorage dependent to
anchorage independent cell growth in tumor cells,
demonstrating a strong linkage between the extracellular
microenvironment, cell adhesion, cellular morphology, and
cell survival. Fibronectin/integrin interactions have been
shown to stimulate cell proliferation in a ROCK-dependent
manner by suppression of p21 and stimulation of cyclin D1
mRNA expression levels (130, 137, 138). Moreover, the
degree of cell spreading on the ECM is a potent modulator
of cell proliferation (139), and density dependent growth
control is regulated by cell-to-cell adhesions via cadherin-
mediated activation of p21 and p27 (140-143) and
reduction in the strength and stability of cell-ECM contacts
(144). Interestingly, cells that are restricted from spreading,
such as fully confluent monolayers, exhibit a shape-
dependent failure to increase the expression of cyclin D1,
down-regulate p27 and phosphorylate retinoblastoma
protein in late G1 (145, 146) and low ROCK activity (147).
Cell spreading and mechanical stretch (mimicking non-
confluent cell density) has been shown to activate RhoA
and ROCK in smooth muscle cells, resulting in membrane
association of RhoA, leading to ROCK-dependent
hyperphosphorylation of Rb and enhanced proliferation
(147-149). The loss of cadherin-mediated cell-to-cell
contacts as seen in subconfluent cultures leads to the
formation of a signaling complex composed of ROCK,
novel protein kinase C (nPKC), and sarcoma proto-
oncogene (Src) family kinases (SFKs), resulting in protein
kinase D-dependent activation of the pro-proliferation
nuclear factor kappa-B (NFkappaB) protein (37). These
findings suggest that the extracellular microenvironment,
particularly the effect of cell density, may affect the
outcome of ROCK signaling in the control of cell fate.
Therefore, simple differences in cell plating density may
explain the numerous conflicting observations regarding the
role of ROCK proteins in cell survival.
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Implications for Cancer Therapy

Despite the obvious complexity and the ever growing
number of publications linking ROCK as well as cytoskeletal
regulation in the cellular decision between life and death, no
sufficient comprehensive mechanism has been established
which comes close to explaining the fundamental intricacies
governing the pleiotropic roles of the ROCK proteins in cell
survival. Despite this shortcoming, targeting of ROCK
signaling in animal models of tumor progression has
manifested outstanding results in many cases particularly
with regard to tumor cell invasion and metastasis, suggesting
that manipulation of this pathway could hold the key to
pushing cancer cells just over the edge so that patients might
gain an upper hand not afforded by chemotherapy or
radiation alone. Perhaps the greatest challenge to researchers
and clinicians is the dissection of these conflicting signaling
roles, thereby learning which tumor types and what
physiological conditions are appropriate for the proper
manipulation of ROCK signaling.
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