
Abstract. The National Cancer Institute’s Developmental
Therapeutics Program (DTP) maintains the screening results
obtained in 60 standardized cancer cell lines for ~43,000
compounds. Here the application of the categorical
structure–activity relationship (cat-SAR) program for the
identification of the structural attributes of identified compounds
that display differential cytostatic or cytotoxic activity to one
breast cancer cell line and not another is reported. The goal of
this approach is to separate features associated with
antiproliferative activity towards many cell lines from those that
affect only a specific cell type. To assess this approach, SAR
models were developed for cytostatic and cytotoxic activity
against the human breast cancer cell lines MCF-7 and MDA-
MB-231 and three differential activity models for compounds
that were potent cytostatic and cytotoxic agents in MCF-7 cells,
but relatively inactive against MDA-MB-231 cells. The MCF-7
and MDA-MB-231 models comprised the most potent 200 active
and least potent 200 inactive compounds found in the DTP
database and the differential activity models comprised 200
compounds potent in one cell line and not the other and 200
compounds equally potent between the cell lines. Leave-one-out
validations of the individual MCF-7 and MDA-MB-231 models
returned values between 83 and 85% concordance, with values
obtained between 66 and 76% concordance for the differential
activity models. The cat-SAR approach identified the chemical
attributes associated with cytostatic and cytotoxic activity for
the MCF-7 and MDA-MB-231 breast cancer cell lines included
in the DTP and furthermore, were able to differentiate the
selective activity of compounds between the two breast cancer

lines. Thus it is conceivable that such cell line-specific
mechanisms could be exploited for the discovery of highly
specific anti-breast cancer agents and could also potentially
facilitate the development of SAR models with sufficient
resolution and clarity to identify chemical moieties associated
with antiproliferative activity towards selective individual cancer
types while being innocuous to other cell types.

The National Cancer Institute’s (1) Developmental
Therapeutics Program (DTP) (1) contains screening results
which have been obtained in vitro from ~43,000 compounds
(1-2). These compounds have generally been tested in 60 cell
lines representing leukemia, non-small cell lung, colon,
central nervous system, melanoma, ovarian, renal and breast
cancer to determine their cytostatic and cytotoxic potency.
Cytostatic potency is reported as 50% growth inhibition
(GI50) and total growth inhibition (TGI) values and cytotoxic
potency is reported as 50% lethal concentration (LC50) (3-
5). One of the major applications for the DTP is screening
of specific compounds described by Shi et al. (6) as
developing a profile or fingerprint of anticancer activity for
each tested compound. The fingerprints of interesting
anticancer agents can be used to search for other compounds
with a similar spectrum of activity across the cell lines. 

The information-rich data presented by DTP is being used
for a variety of purposes by in vitro and in silico methods (7,
8). Computational methods can be used to more fully
appreciate the information-rich dataset with the application
of structure-activity relationship (SAR) modeling for the
identification of pharmacophores associated with activity
against specific cell lines. The SAR and quantitative SAR
Q(SAR) expert systems are considered valid methods for
drug discovery and are commercially available (9-11).

The DTP has been used to study chemical features
associated with toxicity towards particular or aggregate cell
types and many successful SAR models have been developed
(12, 13). Fingerprint analysis (6, 14) and the use of seed
structures (15) have also been useful for drug and
mechanism discovery. Since the DTP contains chemical-by-
chemical toxicity data across 60 cell lines, it is also possible,
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by selecting one obvious cellular difference between two
related cell lines and then selecting compounds that elicit
contrasting responses in each of the lines, to investigate
phenomena associated with cell type-specific toxicity and the
identification of chemical features specifically associated
with toxicity to only one cell type. Clearly, the higher the
degree of cell type specificity, the greater the likelihood a
potential drug will have a high therapeutic index. 

Previously we developed SAR models for growth
inhibition or lethality using the Multi Computer Automated
Structure Evaluation (MCASE) expert system (16) which
yielded concordance values between experimental and SAR-
predicted results of 81% to 84% in individual cell models,
and 72% for the differential activity model. Recently, using
MCASE Chakravarti and Klopman obtained an average
concordance value of 77% for differential cytotoxicity across
multiple cell lines, although the sensitivity and specificity
values were quite skewed at 58% and 92%, respectively (16).

In one of our earlier studies, the categorical-SAR (cat-
SAR) expert system was used to distinguish rat mammary
carcinogens from non-carcinogens (MC-NC) and mammary
carcinogens from non-mammary carcinogens (MC-NMC)
(17), achieving concordance between experimental and
predicted values of 84%, sensitivity of 79%, and specificity
of 89% for MC-NC and concordance of 78%, sensitivity of
82%, and specificity of 74% for MC-NMC. The cat-SAR
expert system has also achieved concordance between
experimental and predicted values between 79-81% for
toxicity of developmental antithyroid drugs (18), between
80-90% for a set of environmental estrogen mimics (19), and
92% for a set of chemicals assessed for their ability to induce
respiratory hypersensitivity (20).

Herein, are reported several new SAR models using the
cat-SAR expert system to analyze the structural attributes of
compounds that are selectively active against one breast
cancer cell line and inactive towards another. Two sets of
models were based on the cytotoxic and cytostatic activity
towards estrogen receptor-positive (ER+) MCF-7 and 
-negative (ER–) MDA-MB-231 and two sets of models were
based on differential activity between the two cell lines. 

Materials and Methods

Learning set development. Four models were developed for each
potency endpoint (i.e. GI50, TGI and LC50), one each for the
individual MCF-7 and MDB-MB-231 cell lines and two differential
activity models for compounds that were more potent toward MCF-
7 than to MDA-MB-231 cells and vice versa. The reporting of
potency values in the DTP required the development of several
selection rules in order to sample the data accurately. Only
compounds with GI50, TGI and LC50 results reported in molar units
were considered. For compounds tested at multiple concentration
ranges, the lowest concentration was used. Potency values were
transformed to their negative log values (hereafter simply referred

to as GI50, TGI and LC50). Moreover, many of the compounds in
the DTP are inactive at their maximum test concentration of (e.g.,
10–4 M). In these instances, the compounds are reported with a
default potency value equal to the maximum concentration tested.
Since a true potency value is unavailable for these compounds they
were not included for modeling. Moreover, in the differential
activity models only compounds with true potency values for both
cell lines (i.e., not default values) were used. The remaining
compounds were then ranked according to their potency values. The
top 50% were designated active and the bottom as inactive. For the
developed models, the 200 most potent compounds were selected as
active compounds and the 200 least potent as inactive ones. The
potency ranges for the individual models is provided in Table I.

For the differential activity model, first only those compounds
that met the above criteria regarding activity in both cell lines were
selected. During the course of DTP analyses, compounds are often
tested multiple times and at different concentration ranges.
Typically, for each assessment, compounds are tested within a
concentration range of four log units and the highest of these is
reported to indicate the range used. The GI50 values across the cell
lines were compared only for the compounds tested in the same
range. MDA-MB-231 GI50 values were then subtracted from the
MCF-7 value, sorted by difference and the 200 with the greatest
difference were selected as active and the 200 with the least
difference as inactive compounds. The potency ranges for these
models can be seen in Table I.

In silico chemical fragmentation and the compound-fragment data
matrix. Using the Tripos Sybyl Hologram Quantitative Structure
Activity Relationship (HQSAR) module (21), each chemical was
fragmented in silico into all possible fragments meeting user-
specified criteria. HQSAR allows the user to select attributes for
fragment determination including atom count (i.e., size of the
fragment), bond types, atomic connections (i.e., the arrangement of
atoms in the fragment), hydrogen atoms, chirality and hydrogen bond
donor and acceptor groups. The fragments can be linear, branched
or cyclic moieties. The models developed herein contained fragments
between two and seven atoms in size and considered atoms, bond
types and atomic connections and explicate hydrogen atoms.

Upon completion of the fragmentation routine, a Sybyl HQSAR
add-on procedure produces the compound-fragment data matrix as a
text file. In the matrix, the rows are intact chemicals and the
columns are molecular fragments. Thus for each chemical, a
tabulation of all its fragments is recorded across the table rows and
for each fragment all chemicals that contain it are tabulated in each
column.
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Table I. Potency range for GI50, LC50 and TGI values for the models.

End point MCF-7 MDA- MCF-7 MDA-
MB-231 Diff MB-231 Diff

GI50 7.87-12.54 7.67-12.02 0.00-3.7 0.00-3.4
LC50 5.36-9.60 5.39-9.04 0.00-1.84 0.00-2.7
TGI 6.52-9.99 6.67-10.46 0.00-2.34 0.00-3.83

GI50: 50% Growth inhibition; LC50: 50% lethal concentration; TGI:
total growth inhibition; MCF-7, MDA-MB-231: breast cancer cell lines;
Diff: differential activity.



The HQSAR module is not used for statistical analysis or model
development. The compound-fragment matrix is then analyzed,
using the cat-SAR program to identify structural features associated
with active and inactive compounds, validate the model, and predict
the activity of untested compounds. The cat-SAR program, learning
sets and the compound-fragment matrix are available through the
corresponding author.

i) Identifying ‘important’ fragments of activity and inactivity: To
ascertain any association between each fragment and biological
activity (or inactivity), a set of rules is established to choose
‘important’ active and inactive fragments. The first selection rule is
the number of times a fragment is identified in the learning set
which, in this exercise, was set at between two and five compounds.
It was reasoned that by looking at fragments that came from
between two and five compounds in the learning set, models derived
in the two to three range would be more inclusive (i.e., higher
coverage), while those in the four to five range would be more
accurate (i.e., higher concordance). In previous cat-SAR analyses,
the fragment number was arbitrarily set to three.

The second rule relates to the proportion of active or inactive
compounds that contribute to each fragment and in this investigation
ranged from between 50% to 95%. Even if a particular fragment is
associated with activity, there may be other reasons (i.e., fragments)
for its being inactive, thus it would not be expected to be found in
100% of the active compounds. A similar argument can be made for
inactive fragments. Thus, by considering fragments toward the lower
high end of the proportion scale (e.g., derived from 60% active and
40% inactive) model would be expected to again be more inclusive
(i.e., higher coverage) while those derived from the higher end of
the proportion scale (e.g., 90% active and 10% inactive) would be
more accurate (i.e., higher concordance). 

ii) Rule optimization: As in previous cat-SAR models, a
relatively arbitrary setting of parameters for selecting important
fragments (fragment compound counts and fragment activity
proportion values) was used. For these analyses, a rule optimization
routine was employed. The optimization routine in this instance
allowed the Number Rule to range between 1 and 9 and the
Proportion Rule to range between 0.50 and 0.95. Leave-one-out
(LOO) validations were then conducted for each model and the final
models selected to be both highly accurate (i.e., had a high
concordance between experimental and predicted values) and highly
predictive (i.e., made predictions on >90% of the chemicals in the
learning set). 

Model validation. A self-fit (i.e., leave-none-out (LNO)) and two
cross-validation routines (i.e., LOO and multiple leave-many-out
(LMO)) were conducted for each model. For the LOO cross-
validation, each chemical, one at a time, was removed from the total
fragment set and the n–1 model was derived. Using the same criteria
described above, the activity of the removed chemical was then
predicted using the n–1 model. Predicted vs. experimental values for
each chemical were then compared and the model’s concordance,
sensitivity, and specificity were determined.

For the LMO cross-validation, randomly selected sets of 2.5% of
the chemicals (i.e. 10 chemicals) were removed from the total
fragment set and the n–2.5% model was derived. Again, the activity
of each of the removed chemicals was then predicted using the
n–2.5% model. Predicted vs. experimental values for the chemicals
in the left out sets were then compared and the model’s
concordance, sensitivity and specificity were determined.

The cat-SAR predictions are based on two separate fragment sets
(i.e., the active fragments and the inactive ones) and the predicted
activity of a chemical is based on the average probability of all the
active and inactive compounds contributing to its fragments. To best
classify compounds to an active or inactive category, an optimal cut-
off point is selected that best separates the probabilistic prediction of
active and inactive compounds based on the LOO validations. 

Predicting activity. Once a final model is selected, the resulting list
of fragments can then be used for mechanistic analysis, or to predict
the activity of an unknown compound. In the latter circumstance,
the cat-SAR program determines which, if any, fragments from the
model’s pool of significant fragments the test compound contains. If
none are present, no prediction of activity is made for the
compound. If one or more fragments are present, the number of
active and inactive compounds containing each fragment is
determined. The probability of activity or inactivity is then
calculated based on the total number of active and inactive
compounds that went into deriving each of the fragments. 

The probability of activity was calculated with the cat-SAR
FragSum routine. This method calculates the average probability of
the active and inactive fragments contained in each compound and
is weighted to the number of active and inactive compounds that
contribute to each fragment. For example, if a compound contains
two fragments, one being found in 9/10 active compounds in the
learning set (i.e., 90% active) and the other being found in 3/3
inactive compounds (i.e., 0% active), the unknown compound will
be predicted to have a probability of activity of 69% (i.e., 9/10
actives + 0/3 actives=9/13 actives or 69% chance of activity). 

Results and Discussion
Model analysis and validation. All together, 12 cat-SAR
models were produced. The final set of models was
developed with the cat-SAR Rule Optimizer that explored
values for the Number and Proportion Rules in order to
develop models with the optimal concordance between
experimental and predicted values (Table II). 

Overall, between 48,699 and 57,683 (average 58,821)
unique chemical fragments between 3-7 non-hydrogen atoms
were derived for the various MCF-7 and MDA-MB-231
models and between 51,267 and 57,637 (average 53,825) for
the MCF-7-MDA-MB-231 and MDA-MB-231-MCF-7
differential activity models. There was no significant
difference between the average number of fragments for the
individual MCF-7 and MDA-MB-231 models and the two
differential activity models. This suggested that the
individual models and the differential models cover
approximately the same range of structural diversity. On the
other hand, looking at the fragments that ultimately derived
the model, there were significantly fewer fragments derived
from the differential activity models than from the individual
MCF-7 and MDA-MB-231 (GI50) models. Generally,
chemicals with divergent activity cover a smaller area of
structural space than compounds that are potent against two
cell lines (i.e., compounds with differential activity are
structurally more distinct than others). 
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The difference in the number of fragments between the
individual models and the differential activity models was
further defined when looking at the active and inactive
fragments for the models. There were significantly fewer
active fragments for the differential activity models when
compared to the individual models (6,072 and 21,572). This
again supported the notion that chemicals that have
differential activity are structurally more distinct than
chemicals with equal activity against both cell lines.

The LNO yielded concordance between observed and
predicted results of 73% and 97% for the rule-optimized
models (Table II). These high concordance values across all
the models indicated that they were robust and that sufficient
structural information was contained in the learning sets to
distinguish between active and inactive compounds.

The LOO cross-validation concordance values ranged
between 66% and 85% for the rule optimized models. The
model derived for the single cell lines generally had a higher
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Table II. Parameter optimized fragment summary, self-fit and cross validation results for MCF-7, MDA-MB-231 and differential activity models.

LNO LOO LMO
Model Total Model Active Inactive Sensitivity Specificity Concor- Sensitivity Specificity Concor- Sensitivity Specificity Concor-

dance dance dance

GI50
MCF-7 49958 40305 18982 21323 0.95 0.95 0.95 0.83 0.83 0.83 0.83 0.83 0.83

(190/200) (184/193) (374/393) (165/200) (160/194) (325/394) (4.0/4.9) (3.9/4.7) (8.0/9.7)
MDA- 58821 51329 23809 27520 0.94 0.96 0.95 0.84 0.85 0.85 0.86 0.82 0.84
MB-231

(187/200) (191/199) (378/399) (168/200) (169/199) (337/399) (4.2/4.9) (4.0/4.8) (8.2/9.8)
MCF-7 52316 2178 1799 379 0.82 0.82 0.82 0.75 0.77 0.76 0.73 0.76 0.75
Diff (149/182) (146/178) (295/360) (134/178) (141/184) (275/362) (3.3/4.5) (3.4/4.5) (6.7/8.9)
MDA- 57637 2473 1495 978 0.73 0.73 0.73 0.67 0.66 0.66 0.67 0.65 0.65
MB-231
Diff (141/193) (145/198) (286/391) (127/190) (132/200) (259/390) (3.1/4.6) (3.1/4.9) (6.2/9.6)

TGI
MCF-7 50013 43878 25192 18686 0.90 0.92 0.91 0.84 0.79 0.81 0.82 0.79 0.81

(180/200) (183/199) (363/399) (167/200) (157/199) (324/399 (3.9/4.8) (3.9/5.0) (7.9/9.8)
MDA- 56716 47656 17615 30041 0.96 0.97 0.97 0.87 0.83 0.85 0.86 0.84 0.85
MB-231 (192/200) (194/200) (386/400) (173/200) (164/197) (337/397) (4.3/5.0) (4.0/4.7) (8.3/9.9)
MCF-7 53837 11018 7528 3490 0.96 0.96 0.96 0.76 0.76 0.76 0.74 0.75 0.75
Diff (185/192) (172/180) (357/372) (145/192) (139/183) (284/375) (3.5/4.7) (3.5/4.6) (7.0/9.3)
MDA- 51267 39482 22147 17335 0.96 0.96 0.96 0.75 0.74 0.74 0.75 0.74 0.741
MB-231 (190/199) (189/198) (379/397) (147/197) (144/195) (291/392) (3.7/4.9) (3.5/4.7) (7.1/9.7)
Diff

LC50
MCF-7 48699 38267 20420 17856 0.96 0.96 0.89 0.76 0.76 0.76 0.76 0.75 0.75

(192/200) (188/195) (380/395) (152/199) (149/195) (301/394) (3.7/4.9) (3.6/4.9) (7.3/9.8)
MDA- 57674 51072 23416 27656 0.92 0.89 0.90 0.84 0.80 0.82 0.81 0.81 0.81
MB-231 (183/200) (178/200) (361/400) (167/200) (160/200) (327/400) (4.0/4.9) (3.9/4.9) (7.9/9.8)
MCF-7 55053 1393 696 697 0.81 0.79 0.80 0.74 0.76 0.75 0.74 0.75 0.74
Diff (150/185) (142/179) (292/364) (136/183) (137/181) (273/364) (3.3/4.6) (3.2/4.3) (6.6/9.0)
MDA- 51300 4498 2769 1729 0.93 0.92 0.93 0.75 0.76 0.76 0.75 0.75 0.75
MB-231 (178/192) (170/184) (348/376) (144/191) (138/182) (282/373) (3.5/4.7) (3.3/4.4) (6.9/9.2)
Diff

LNO: Leave-none-out; LOO: leave-one-out; LMO: leave-many-out; GI50: 50% growth inhibition; TGI: total growth inhibition; LC50: 50% lethal
concentration; Total: number of fragments derived from learning set; Model:  number of fragments meeting specified rules of the model; Active:
number of fragments meeting specified rules to be considered as active; Inactive: number of fragments meeting specified rules to be considered as
inactive; Sensitivity: number of correct positive predictions/total number of positive predictions; Specificity: number of correct negative
predictions/total number of negative predictions; Concordance: number of correct predictions/total number of predictions.



concordance value than those for the differential activity models
which compared cell lines. For example, the MCF-7 and MDA-
MB-231 GI50 models returned concordance values of 83% and
85%, respectively, while the MCF-7-MDA-MB-231 and MDA-
MB-231-MCF-7 models had concordance values of 76% and
66% (GI50), respectively. In all cases, the LMO cross-validations
nearly equaled the LOO validation results, verifying that there
was sufficient structural information contained in the learning
sets to distinguish between active and inactive compounds.

In order to better judge how well these two models
performed in general, the ‘accuracy’ or reproducibility of a
standard in vitro toxicological test could be tested. For
instance, the US National Toxicology Program’s Salmonella
mutagenicity database, which is derived from a standardized
protocol, has been estimated to be about 85% reproducible
as reported by Piegorsrch and Zeiger (22). 

The overall results obtained from this exercise showed that
the cat-SAR expert system could be a useful tool for
analyzing DTP data. Firstly, the cat-SAR program, based on
the LOO and LMO validation results, may be able to identify
(i.e., in silico screening) agents that would be cytotoxic
and/or cytostatic to MCF-7 and MDA-MB-231 cells, and
other breast and non-breast cancer cell lines (data not
shown). Furthermore, the cat-SAR program may identify
agents, based on chemical structure that are uniquely potent
against one breast cancer cell line and not another. 

For example, three fragments Frag_1050, Frag_1275, and
Frag_9431(Table III) were selected to illustrate how specific
fragments can be used to identify compounds with
differential activity between MCF-7 and MDA-MB-231
cells. Frag_1050 was identified in 12 compounds, all of
which were more potent to MCF-7 cells than MDA-MB-231
cells. NSC 663791 (NSC refers to the Cancer Chemotherapy
National Service Center) had the largest potency difference

of 3.294 (MCF-7=8.334 and MDA-MB-231=5.04) and NSC
680418 had the smallest difference of 1.587 (MCF-7=6.308
and MDA-MB-231=4.721). Frag_1050 was a simple
aromatic fluorine (F-C-C).

Frag_1275 was identified in 21 compounds, 19 of which
were more potent to MCF-7 cells than to MDA-MB-231
cells and two of which were equipotent. Out of the 19 active
compounds, again NSC 663791 had the largest potency
difference of 3.294 (MCF-7=8.33 and MDA-MB-231=5.04),
with NSC 668281 having the smallest difference of 1.58
(MCF-7=5.83 and MDA-MB-231=4.25), and both inactive
chemicals NSC 684386 and 172112 had equipotent values of
4.60 in both MCF-7 and MDA-MB-231 cells. 

Finally, Frag_9431 was identified in 10 compounds, nine of
which were more potent to MCF-7 cells and one of which was
equipotent. In this instance, NSC 625587 was the most potent
towards MCF-7 cells, with a value of 3.30 (MCF-7=7.74 and
MDA-MB-231=4.44), NSC 267469 had the smallest difference
of the active compounds at 1.63 (MCF-7=8.27 and MDA-MB-
231=6.63) and NSC 707850 was an inactive compound with a
value of 4.75 for both cell lines. It is hypothesized that the
structural features associated with differential activity therefore
induce antiproliferative activity by mechanisms predominately
found only in one of the two cell lines. 

Recently, this analysis has been extended to include
differential activity simultaneously in up to four other breast
cancer cell lines or five other NCI DTP cell lines (data not
shown). Hence, since one of the goals of the in vitro screening
program is to indentify compounds that are specifically active
against one cancer cell line and not another, differential
activity cat-SAR models could be developed with a high
success rate to virtually screen extremely large numbers of
compounds in order to identify a few with a high likelihood
of having specific activity against specific cell lines. 
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Table III. Fragment analysis of GI50 differential activity model.

NSC Fragment MCF-7 MDA-MB-231 Difference Chemical 
number GI50 value GI50 value structure 

663791 1050 8.334 5.04 3.294

663791 1275 8.33 5.04 3.29

625587 9431 7.74 4.44 3.30

NSC: Cancer Chemotherapy National Service Center; GI50; 50% growth inhibition.



It is expected that the generated information could be used
to identify the chemical moieties specific to the MCF-7 cell
line. Thus the cat-SAR expert system produces models which
are predictive and are based on mechanically sound attributes. 
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