
Abstract. In our primary studies, we have shown that
emodin, aloe-emodin and rhein induced cytotoxic effects,
including cell cycle arrest and apoptosis in SCC-4 human
tongue cancer cells. However, details regarding their effects
on DNA damage and repair gene expression in SCC-4 cells
are not clear. We investigated whether or not emodin, aloe-
emodin and rhein induced DNA damage and inhibited DNA
repair gene expression in SCC-4 cells. Comet assay (single
cell electrophoresis) indicated that incubation of SCC-4 cells
with 0, 20, 30 and 40 μM of emodin, 0, 25, 50 and 100 μM
of aloe-emodin or rhein led to a longer DNA migration
smear (comet tail). This means that all examined agents
induced DNA damage in SCC-4 cells and these effects are
dose-dependent but emodin is stronger than that of aloe-
emodin or rhein. The results from real-time PCR assay
demonstrated that 30 μM of emodin or aloe-emodin used for
24 and 48 h treatment in SCC-4 cells significantly inhibited
expression of genes associated with DNA damage and repair
[ataxia telangiectasia mutated (ATM); ataxia-telangiectasia
and Rad3-related (ATR); 14-3-3sigma (14-3-3σ); breast
cancer 1, early onset (BRCA1); and DNA-dependent
serine/threonine protein kinase (DNA-PK)]; only rhein
suppressed the expression of O6-methylguanine-DNA
methyltransferase (MGMT) mRNA with 48 h treatment, but

had no effect on ATM expression. On 24 h treatment, only
aloe-emodin significantly affected ATM expression. These
effects may be the vital factors for emodin, aloe-emodin and
rhein induction of DNA damage in vitro. In conclusion, these
agents induced DNA damage followed by the inhibition of
DNA repair-associated gene expressions, including ATM,
ATR, 14-3-3σ, BRCA1, DNA-PK and MGMT in SCC-4
human tongue cancer cells.

The maintenance of the genome relies upon the repair of
damaged DNA before cell replication; cell cycle arrest
allows cells to repair such damage before the start of DNA
synthesis. It is well-known that cells lacking p53 fail to arrest
in response to a wide variety of DNA-damaging agents (1-
3). The p53-dependent transactivation of 14-3-3σ plays a role
in the inhibition of G2/M phase progression (4), whereas
G1/S phase arrest after DNA damage is controlled, at least
in part, by up-regulation of p21 (5-6). DNA repair for
eliminating spontaneous and carcinogen-induced DNA
damage is an important cellular defense mechanism against
mutagenesis and carcinogenesis (7-8).

Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is one
of the active constituents of the herb of Rheum palmatum L.
(9-10) and possesses anticancer, antibacterial, diuretic, and
vasorelaxant effects (11-13). It was reported that emodin can
inhibit the formation of 1-nitropyrene-induced DNA adducts
in Salmonella typhimurium (TA98) (14). Emodin induced
apoptosis in LNCaP human prostate cancer cells (15), lung
adenocarcinoma cells (16), HepG2 hepatocellular carcinoma
cells (17), and BCap-37 breast cancer cells (18). Recently,
our studies have shown that emodin mediated DNA damage
based on reactive oxygen species (ROS) production and
endoplasmic reticulum (ER) stress based on the levels of
growth arrest and DNA damage inducible gene 153
(GADD153) and glucose regulated protein 78 (GRP78) that
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acts as an early and upstream change in the cell death
cascade to caspase- and mitochondria-dependent signaling
pathways, triggered mitochondrial dysfunction from Bcl-2
and Bax modulation, mitochondrial cytochrome c release and
caspase activation, consequently leading to apoptosis in
SCC-4 human tongue cancer cells (19).

Aloe-emodin (1,8-dihydroxy-3-(hydroxymethyl)-anthra-
quinone) is an active component contained in the root and
rhizome of Rheum palmatum L. (Polygonaceae) (20). Pecere
et al. reported that aloe-emodin has a specific anti-
neuroectodermal tumor activity (21). From in vitro studies, it
was demonstrated the genotoxicity of aloe-emodin (22) and its
ability to promote malignant transformation of cells (23), and
showed that it is not mutagenic in vivo (22). It was reported
that aloe-emodin has selective activity against neuroectodermal
tumors (22, 24) and it has shown antiproliferative activity in
human hepatoma (25) and lung carcinoma cell lines (26). Aloe-
emodin was also reported to induce apoptosis in human gastric
carcinoma cells (27), H460 non-small cell lung carcinoma cells
(28) and hepatoma cells (29). Recently in our laboratory, we
found that aloe-emodin induced apoptosis in SCC-4 human
tongue cancer cells through the death-receptor, mitochondria
and caspase cascade-dependant pathways (30).

Rhein (4,5-dihydroxyanthraquinone-2-carboxylic acid) is a
compound isolated from the root of rhubarb (Rheum palmatum
L.), and suppresses phorbol ester-induced tumor promotion in
JB6 mouse epidermal cell line (31). It was reported that rhein
suppresses the growth of tumor cells in rat liver (32), human
glioma (33), and Ehrlich ascites tumor (34) in vivo. Rhein
induced apoptosis in human colonic adenocarcinoma
monolayer cells (35) and HL-60 leukemia cells (36). Recently
in our laboratory, we found that rhein induced apoptosis in Ca
Ski human cervical cancer cells (37), nasopharyngeal
carcinoma cells (38) and SCC-4 human tongue cancer cells via
caspase, ROS and mitochondrial death pathways (39).

Despite much evidence suggesting that emodin, aloe-
emodin and rhein induced apoptosis in many cancer cell
lines, there is not enough information to show that these
compounds induced DNA damage and inhibited DNA repair
gene expression. Therefore, in this study, we investigated the
effects of emodin, aloe-emodin and rhein on DNA damage
and DNA repair genes in SCC-4 cells. 

Materials and Methods

Chemicals and reagents. Emodin, aloe-emodin, rhein, dimethyl
sulfoxide (DMSO), propidium iodide (PI), Tris-HCl, triton X-100
and trypan blue were obtained from Sigma Chemical Co. (St. Louis,
MO, USA). RPMI-1640 medium, fetal bovine serum (FBS), L-
glutamine, penicillin-streptomycin and trypsin-EDTA were obtained
from Invitrogen/Gibco BRL (Grand Island, NY, USA). High
Capacity cDNA Reverse Transcription Kit and 2X SYBR Green
PCR Master Mix were obtained from Applied Biosystems
(Carlsbad, CA, USA).

Human tongue cancer cells. Human tongue cancer cell line (SCC-4)
was obtained from the Food Industry Research and Development
Institute (Hsinchu, Taiwan, ROC) and were cultured at 37˚C under
a humidified 5% CO2 and 95% air at one atmosphere with RPMI-
1640 medium supplemented with 10% FBS, 100 Units/ml penicillin,
100 μg/ml streptomycin and 2 mM L-glutamine. The medium was
changed every 2 days (19, 39).

Assessment of viability of SCC-4 cells after exposure to emodin, aloe-
emodin and rhein. SCC-4 cells (2×105 cells/well) were placed in 12-
well plates and incubated at 37˚C for 24 h before each well was
treated with 0, 20, 30 or 40 μM emodin; or 0, 25, 50 or 100 μM aloe-
emodin; or 0, 25, 50 or 100 μM rhein for 24 h. DMSO (solvent) was
used for the control regimen. The cells were stained with PI (5 μg/ml)
and analyzed by flow cytometry (Becton-Dickinson, San Jose, CA,
USA) as previously described (19, 38-39).

Comet assay for examining DNA damage in SCC-4 cells.
Approximately 2×105 cells/well of SCC-4 cells in 12-well plates
were incubated with emodin at final concentrations of 0, 20, 30 or
40 μM, 1 μl DMSO (vehicle) and 5 μM of H2O2 (positive control),
and exposed to aloe-emodin or rhein at final concentrations of 0,
25, 50 and 100 μM, 1 μl DMSO and 5 μM of H2O2 in RPMI-1640
medium grown at 37˚C in 5% CO2 and 95% air. The cells were
harvested for the examination of DNA damage using the comet
assay as described previously (19, 30, 40).

Real-time PCR of ATM, ATR, 14-3-3σ, BRCA1, DNA-PK and
MGMT in SCC-4 cells. Total RNA isolation, cDNA synthesis, and
real-time PCR were carried out as described previously (41).
Briefly, SCC-4 cells (1×106 cells/well) in 6-well plates were
maintained in RPMI-1640 medium with or without emodin (30
μM), aloe-emodin (50 μM) or rhein (50 μM), respectively were
incubated for 24 and 48 h. The total RNA from each sample was
extracted by using the Qiagen RNeasy Mini Kit (Qiagen, inc,
Valencia, CA, USA) as described previously (41). RNA samples
were reverse-transcribed for 30 min at 42˚C with High Capacity
cDNA Reverse Transcription Kit according to the standard protocol
of the supplier (Applied Biosystems, Carlsbad, CA, USA). The
quantitative PCR was performed under the following the conditions:
2 min at 50˚C, 10 min at 95˚C, and 40 cycles of 15 s at 95˚C, 1 min
at 60˚C using 1 μl of the cDNA reverse-transcribed as described
above, 2X SYBR Green PCR Master Mix (Applied Biosystems) and
200 nM of forward and reverse primers as shown in Table I (42).
Finally, each assay was run on an Applied Biosystems 7300 Real-
Time PCR System in triplicates and expression fold-changes were
derived using the comparative CT method (41).

Statistical analysis. Student’s t-test was used to analyze differences
between groups treated with emodin, aloe-emodin and rhein and the
untreated (control) group.

Results

Emodin, aloe-emodin and rhein reduced the viability of
human tongue cancer (SCC-4) cells. The cells were exposed
to different concentrations of emodin, aloe-emodin and rhein
for 24 h, and cells were collected for PI staining for viability
analysis. The results are presented in Figure 1 and there were
fewer viable cells as concentration increased when compared
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to control groups. These effects were dose dependent and the
results demonstrated that emodin, aloe-emodin and rhein,
respectively displayed a remarkable cytotoxic effect with
concentrations causing the death of 50% of cells (LC50) of
29.13±1.09, 48.53±1.12 and 56.87±3.59 μM in SCC-4 cells
at 24h.

Emodin, aloe-emodin and rhein induced DNA damage in
human tongue cancer (SCC-4) cells as demonstrated by
comet assay. Previous studies have shown that emodin, aloe-
emodin and rhein induce cytotoxic effects including
apoptosis on SCC-4 cells. In the present study, we
investigated whether or not emodin, aloe-emodin and rhein
induced DNA damage in SCC-4 cells. The results from the
comet assay are presented in Figure 2. From each treatment,
the high concentration of emodin, aloe-emodin and rhein led
to a longer comet tail (Figure 2A, B and C, respectively).
Quantification of each sample tail length also confirmed this
(Figure 2A, B and C), indicating that DNA was damaged in
the cells in a dose-dependent manner. These results also
showed DNA damage in SCC-4 cells was induced with an
order of emodin> aloe-emodin> rhein.

Emodin, aloe-emodin and rhein inhibited DNA damage
repair gene expressions in SCC-4 cells as shown by real-time
PCR. SCC-4 cells were treated individually with 30 μM of
each agent for 24 and 48 h. The results of analysis of gene
expression by real-time PCR are shown in Figure 2A, B and
C, respectively. Expression of ATM, ATR, 14-3-3σ, BRCA1,
DNA-PK and MGMT mRNA was significantly inhibited by
aloe-emodin with the exception of MGMT under 48 h
treatment. Emodin also had no effect on MGMT at all, while
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Figure 1. Emodin, aloe-emodin and rhein affected the viability of SCC-4
cells. The SCC-4 cells (2×105 cells/well) were placed in 12-well plates
and incubated at 37˚C for 24 h then treated with different doses of
emodin, aloe-emodin or rhein for 24 h. DMSO (solvent) was used for the
control.  The cells were stained with PI and were analyzed by flow
cytometry as described in Materials and Methods. Each point is the
mean±S.D. of three experiment; ***p<0.001.

Table I. Sequences used in real-time PCR analysis. The DNA sequence
was evaluated using the Primer Express software.

Primer name Primer sequence

Human ATMF TTTACCTAACTGTGAGCTGTCTCCAT
Human ATMR ACTTCCGTAAGGCATCGTAACAC
Human ATRF GGGAATCACGACTCGCTGAA
Human ATRR CTAGTAGCATAGCTCGACCATGGA
Human 14-3-3σF GCCATGGACATCAGCAAGAA
Human 14-3-3σR GGCTGTTGGCGATCTCGTA
Human BRCA1F CCAGGGAGTTGGTCTGAGTGA
Human BRCA1R ACTTCCGTAAGGCATCGTAACAC
Human DNA-PKF CCAGCTCTCACGCTCTGATATG
Human DNA-PKR CAAACGCATGCCCAAAGTC
Human MGMTF CCTGGCTGAATGCCTATTTCC
Human MGMTR TGTCTGGTGAACGACTCTTGCT
Human GAPDHF ACACCCACTCCTCCACCTTT
Human GAPDHR TAGCCAAATTCGTTGTCATACC

Each assay was conducted at least twice to ensure reproducibility. F,
Forward; R, reverse. 
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Figure 2. DNA damage induced by emodin (A), aloe-emodin (B) and rhein (C) in SCC-4 cells was determined by comet assay. The SCC-4 cells
(2×105 cells/well; 12-well plates) were incubated with different concentrations of emodin, aloe-emodin or rhein for 24 h and DNA damage was
determined by comet assay as described in Materials and Methods. Representative images of comet assay and comet length are shown. Each point
is the mean±S.D. of three experiments; *p<0.05, ***p<0.001.



rhien reduced its expression only after 48 h incubation.
Moreover, rhein induced similar changes in ATR and had no
effect on ATM expression.

Discussion

In the present study, we investigated emodin, aloe-emodin
and rhein induced DNA damage, using the comet assay. We
found that a significant dose-dependent increase in DNA
damage (longer comet tail; Figure 2) was observed in SCC-
4 human tongue cancer cells, which was associated with a
loss of cell viability (Figure 1) (p<0.01). The comet assay
has been used for examining DNA damage in single cells
after exposure to agents (43, 44). It was reported that the
comet assay was used for measuring the strand-break
formation during the process of excision repair of DNA
which may also cause DNA migration (42, 45). 

In cells, DNA damage can be reduced via DNA repair
through eliminating DNA lesions. Therefore, the analysis
of the finer mechanisms of enzymatic repair of DNA
damage in the mammalian genome has attracted more
attention and has also been the subject of intensive research
in recent years (46-48). Figure 3 data from real-time PCR
examination indicated that emodin, aloe-emodin and rhein
inhibited DNA repair gene expression including of ATM,
ATR, 14-3-3σ, BRCA1, DNA-PK and MGMT in the
examined SCC-4 cells. Our previous studies have shown
that emodin, aloe-emodin and rhein induced cell cycle
arrest and apoptosis in SCC-4 cells (19, 30, 39). It is well-
known that DNA damage checkpoints play a role in signal
transduction pathways that are involved in the cell cycle
and cellular responses to DNA damage for maintaining
genomic integrity.

It was reported that ATM and ATR are two master
checkpoint kinases activated by double-stranded DNA breaks
(DSBs) (49) and ATR kinase is responsible for initiating the
DNA damage checkpoint (50). BRCA1 (tumor suppressor)
plays critical roles in DNA repair, cell cycle checkpoint
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Figure 3. Emodin-(A), aloe-emodin-(B) and rhein-(C)inhibited DNA
damage repair gene expression in SCC-4 cells were determined by real-
time PCR. The total RNA was extracted from the SCC-4 cells after
treatment of 30 μM emodin, aloe-emodin or rhein for 24 and 48 h, and
RNA samples were reverse-transcribed for cDNA then for real-time PCR
as described in Materials and Methods. The ratios of ATM, ATR, 14-3-
3σ, BRCA1, DNA-PK and MGMT mRNA to that of GAPDH (relative
quantification) are presented. Data represent the mean±S.D. of three
experiment; *p<0.05, ***p<0.001.

Figure 4. A possible flow chart for DNA repair gene inhibition by
emodin, aloe-emodin and rhein in SCC-4 cells.



control and maintenance of genomic stability in breast and
ovarian cancer (51). 14-3-3σ overpression may be used as an
effective therapeutic target in breast cancer patients (52). It
was reported that DNA-dependent protein kinase (DNA-PK)
also plays a critical role in DNA damage repair (53). In cells,
O6-methylguanine DNA methyltransferase (MGMT) can
reduce the cytotoxicity of therapeutic and environmental
alkylating agents (54).

Our previous studies have shown that emodin, aloe-emodin
and rhein promoted the production of ROS in SCC-4 cells
(19, 30, 39). In the present study, emodin, aloe-emodin and
rhein induced DNA damage in SCC-4 cells and these effects
occur in a dose-dependent manner. 

In conclusion, emodin, aloe-emodin and rhein induce
DNA damage in SCC-4 cells followed by the inhibition of
DNA repair-associated gene expressions including ATM,
ATR, 14-3-3σ, BRCA1, DNA-PK and MGMT (Figure 4).
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