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Abstract. Background: The vitamin D metabolizing enzymes
25-, la- and 24-hydroxylase are expressed in malignant cells
of the cervix and the ovaries. The aim of this study was to
obtain further information about the regulation of the
aforementioned enzymes by vitamin D, calcidiol and calcitriol
in cervical and ovarian cancer. Materials and Methods: The
human cervical adenocarcinoma cell line HeLa and the
human ovarian adenocarcinoma cell line OVCAR-3 were
incubated with vitamin D, calcidiol and calcitriol. The
influence of vitamin D and its metabolites on the expression
of 25-, la- and 24-hydroxylase was assessed by real-time RT-
PCR. Results: Calcitriol significantly increased the 24-
hydroxylase mRNA levels in HeLa and OVCAR-3 cells. The
expression of 25- and la-hydroxylase was not regulated in a
statistically significant manner. Conclusion: These results
suggest that in HeLa as well as OVCAR-3 cell lines, the
metabolism of vitamin D is regulated via the expression of the
catabolizing 24-hydroxylase.

Cervical and ovarian cancers are severe diseases. In 2008,
approximately 529,000 new cases of cervical and 225,000
new cases of ovarian cancer were registered worldwide. At
the same time, approximately 274,000 and 140,000 women
died from these malignancies, respectively (1). Several studies
have indicated that sunlight exposure, which leads to elevated
vitamin D plasma levels, is negatively correlated with the risk
and mortality of various malignancies, such as breast, colon,
prostate as well as cervical and ovarian cancer (2, 3).
Vitamin D3 can be obtained from the diet or from
endogenous synthesis due to ultraviolet radiation. The
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secosteroid hormone 1,25-dihydroxyvitamin D (calcitriol) is
the biologically most active metabolite of vitamin D,
possessing a high potency in elevating serum calcium and
phosphate levels (4). The genomic effects of calcitriol are
mediated via its interaction with the specific nuclear vitamin
D receptor (VDR) (5). Two enzymes are principally involved
in the synthesis of calcitriol. Initially, vitamin D is
hydroxylated by the hepatic 25-hydroxylase (25-OHase) and
consequently converted to 25-hydroxyvitamin D (calcidiol).
Subsequent hydroxylation by the renal 1a-hydroxylase (la-
OHase) yields the formation of calcitriol. In target cells, both
calcidiol and calcitriol are catabolised by the 24-hydroxylase
(24-OHase) and therefore become functionally inactivated.
The la- and 24-OHase are regulated in a reciprocal manner (6).

In addition to its well-known role in the endocrine
regulation of serum calcium and phosphate levels, a strong
body of evidence indicates that calcitriol holds further
biological functions. This theory is supported by the fact that
numerous studies revealed the expression of the VDR and of
the key enzymes la- as well as 24-OHase in various cell
types, which are not involved in calcium and phosphate
homeostasis, including cells of the cervix and the ovaries (7).
In contrast to calcitriol synthesised in the kidney, extra-renally
synthesized calcitriol is presumed to act exclusively in an
auto- and/or paracrine fashion under physiological conditions
(8, 9). The expression of the VDR and of the key hydroxylases
has also been demonstrated in different types of cancer cells,
such as breast, colon, prostate, cervical and ovarian cancer
cells (7, 10, 11). Various studies have elucidated the anti-
proliferative, differentiating and pro-apoptotic effects of
calcitriol on a wide range of malignant cells. Moreover,
calcitriol is assumed to lower the rate of metastasis as well as
to inhibit angiogenesis (12). Nevertheless, the in vivo use of
calcitriol is definitely limited due to its calcemic side-effects
(13). Conceivably, calcidiol, which is intracellularly
hydroxylated to the active metabolite calcitriol, has a stronger
potential to be used in clinical practice because of its lower
calcemic effects. In search for preventive as well as curative
pharmaceuticals, several in vitro studies have been performed
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Figure 1. PCR analysis of the mRNA expression of the VDR in HeLa and OVCAR-3 cells. Ctrl A: control A (water instead of cDNA), Ctrl B: control

B (¢cDNA synthesis without reverse transcriptase), M: marker.

in order to compare the antiproliferative effects of calcitriol
and calcidiol. While Schwartz et al. (14) and Barreto et al.
(15) demonstrated equivalent anti-proliferative effects of these
vitamin D metabolites, other studies partly did not confirm any
anti-proliferative activity of either calcidiol or calcitriol,
although the investigated cells were capable of expressing the
VDR and 1a-OHase (16-18).

The present study analysed the influence of vitamin D and
its metabolites on the expression of the vitamin D
metabolising enzymes 25-, 1o- and 24-OHase in HeLa and
OVCAR-3 cancer cells.

Materials and Methods

Cell culture. The human cervical adenocarcinoma cell line HeLa
and the human ovarian adenocarcinoma cell line OVCAR-3
(ATCC/LGC Standards, Wesel, Germany) were grown in RPMI-
1640 medium with 25 mM HEPES and 2 mM L-glutamine (PAA
Laboratories, Colbe, Germany) at 37°C in a 5% CO, in air
atmosphere. The medium for HeLa cells was supplemented with
10% foetal bovine serum (FBS; PAA Laboratories). The OVCAR-3
cells medium was supplemented with 20% FBS and 0.01 mg/ml
insulin (Sigma-Aldrich, Seelze, Germany).

Stimulation with vitamin D, calcidiol and calcitriol. For the
stimulation with vitamin D, calcidiol and calcitriol, the cells were
plated on 94-mm cell culture dishes (Greiner, Frickenhausen,
Germany) for three days. Medium was then exchanged with
medium containing vitamin D, calcidiol or calcitriol (Sigma-
Aldrich) at concentrations of 1 nM and 100 nM. All substances were
dissolved as 1 mM stock solutions in 100% ethanol. As controls,
cells were treated with the diluent ethanol in a concentration
corresponding to the ethanol concentration in the 100 nM treatment
groups. Incubation times were 24, 48, 72 and 96 h.

Isolation of total RNA and ¢cDNA synthesis. After the indicated

periods of time, total RNA was extracted with TRIzol reagent
(Invitrogen, Karlsruhe, Germany) according to the manufacturer’s
protocol. The purity and the amount of the RNA were examined

spectrophotometrically.

For first-strand cDNA synthesis, 2 ug of total RNA were diluted
in RNase-free water and reverse transcribed by using 250 ng
random primers, 1 pl M-MLYV reverse transcriptase (200 U/ul), 1 ul
dNTP mix (10 mM) and 1 pl RNaseOUT (40 U/ul) (Invitrogen)
according to the manufacturer’s instructions. Controls did not
contain reverse transcriptase.
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Polymerase chain reaction and gel electrophoresis. For polymerase
chain reaction (PCR) the following primer pair was used: VDR forward
5’-CCA GTT CGT GTG AAT GAT GG-3’, reverse 5’GTC GTC CAT
GGT GAA GGA-3’ (Metabion, Martinsried, Germany). One ul of
cDNA was amplified using Taq DNA polymerase (5000 U/ml; New
England Biolabs, Frankfurt am Main, Germany). MCF-7 cells were
used as VDR-positive control. Negative controls were included by
omitting cDNA (Ctrl A) or by utilizing products from cDNA synthesis
without reverse transcriptase (Ctrl B). Thermal cycling conditions were
40 cycles at 94°C for 30 s, 60°C for 30 s, 72°C for 30 s and a final
extension at 72°C for 10 min. PCR was performed in a PTC-200
thermal cycler (MJ Research, Waltham, MA, USA). PCR products
were separated on a 1.5% ethidium bromide-stained agarose gel,
visualised by ultraviolet light and captured on Polaroid films.

Real-time PCR. In order to quantify the expression levels of 25-, 1a-
and 24-OHase mRNA real-time PCR was performed using Platinum
SYBR Green qPCR SuperMix-UDG (Invitrogen) in an Opticon 2 real-
time PCR engine (Bio-Rad, Munich, Germany). All experiments were
repeated in triplicate. Each real-time PCR was performed in duplicate
and hypoxanthine-guanine phosphoribosyl transferase (HPRT) was used
for normalization of the expression levels of the target genes. For
absolute quantification, a standard curve was used in tenfold serial
dilutions (50-5x10° molecules), prepared from reverse transcription-PCR
products of the corresponding target genes. Primers: 25-OHase forward
5’-GGC AAG TAC CCA GTA CGG-3’, reverse 5°-AGC AAA TAG
CTT CCA AGG-3’; 1o-OHase forward 5’-TGT TTG CAT TTG CTC
AGA-3’, reverse 5°’-CCG GGA GAG CTC ATA CAG-3’; 24-OHase
forward 5’-GCA GCC TAG TGC AGA TTT-3’, reverse 5’-ATT CAC
CCA GAA CTG TTG-3’; HPRT forward 5’-CCT GGC GTC GTG ATT
AGT GAT-3’, reverse 5’-CCA GCA GGT CAG CAA AGA ATT TA-
3’ (Metabion). Two ul of cDNA were added to a 25 pl reaction in a 96-
well PCR plate (Sarstedt, Niimbrecht, Germany) and real-time PCR was
performed according to the following protocol: 44 cycles (25-OHase),
49 cycles (la- and 24-OHase) and 39 cycles (HPRT) of denaturation at
95°C for 15 s, annealing at 57.3°C (25-, 1a- and 24-OHase) and at 60°C
(HPRT) for 15 s and extension at 72°C for 15 s. After the corresponding
number of cycles, the specificity of the PCR products was verified by
melting curve analysis. For data analysis, the expression levels were
calculated from standard curve values, which were generated in parallel
in each run. Subsequently, the expression levels of the target genes were
normalized to the expression levels of the housekeeping gene HPRT. All
normalised data were calculated as the n-fold change of expression of
the treated samples in relation to the controls.

Statistical analysis. The statistical analysis of the real-time PCR
results was carried out using a two-way ANOVA followed by a
Bonferroni post-hoc test. Data are expressed as means+standard
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Figure 2. Real-time PCR analysis of the influence of the different treatments at a concentration of 10~7 mol/l on the mRNA expression of 25- (A, D), la-
(B, E) and 24-OHase (C, F) in HeLa cells (A, B and C) and OVCAR-3 cells (D, E and F) after 24 h. The indicated expressions were calculated as the ratio
of the expression levels in the treatment to the control group. The data are expressed as means+SEM (*p<0.05 vs. control, ***p<0.001 vs. control; n=3).
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Figure 3. Real-time PCR analysis of the influence of 10~ mol/l and 10-
7 mol/l calcitriol on the mRNA expression of 24-OHase in HeLa cells
(A) and OVCAR-3 cells (B) after 24h, 48h, 72h and 96 h. The indicated
expressions are calculated as the ratio of the expression levels in the

Expression of 24-OHase
]

treatment to the control group. The data are expressed as means+SEM
(*p<0.05 vs. control, ***p<0.001 vs. control; n=3).

error of the mean (SEM) obtained from duplicate wells of three
independent experiments. All data were calculated with GraphPad
Prism 4 (GraphPad Software, Version 4.00, San Diego, CA, USA).

Results

The expression of the VDR 1in the investigated cell lines is a
necessary condition in order to be able to observe a response
of these cells to vitamin D and its metabolites. As Figure 1
shows, HeLLa and OVCAR-3 cells expressed the VDR.

With regard to 25-OHase, neither cell line was statistically
significantly affected by any of the different treatments after
the indicated periods of time (Figure 2). Moreover, none of
the treatments statistically significantly altered the mRNA
expression of 1a-OHase in HeLa and OVCAR-3 cells at any
of the investigated time points (Figure 2). In HeLa cells, the
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expression of 24-OHase mRNA was statistically significantly
increased by 13-, 10- and 13-fold after 24, 48 and 72 h of
incubation with 100 nM calcitriol, respectively (p<0.001)
(Figure 3).

In OVCAR-3 cells, the treatment with 100 nM calcitriol
led to a 176-fold increase (p<0.05) of 24-OHase mRNA
expression after 24 h (Figure 3). After 48 h of incubation
with 100 nM calcitriol, 24-OHase expression was 341-fold
higher (p<0.001) than in the control (Figure 3). The same
treatment caused a tendency to an increased 24-OHase
mRNA expression after 72 h and 96 h; however, this trend
was not statistically significant (Figure 3). Moreover, 1 nM
calcitriol and 100 nM calcidiol showed a tendency to an
increased expression of 24-OHase in both cell lines; however
this tendency was not statistically significant (Figures 2, 3).

Discussion

The present study demonstrated the expression of the VDR
and of the main vitamin D metabolizing enzymes, i.e. 25-,
lo- and 24-OHase, in the human cervical cancer cell line
HeLa and the human ovarian cancer cell line OVCAR-3.
This pattern of expression indicated that HeLa as well as
OVCAR-3 cells are capable of metabolizing vitamin D and
its derivates autonomously and also of controlling growth
and differentiation in an auto- and/or paracrine fashion.
Beyond that, the expression of the various
hydroxylases were shown to be influenced by calcitriol and
its precursors. As the most striking effect of the present
study, there was a statistically significant up-regulation of the
expression levels of 24-OHase by 100 nM calcitriol in both
cell lines.

Hence, the present findings join a growing list of results
from other studies that have demonstrated calcitriol to be a
potent inductor of 24-OHase gene expression and activity in
malignant cells, such as breast, colon and prostate cancer
cells (10, 19-23). Christopherson et al. (24) described an
increased 24-OHase activity in cervical as well as ovarian

levels

cancer cells under treatment with calcitriol. It was recently
hypothesized that neoplastic cells may abrogate the anti-
proliferative effects of calcitriol by a dysregulated increase
of 24-OHase expression in comparison to their benign
counterparts. In fact, various studies disclosed an increased
expression of 24-OHase in malignant cells, such as breast,
cervical, ovarian and prostate cancer cells (7, 25-27). Thus,
in breast cancer cells, 24-OHase has been found to be a
potential oncogene (28). Accordingly, surveys analysing
different strains of prostate cancer cells revealed an inverse
correlation between the anti-proliferative effects of calcitriol
and its ability to induce 24-OHase gene expression (17, 29).

The most pronounced result in the present study was the
341-fold induction of 24-OHase expression by 100 nM
calcitriol in OVCAR-3 cells. Nevertheless, 100 nM calcitriol
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is well-known to elicit anti-proliferative effects in OVCAR-
3 cells (30-32). Although this may be explained by the
applied dose of calcitriol, which may have potential toxic
effects, further studies are needed to clarify whether the
elevated mRNA levels of 24-OHase can be verified at the
protein level and whether these proteins are functionally
active. Conceivably, alternative splicing as well as processes
of post-translational modification may lead to the formation
of functionally inactive enzymes. Splice variants of 24-
OHase have already been detected in breast as well as
prostate cancer cells (33, 34). Intriguingly, Fischer et al.
(25) demonstrated the expression of potential splice variants
of the 24-OHase in tissue derived from ovarian cancer
samples. Further research is needed to elucidate the
existence of 24-OHase splice variants in HeLa and OVCAR-
3 cells. Such splice variants may be the reason for the
discrepancy between the high induction of 24-OHase by
calcitriol observed in OVCAR-3 cells and the anti-
proliferative effects of calcitriol on these cells described in
other studies.

In the future, vitamin D and its derivates may be
considered as useful agents for the prevention and therapy of
cervical and ovarian carcinomas.
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