
Abstract. Colorectal cancer is one of the most frequently
diagnosed malignancies in both men and women. Although
curative resection is the major treatment option, approximately
half of all patients eventually develop distant metastases. Thus,
the need for early detection of occult metastases has led to
extensive investigation with regard to the detection of
disseminated tumor cells in biological fluids, including
peripheral blood or bone marrow of cancer patients. In this
review, we summarize the methods currently implemented for
disseminated tumor cell detection in colorectal cancer. In
addition, we discuss the pitfalls of each method and the future
perspectives in the development of an easily applied, quick and
inexpensive method which will enable the reliable detection of
circulating tumor cells with optimal sensitivity and specificity.

Colorectal cancer (CRC) is one of the most common forms
of cancer, in regard to both incidence and mortality. In the
Western world, CRC is the second most common malignancy

diagnosed in women, after breast cancer, and the third most
common in men, after prostate and lung cancer, accounting
for 13.1% and 12.8% of all forms of cancer, respectively. In
2006, 412,900 CRC cases were newly diagnosed in Europe,
whereas approximately 207,400 deaths from CRC were
certified (1).

For the time being, surgical resection of the tumor remains
the prominent choice for treatment followed by adjuvant
chemotherapy. Despite surgery, roughly 45% of patients
ultimately die of distant metastases; 5-year overall survival
decreases from approximately 90% for stage I patients to
about 8% for stage IV (2-4). Staging of CRC is based on
the Tumor, Node and Metastasis (TNM) staging system,
providing information on the spread of cancer, with reference
to tumor size or penetration to the bowel wall (T), as well
as regional lymph node (N) and distant (M) metastasis.
Apart from predicting cancer prognosis, the TNM system is
also widely used in the course of treatment choice (5).
Nevertheless, although frequently updated, the TNM system
often fails to discriminate among tumors of intermediate
stages, or even morphologically similar tumors with different
clinical behavior (4).

The stage of the disease at the time of diagnosis is crucial
to survival; unfortunately, in a large number of cases, CRC is
diagnosed in advanced stages. It is obvious that early
detection is critical, however the available methods for
screening encounter several difficulties in meeting that
expectation (6). It is therefore of great importance that new
and improved diagnostic and screening methods are applied.
Prognosis, recurrence and response to therapy can be
challenging for that purpose, given the fact that 90% of
cancer-related deaths result from metastases (7). In CRC,
metastasis occurs as a result of hematogenous and lymphatic
spread: tumor cells shed from the primary tumor and migrate
to distant sites, eventually leading to micrometastases.
Detection of disseminated tumor cells could provide a very
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promising solution to the aforementioned hindrances, also
providing a potential for changing the treatment approach in
cancer patients (8).

The Concept of Circulating Tumor Cells (CTCs)
in Cancer Metastasis

As mentioned above, disseminated malignancy is the main
cause of cancer death, including that from colorectal cancer.
Metastases are eventually developed in a large percentage of
surgically treated patients and this phenomenon is attributed to
the dissemination of tumor cells from the primary tumor site
before surgery. It has been estimated that approximately 1×106
tumor cells per gram of tissue are shed daily into the
bloodstream (9), with few of them, nonetheless, having
metastatic potential (10). Although the notion of detecting
malignant cells in blood is not novel, recent studies have
confirmed the malignant nature of circulating tumor cells
(CTCs), and their genetic association with the primary tumor
(11, 12). The general model of tumor cell dissemination and
metastasis includes the following steps: tumor growth and
angiogenesis, local invasion and epithelial to mesenchymal
transition (EMT), intravasation, dissemination, arrest in organs,
extravasation, proliferation and formation of metastases.

As a tumor grows, the depletion of oxygen supplies results
in angiogenesis induction (13). Epithelial tumor cells breach
the basal membrane as a result of EMT, during which tumor
cells progressively acquire mesenchymal characteristics,
resulting in reduced cell to cell adhesion (mainly due to
down-regulation of E-cadherin), reduced cell to extracellular
matrix adhesion (mediated by integrins) and increased
motility, thus allowing them to enter blood vessels (14).
EMT is induced by the transcription factor Twist (15). Once
they reach distant organs, tumor cells extravasate and
undergo mesenchymal to epithelial transition (15, 16), where
they either form metastases, or remain dormant, often for a
long period of time, lasting up to 22 years (17).

In order to explain the prognostic effect of lymph node
metastases on survival or development of distant metastases in
cancer patients, Pantel and Brakenhoff suggested a possible
complementary pathway that incorporates lymphatic
dissemination during the early stages of the disease and the
formation of lymph node metastases. As the disease progresses,
tumor cells disseminate from the lymph nodes and form distant
metastases (18). On some occasions, tumor cells can enter the
circulation as multicellular aggregates or clusters of epithelial-
like cells. This process is referred to as ‘collective’ or ‘cohort’
migration and the clusters are also known as circulating tumor
microemboli (CTM). CTM are thought to have high metastatic
potential; they exit the circulation without extravasation, by
proliferating inside the vessels and attaching to the walls of the
vessels, resulting in their destruction and subsequently in
micro- and macrometastases (16, 19). The presence of CTCs,

although necessary, does not suffice for metastatic formation.
This phenomenon is referred to as ‘metastatic inefficiency’ and
might be attributed to CTC incompetence in developing
metastases probably because solitary extravasated cells do not
succeed in initiating tumor growth, or because of the failure of
the micrometastases formed at the target site to give rise to
macrometastases (20).

CTCs tend to metastasize to certain organ sites that are
specific for cells derived from specific tumors. This preference
was first reported in the 19th century, when Stephen Paget
published the ‘seed and soil’ hypothesis, depicting the
nonrandom pattern of metastases (21). According to the findings
of Paget, metastases are not formed randomly, but are based on
the affinity of certain tumor cells (the ‘seeds’) to the environment
of the target organs (the ‘soil’). Indeed, it is currently accepted
that certain tumor cells selectively metastasize to specific organs
(22-26); colorectal cancer cells for instance mainly disseminate
to the liver, lungs and bone marrow.

A current definition of the ‘seed and soil’ hypothesis
comprises three principles. Firstly, neoplasms contain genetically
diverse tumor cell subpopulations, each with different metastatic
potential. Secondly, of the biological variety of tumor cells in a
neoplasm, metastases will be formed by those which will
succeed in completing all the steps in the metastatic process.
Therefore, metastases can have a clonal origin, meaning that
each can occur by proliferation of a single cell. Thirdly, the
specific choice of the ‘soil’ is mostly attributed to interactions
between tumor cells and the organ microenvironment, in terms
of specific recognition of endothelial cell antigens and response
to local growth factors (27).

In addition, the recently developed perception of circulating
cancer stem cells has proposed that cancer stem cells are
present in the circulation and are capable of developing
metastases with specific biotypic behavior, based on their
interaction with particular host tissue microenvironment (28,
29) which can modify their biology (30).

Cell Enrichment Techniques used
for the Detection of CTCs

The detection of CTCs in peripheral blood or bone marrow
samples requires their enrichment from the initial specimen.
The techniques used for this purpose involve CTC
enrichment on the grounds of cell density, selection of CTCs
based on expression of epithelial antigens and removal of
nonepithelial cells (31).

Density gradient centrifugation using Ficoll-Hypaque is a
commonly used method that allows the enrichment of
disseminated tumor cells in the mononuclear blood cell
fraction. OncoQuick® is a rather newly developed variation
that is characterized by the addition of a porous barrier in the
centrifugation tube, thus reducing the possibility of tumor cell
loss due to migration to adjacent cell layers. OncoQuick® has
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been reported to be superior to Ficoll-Hypaque due to
increased depletion of mononuclear blood cells (32).

Erythrocyte lysis is also used for the recovery of CTCs.
Whole blood samples are treated with a special isoosmotic
ammonium chloride solution called erythrocyte lysis buffer
(ELB) that contains ammonium chloride (NH4Cl),
potassium bicarbonate (KHCO3) and tetrasodium ethylene-
diaminetetraacetic acid (EDTA). After centrifugation, tumor
cells remain in the pellet. Although the use of ELB does not
allow specific isolation of tumor cells, it can be easily
implemented in clinical practice due to convenience in
application and low cost.

CTCs can also be isolated by filtration, based on their
size. After erythrocyte lysis, blood cells are filtered using
filters with pores of 8 μm in diameter (33). Cells larger than
11 μm, including tumor cells, are retained. Despite its ease
of use, this method lacks sensitivity and specificity (34).

One of the mostly used methods for CTC enrichment is
immunomagnetic cell enrichment, involving separation using
either magnetic beads or a ferrofluid based system. In the first
case, antibodies coupled with magnetic beads are targeted
against specific molecules, allowing separation by using a
magnet. The antibodies in these assays can be used either for
positive or for negative selection. Positive selection involves
antibodies specific for epithelial cell antigens such as CEA 125
and Ber-EP4, while negative selection is usually targeted against
leukocytes using anti-CD45 antibodies, leading to their
depletion. The ferrofluid-based system makes use of anti-
epithelial cell adhesion molecule (anti-EpCAM) antibodies in
EpCAM-bound ferrofluid. The selection also takes place via
magnetic separation. Immunomagnetic enrichment offers the
advantage of recovering live cells which, in combination with
microscopic visualization and quantification of the enriched
cells, can lead to dependable assumptions. Nonetheless, the
problem of nonexistence of highly specific tumor markers
remains, leading to false-positive results because of antibody
binding to nonmalignant cells. Additionally, during the
enrichment process there is a significant loss of CTCs; this loss
could be of great importance, given the fact that tumor cells
represent less than 0.1% of the enriched population (35). In
general there are conflicting results concerning the superiority of
immunomagnetic enrichment over traditional methods such as
the aforementioned Ficoll-Hypaque, since although considered
to provide greater specificity, immunomagnetic enrichment has
been shown to be hampered by poor sensitivity (36).

Polymerase Chain Reaction-based Protocols for
Detecting Circulating Colorectal Cancer Cells

Polymerase chain reaction (PCR) is a method that allows the
in vitro amplification of a DNA sequence, using oligonucleo-
tide primers that are specific for it. The reaction takes place
in a thermocycler, where the sequence of interest is amplified

exponentially with the use of a thermostable DNA
polymerase. In reverse transcription PCR (RT-PCR), a
sequence of RNA is used as a template and therefore an extra
step of reverse transcription of RNA to cDNA precedes DNA
amplification.

PCR-based methods are widely used for the detection of
CTCs, targeting both DNA and RNA markers. DNA is
generally stable and independent of the transcription
mechanisms of the cell; however, the stability of DNA can
be a disadvantage, since it can be detected in blood due to
release from dying cancer cells, meaning that the presence
of DNA does not necessarily reflect the existence of viable
tumor cells in the circulation (37). DNA markers are used
based on specific genetic abnormalities that occur in certain
types of cancer, although it has been reported that, at least in
some cases, disseminated tumor cells are not necessarily
clonal with the primary tumor (38). In general, few
chromosomal alterations specifically characterize certain
types of cancer, or even are frequent enough to serve as
molecular markers. The most frequently encountered
genomic alterations in CRC, commonly used for the
detection of CTCs in the lymph vessels or nodes of CRC
patients, include mutations in K-Ras and p53 genes,
sometimes investigated in combination with mRNA markers
(see below) (39). The results concerning the significance of
the aforementioned mutations in cancer prognosis and
follow-up are contradictory (40, 41); studies investigating
mutations of K-Ras and p53 genes in CRC are shown in
Table I.

The detection of occult tumor cells also engages targeting
of tumor-specific mRNA, meaning mRNA that encodes for
antigens that are specific either for the malignant phenotype
or for the normal parental tissue. The use of mRNA markers
is based on the notion that tumor cells continue to display
the same pattern of antigen expression as their normal tissue
of origin. Once released from malignant cells, mRNA is
relatively unstable; therefore, once detected, mRNA markers
are indicative of the presence of viable tumor cells in the
sample examined. Furthermore, RT-PCR of tumor-specific
mRNA is characterized by great sensitivity, in comparison to
protein-based methods (42).

The success of an RT-PCR assay for the detection of
occult tumor cells in the peripheral blood or the bone
marrow of cancer patients relies on the balance between
sensitivity and specificity in order to minimize the
occurrence of false-positive or false-negative results (43, 44).
The sensitivity of an RT-PCR reaction is determined in
spiking experiments and usually ranges from the detection
of 1 to 10 tumor cells among 106-107 blood mononuclear
cells (45-47).

The great sensitivity of RT-PCR, although important for
its clinical use, is challenging when false-positive results are
encountered. False-positives can result from the expression
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of the markers examined by nontumor cells; thus, the
selection of the mRNA markers examined is crucial so as to
avoid nonspecific expression, if possible. Highly
overexpressed markers in tumor tissue compared with normal
cells are an excellent choice. False-positives also result from
the activation of promoters by ubiquitous transcription
factors (leakiness of promoters) and although this results in
the production of a small number of transcripts (48), the
enhanced sensitivity of PCR can lead to the production of
false-positives (43). This problem can be overcome by
properly adjusting the number of PCR cycles, given the fact
that the greater the cycle number, the larger the number of
copies produced. False-positive results may also arise as a
consequence of introduction in the circulation of cells during
blood sampling or surgical procedures. The first is important
especially when epithelial markers such as cytokeratins are
used and can perhaps be avoided if the first few milliliters of
blood that are most likely to be contaminated by epidermal
cells are discarded; it has been reported, however, that
discarding the first of multiple blood samples does not
significantly change the outcome of the method (49). It is of
particular interest that during and after surgery, tumor cells
may spread into the circulation, something that has led to the
suggestion that PCR-based detection of circulating tumor
cells should be performed 2 months after curative surgery
(31). Moreover, false-positives can occur as a result of
amplification of pseudogenes, or even of genomic DNA that
potentially contaminates cDNA in the reaction (44, 50, 51).

A potential solution can be the careful design of primers so
as either the primers are located on either side of an intronic
sequence, or one of them contains an intron which is deleted
during RNA processing (52). Contamination during sample
preparation may also be a source of false-positive results,
which implies the need for negative control inclusion in the
reaction; negative controls contain water instead of RNA or
cDNA in the RT and the PCR reaction respectively.

RT-PCR is also hampered by false-negative results. RNA
degradation and technical errors, e.g. during RNA extraction
or RT-PCR, can lead to false-negatives. To avoid this
problem, quality controls should be used. Such controls
include housekeeping genes such as glyceraldehyde-3-
phosphate-dehydrogenase (GAPDH) and β-actin, indicative
of the sample quality. Intermittent shedding of tumor cells in
the circulation or genomic instability of malignant cells can
be a source of false-negative results since it is possible that
at the time of examination, tumor cells do not express the
anticipated markers; multiple sampling can provide a
solution to this problem (53).

It is of great importance to mention the necessity for the
use of multiple markers in the detection of occult tumor
cells, as it can help resolve several problems encountered due
to the nature of the experiments involved. Firstly, as a result
of de-differentiation, the number of mRNA copies of a gene
may be discrepant during the cell cycle. The employment of
multiple markers can provide the ability to distinguish
between actual variations in the expression of a marker and
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Table I. K-ras and p53 mutations as markers for colorectal cancer.

Method Gene Sample Number of CRC Healthy Positive for Correlation Reference
patients included donors gene alterations

PCR RFLP, K-ras Liver, LN, BM 246 67% , higher rate in (39)
RT-PCR liver metastases

IME, MASA K-ras TDB 24 29.2% Prognosis (134)

MACS, K-ras, p53 TDB, tissue 23 87% in tissue, 45% in Survival, tumor (135)
nested MASA blood positive for size, invasion

K-ras and/or p53
MASA K-ras, p53 CRC & LN tissue 26 17/26 primary tumors, LN invasion (46)

9/17 positive in LN

PCR, MLA K-ras, p53 Tissue, serum 44 16/44 in tissue & 3/16 (136)
serum for K-ras,
10/44 in tissue &

7/10 serum for p53

PCR RFLP K-ras CRC, mucosa 121 54/121 at surgery Survival, hepatic (137)
& liver tissue metastases

CRC, Colorectal cancer; BM, bone marrow; LN, lymph nodes; TDB, tumor drainage blood; MASA, mutant allele specific amplification; IME,
immunomagnetic enrichment; MACS, magnetic-activated cell separation; PCR-RLFP, polymerase chain reaction-restriction fragment length
polymorphism; MLA, mismatch ligation assay.



false indications that could result from the aforementioned
phenomenon (54). Secondly, in some cases, cancer therapy
can lead to down-regulation of the gene of interest and
thereby to false-negative results which can, however, be
resolved by the examination of multiple markers (42).
Thirdly, use of more than one marker can provide an
alternative solution to the false-negative results that rise due
to the intermittent shedding and the genomic instability of
tumor cells, as mentioned before.

In conclusion, we suggest that meticulous design of a PCR
reaction, in reference to primer design, cycling conditions
and multiple marker use, could overcome the majority of the
problems encountered where detection of disseminated tumor
cells is concerned. In an ideal method, the marker panel
would comprise at least one marker specific for cells of
epithelial origin, one marker specific for metastatic cancer
cells and one marker specific for CRC cells (55). In the
absence, though, of universal CRC markers, the best choice
would be the combination of at least one marker with great
sensitivity, so as to allow the detection of rare tumor cells,
and one very specific marker, in order to distinguish between
disseminated tumor cells and normal cells of the circulation;
further studies for the identification of more efficient markers
are eagerly anticipated.

Quantification of PCR products using quantitative real-
time RT-PCR enhances the reliability of RT-PCR assays,
mainly in terms of specificity. qRT-PCR assays make use of
fluorescent molecules, thus allowing screening of the
transcripts produced in each PCR cycle. The detection of
occult tumor cells by qRT-PCR relies on the definition of a
cut-off value of marker transcripts, which serves as a
threshold for positivity determination; measurements above
this value of reference are considered as positive results,
while those below this limit are considered to be false-
positives.

Even though qRT-PCR is not particularly more sensitive
than regular RT-PCR (56), the production of a nonlinear
amplification curve when false-positive results are involved
allows their immediate identification and removal (57).
Nevertheless, as in conventional RT-PCR, special precautions
are required so as the sensitivity and the specificity of qRT-
PCR assays are preserved. These include cut-off value
determination, sample preparation and RNA extraction
optimization, primer selection, instrument calibration and
carryover contamination avoidance (58). In fact, the
quantitative potential of real-time RT-PCR combined with its
technologically advanced characteristics is believed to be the
future in the application of PCR-based assays to the
detection of disseminated tumor cells. The use of real-time
RT-PCR can provide answers to the problems encountered
concerning the specificity of the chosen mRNA tumor
markers and the reliability of the observed positive or
negative PCR results in general.

Immunocytometry and Flow Cytometric
Methods for the Detection of Circulating
Colorectal Cancer Cells

Immunocytometric methods are based on the use of
monoclonal antibodies against certain surface or epithelial
antigens of circulating tumor cells and the subsequent
visualization of the antibody-labeled tumor cells. Cytometric
techniques were the first to be used for the detection of
occult tumor cells in the peripheral blood and currently are
the main methods for the detection of tumor cells in the bone
marrow. The commonest antibodies used for that purpose
involve those targeted against cytokeratins. Cytometry offers
the advantage that the target cells can be morphologically
examined, as, contrary to the PCR-based methods, no lysis
of the cells is required. Immunocytochemical approaches
also provide the ability to combine the morphological
examination of stained cells with further examination by
additional ICC staining or FISH (fluorescent in situ
hybridization) for genetic mutations (59). On the other hand,
the sensitivity of these approaches is controversial, given the
low frequency of screened cells in peripheral blood.
Additionally, false-positive results have been reported as a
consequence of nonspecific antibody binding to cytokeratins
expressed by normal blood cells (60), in percentages that
range from less than 1% to more than 80% (61). Finally, it
has been reported that routine application of
immunocytometric assays could encounter difficulties
because of the fact that they are labor intensive (62). Digital
microscopy and fluorescence-activated flow cytometry
(FACS) open up new horizons concerning the
implementation of cytometric approaches by enabling
automatic screening of samples based on nuclear and surface
characteristics and by sorting the cells of interest according
to certain parameters, allowing further in vitro analyses (37).

Specific Markers used for the Detection
of Circulating Colorectal Cancer Cells
Carcinoembryonic Antigen (CEA)

CEA is a high molecular weight glycoprotein, first described
by Gold and Freedman (1965) in human colon cancer tissue
extracts (63). CEA gene is expressed in nearly 95% of all
colorectal, gastric and pancreatic cancer (64). CEA is
involved in cell adhesion (65, 66) and in tumor cell
protection against apoptosis (67, 68), thus playing a role in
CRC metastasis. Serum CEA protein levels are commonly
used to follow the course of treatment in CRC patients;
however, it has been reported that CEA serum levels are
detectable in approximately half of CRC cases (69), while
statistical analysis showed no correlation between CEA
expression levels in tumor biopsies and the presence of
serum CEA protein (70). Hence, considerable effort has been
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made for the detection of CEA mRNA in blood specimens,
with numerous studies reporting contradictory results
concerning its detection in CRC patients, patients with
benign diseases and healthy volunteers.

Among the possible explanations suggested for the
unexpected positivity of non-cancerous specimens, some
studies mention that CEA expression in control blood had
used primers that were not specific for CEA and included
sequences that were also common for CEA-associated
proteins, such as CEACAM6 (non-specific cross-reacting
antigen-NCA), expressed in skin and granulocytes (71).
Furthermore, Hampton et al. using qRT-PCR for CEA
mRNA observed elevated CEA levels in only 2 out of 32
(6% ) CRC patients and demonstrated that white blood cells
express a splice variant of CEA in which part of the exon is
replaced by an intron sequence (72), a finding that highlights
the need for careful primer selection.

In a large study, peripheral blood samples from 51 patients
with histologically confirmed CRC, 18 patients with benign
colorectal disease and 40 controls were analyzed by nested
RT-PCR for CEA. PCR results were compared with those
that emerged from the determination of serum marker levels
and immunohistochemical analysis of samples taken from
the same patients. A total of 69% of CRC patients were
found to be positive for CEA by RT-PCR in the blood
samples, whereas 35% were positive for serum CEA. As a
possible explanation for this inconsistency, the authors
suggested that CEA RT-PCR detects the presence of tumor
cells in the blood, while serum CEA levels are associated
with tumor mass. CEA PCR results correlated with disease
stage, while no positive results were observed from
noncancerous samples and only 3% of controls were
marginally positive (71).

In another study, however, using real-time PCR in blood
samples from 36 CRC patients and 10 healthy volunteers,
CEA expression was reported in all control samples,
although in 50% of them it was below the quantification
limit. The authors noticed a significant difference in CEA
expression levels in the advanced stages of the disease and
concluded that quantification of CEA mRNA can be useful
for predicting micrometastatic relapse (73). Guo et al.
applied a combination of positive and negative
immunomagnetic enrichment followed by real-time RT-PCR
in order to maximize the specificity for CEA mRNA
detection. With this method, they observed a highly
significant correlation between relative CEA mRNA values
and number of cancer cells, while CTC levels correlated with
tumor diameter, presence of lymphatic and hepatic
metastases, as well as with clinical course of the patients.
None of the 10 normal blood samples were positive for CEA
mRNA (74). In addition, other studies analyzed preoperative
and postoperative blood samples by CEA RT-PCR combined
with patient follow-up for a median of 42 and 36 months

respectively, leading to the conclusion that the detection of
CTCs in blood samples by CEA RT-PCR lacks prognostic
significance (75, 76). However, these results were not
recently confirmed by a large cohort of patients. In this
study, blood samples taken 7-10 days postoperatively were
analyzed by RT-PCR for CEA expression. After a median
follow-up period of 52 months, it was concluded that the
analysis of blood samples collected 7 days after curative
surgery could provide useful information in patient prognosis
(77). Studies investigating CEA mRNA expression in CRC
are summarized in Table II.

Cytokeratin 20 (CK20)

CK20 is an intermediate filament protein and an important
cytoskeletal keratin of the intestinal epithelium. CK20 gene
is expressed in cancer of the gastrointestinal tract, including
CRC, as well as in normal intestinal cells; CK20 has been
shown to be a prominent component of intestinal and gastric
epithelium, urothelial umbrella cells, and Merkel cells of the
epidermis (78). CK20 mRNA detected in histopathologically
negative lymph nodes from CRC patients has been found to
have prognostic significance concerning tumor-related death
(79). CK20 mRNA is widely used as a diagnostic and
prognostic marker for CRC and is generally considered to be
a highly sensitive marker, although the results concerning its
specificity vary.

For instance, using RT-PCR, Zhang et al. detected no
CK20 expression in any of the 12 control samples included
in their study, while the positive detection rate of 58 patient
samples varied from 44.8% to 69% , correlating with disease
stage (80). In concert with these results, RT-PCR did not
detect CK20 expression in blood samples of 14 volunteers
while CK20 mRNA was detected in the blood of 42.1% of
CRC patients (81); other studies also confirmed the high
specificity of CK20 as a molecular marker in CRC (82, 83).
On the other hand, Wyld et al. detected CK20 mRNA
transcripts in 1/12 control blood samples, whereas 48% of
patient samples were positive for CK20 (84). Dandachi et al.
detected CK20 mRNA in 56% of CRC patients using real-
time RT-PCR after immunomagnetic enrichment. The
corresponding detection percentage in control samples was
22% , while 60% of patients with chronic inflammatory
bowel disease were also positive; however, a significant
difference in mRNA levels was observed between control and
cancer patient blood samples (85). The studies investigating
CK20 expression to date are summarized in Table III.

In conclusion, given the absence of the ‘perfect’ molecular
marker, CK20 together with CEA mRNA are the two markers
most frequently used for CRC. The use of CK20 is in many
cases hampered by its detection in nonmalignant samples,
while background expression has been reported in
granulocytes (86). Nevertheless, CK20 is a marker
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characterized by great sensitivity, whereas its specificity can
be improved by careful experimental design and its use in
combination with other markers.

Cytokeratin 19 (CK19)

CK19 also belongs to the intermediate filament protein family
and is expressed in cells of epithelial origin. It is found in the
periderm, a layer that envelopes the developing epidermis.

CK19 has been used as a molecular marker in a variety of
studies using RT-PCR; a large number of publications report
the expression of CK19 in the peripheral blood of prostate,
breast and colorectal cancer patients. Nonetheless, there have
been serious questions raised concerning its specificity; the
observed false-positive results can result from amplification of
two known CK19 pseudogenes (50, 87), illegitimate
transcription in hematopoietic cells (88) or, as mentioned
above, epithelial cell introduction into the circulation during
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Table II. Results from studies detecting CTCs by examining the expression of CEA mRNA.

Number of patients Positive
included Results

Method Sample CRC Patients Healthy CRC Patients Healthy Correlation Reference
patients with volunteers Patients with volunteers

benign benign
diseases diseases

Nested RT-PCR PB 51 18 40 69% - 5% Stage (71)

IME, multiplex PCR PB 84 32 41 63% for either marker, - - (138)
for CEACAM5 and 38% for both
CEACAM7

RT-PCR PB 19 15 52.6% - Stage (139)

Nested RT-PCR Plasma 53 25 32% 4% Serum CEA and (91)
CEA protein

Real-time PCR PB 36 10 Significantly higher 50% below Stage (73)
expression in Dukes’ D detection limits

Real-time PCR PB, PLF, 39 7 15% before
MVB 26% after resection - Clinical outcome (57)

Real-time PCR, PB, tissue 80 98 82.6% detection - Stage & (92)
Membrane array 82.5% overexpression LN metastasis

Semi-quantitative PB 33 - 26 88% - 92% (93)
RT-PCR,
Southern blot

Real-time PCR, IHC PB 20 (with 20 5% preoperatively, 25% (140)
liver 65%

metastases) postoperatively

Nested RT-PCR PB 79 8 16 34% 25% 6% Serum CEA, tumor size, (141)
LN or liver metastases

Real-time PCR PB 129 13 45 86% - 83.7% (142)

Real-time PCR PB, TDB 167 10 25 6/167 in PB samples, CEA and/or CK 20 positivity (143)
19/167 in TDB samples correlated with stage,

depth of invasion, LN
and liver metastases

CRC, Colorectal cancer; PB, peripheral blood; PLF, peritoneal lavage fluid; MVB, mesenteric venous blood; IME, immunomagnetic enrichment; LN,
lymph nodes; CEACAM, carcinoembryonic antigen-related cell adhesion molecule.
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Table III. Results from studies detecting CTCs by examining the expression of CK 20 mRNA.

Number of patients Positive
included Results

Method Sample CRC Patients Healthy CRC Patients Healthy Correlation Reference
patients with volunteers Patients with volunteers

benign benign
diseases diseases

RT-PCR PB 57 14 42.1% - LN metastasis, survival (81)

RT-PCR PB, BM 30 13 16 9/30 in PB 4/13 3/16 (144)
9/19 in BM

RT-PCR PB, PVB, 58 12 52.6% Stage, survival (80)
BM

RT-PCR PB, MB 35 10 2/31 in PB - Survival (83)
6/35 in MB

IME, PB 40 10 10 72.5% -82.5% 0/10-1/10 - Stage, tumor diameter, (145)
Real-time PCR LN& liver metastases

RT-PCR PB, tissue 25 12 12/25 in PB, 1/12 (84)
8/9 CRC biopsies,

9/10 liver metastases

IME, PB 42 with 15 37 58% of 60% 22% , (85)
Real-time PCR localized, localized, significantly

40 with 55% of lower
metastatic metastatic CRC levels from

CRC patients

RT-PCR PB 72 30 52.8% 6.7% (146)

Real-time PCR PB, MB, 39 7 10/39 - Clinical (57)
PLF outcome

Real-time PCR PB 20 20 2/20 preoperatively, 6/20 (140)
5/20 postoperatively

RT-PCR PB, BM, 10 18 PB 11 4/10 in PB 3/18 0/11 (147)
tissue & 13BM 12/12 in primary in PB in PB

& 5/5 in 3/13
metastatic tissue in BM

RT-PCR, PB 12 35 1/12 4/35 (96)
Southern blot

Real-time PCR PB, tissue 129 13 45 88.4% 84.6% (of (142)
patients with

benign
diseases &

healthy
volunteers)

RT-PCR PB, BM 142 PB 55.6% in PB and Stage (148)
samples, 33% in BM without
127 BM adjuvant treatment,
samples 40% in PB and

16.7% in BM
with adjuvant

treatment
Table III. continued



blood sampling (89). Furthermore, it has been suggested that
increased secretion of cytokines can induce the transcription of
tissue-specific genes in hematopoietic cells, as implied by the
detection of CK19 mRNA in hematological malignancies (90).

Most of the studies investigating CK19 expression in CRC
do so by combining its use with other markers, most
commonly with CEA and CK20 (82, 83, 91-96). The results
from these studies are conflicting, as in some no expression
in reference samples was observed (82, 83) and in others the
specificity was lower as CK19 is also present in benign
disease and healthy donor blood (91-96).

Guanylyl Cyclase C (GCC)

GCC is a brush border membrane receptor, selectively
expressed by intestinal epithelial cells from the duodenum to
the rectum, including normal intestinal and colorectal cancer
cells, but not by normal extraintestinal tissues (97). GCC
expression has been observed in normal intestinal cells as well
as in all cases of benign diseases and cancer of the
gastrointestinal tract, including liver metastases, but not in
normal esophageal cells, or cells of the stomach (98). GCC
binds the endogenous peptides guanylin and uroguanylin, as
well as the bacterially derived heat-stable enterotoxin (ST) (99-
101); binding of the ligand to the receptor results in intracellular
cGMP elevation, chloride and eventually water secretion (102,
103). The physiological role of GCC remains unclear; it is
known that binding of ST causes diarrhea, while it is
hypothesized that binding of guanylin and uroguanylin plays a

role in the regulation of fluid and electrolyte homeostasis in the
intestine (104). Additionally, it has been found that GCC
through binding to ST and uroguanylin is a tumor suppressor, as
its binding to these ligands results in inhibition of enterocyte
and colorectal cancer cell proliferation (105, 106).

GCC mRNA has been detected in all cases of CRC
examined. It has been reported that GCC mRNA can indeed
show histologically undetectable occult lymph node
metastases of CRC and lymph node positivity for GCC mRNA
is associated with recurrence and mortality (107, 108).
Carrithers et al., applying RT-PCR and northern blot found
that GCC was expressed in the blood of some Dukes’ B and
all Dukes’ C and D patients, while no expression was observed
in control or noncancerous blood (97). Bustin et al., using
real-time RT-PCR, examined the expression of GCC, CK20
and CK19 in blood samples taken from 27 CRC patients and
21 healthy volunteers; GCC was expressed in 80% of patient
samples and in only 1 sample from healthy volunteers, in
contrast to the other two markers that were largely expressed
in control samples (109). It has been reported that GCC is
illegitimately expressed in peripheral blood CD34+ progenitor
cells, a problem that has been observed for other markers as
well, including CK20 and CEA; however, the authors showed
that depletion of CD34+ cells, or a decrease of the amount of
RNA analyzed to ≤0.8 μg can eliminate false-positives (110).
In general, GCC is considered to be a very promising marker
for CRC staging; the specificity exhibited in GCC mRNA
expression could provide the answer to the frequently
observed problem of false-positives (109, 110).
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Table III. continued

Number of patients Positive
included Results

Method Sample CRC Patients Healthy CRC Patients Healthy Correlation Reference
patients with volunteers Patients with volunteers

benign benign
diseases diseases

Real-time PCR, PB, tissue 80 98 79.2% detection Stage & (92)
Membrane array 78.8% LN metastasis

overexpression

RT-PCR, PB 35 22 14/22 with metastatic - (149)
Southern blot CRC, 1/13 with

non-metastatic CRC

RT-PCR PB 58 CRC, 24 12 24/58 with CRC, - - Stage & timing of (150)
7 with 6/7 with hepatic blood collection
hepatic metastases

metastases

CRC, Colorectal cancer; PB, peripheral blood; BM, bone marrow; PVB, portal vein blood; PLF, peritoneal lavage fluid; IME, immunomagnetic
enrichment; LN, lymph nodes.



Epidermal Growth Factor Receptor (EGFR)

EGFR is generally known to exert control over normal cell
growth and cancer pathogenesis in humans. It is normally
expressed in a variety of cell types, including epithelial and
mesenchymal cells. Deregulation of the EGFR/EGF system
seems to be involved in stomach cancer development through
induction of uncontrolled proliferation of the gastric mucosa
cells. EGFR is used as a tumor marker in various types of
cancer, including breast, stomach and colorectal. Most
studies refer to EGFR as a specific marker with limited
sensitivity. For instance, in a study using nested RT-PCR,
12.5% of CRC patient blood samples exhibited expression
of EGFR, while none of the 23 healthy volunteer samples
were positive (111). This high specificity observed is in
agreement with the study of Giacomelli et al. who observed
no EGFR expression in control samples, when 62% of
patients were positive. The authors found a correlation of
EGFR expression with the stage of the disease and tumor
relapse (112). Gradilone et al. also detected no EGFR
expression in control samples examined, whilst EGFR
mRNA was expressed in 25% of patients (96). De Luca et
al. found EGFR expression in 10% of healthy volunteers and
in 73% of CRC patient samples; they also observed
accordance between EGFR expression and cancer stage (94).

Human Telomerase Reverse Transcriptase (hTERT)

Telomerase is an enzyme responsible for the length
conservation of chromosome telomeres and hence for the
immortalization of cells. The catalytic core of telomerase is
composed of an RNA subunit (hTR) and a protein subunit
(hTERT) that catalyses the reaction for telomere synthesis
(113). Although the hTR subunit is expressed independently
of telomerase activation, hTERT expression is indicative of
the fact that telomerase is active (114, 115). In general, there
is controversy as to whether immortalized cells express
hTERT. This disagreement lies in the distinction between
two cell types: In the first category, which includes
fibroblasts, hTERT is expressed as this expression is
sufficient to immortalize the cells (116); the second category,
however, requires that cell growth should be inhibited
through other pathways so as the cells can become immortal.
In the latter group, telomerase activity is undetectable and
the telomere length is preserved through a telomerase-
independent mechanism known as alternative lengthening of
telomeres (117, 118).

hTERT is expressed in normal tissues as well, including
dividing lymphocytes and normal intestinal epithelium (119-
122). As far as the use of hTERT as a molecular marker is
concerned, there is general agreement about its detection in
healthy donors. Still, when real-time PCR is applied, hTERT
is clearly shown to be expressed at higher levels in patient

samples compared to normal controls. Accordingly, there is
conformity with reference to the suitability of hTERT as a
tumor marker when quantitative analysis is implemented (123-
126). Myung et al., using RT-PCR in biopsies from 34
patients with CRC, 21 patients with ulcerative colitis and 11
healthy volunteers, detected hTERT mRNA in 94% , 57% and
45% of samples, respectively (127). Lledo et al. examined 50
CRC and 50 normal plasma samples by real-time RT-PCR;
hTERT mRNA was detected in all samples, although the
median expression in patients was elevated compared to
healthy controls (128). Niiyama et al., analyzing 140 CRC
and 140 normal tissue specimens as well as 20 adenomas by
real-time RT-PCR, observed higher levels of hTERT mRNA
expression in carcinomas compared to adenomas or adjacent
tissues (124). The aforementioned results are in complete
agreement with a recent study applying real-time RT-PCR to
53 pairs of CRC and adjacent normal tissues as well as 9
adenomas (125).

Future Perspectives

The currently implemented staging system for colorectal
cancer is the TNM system and although often updated it still
fails to discriminate between stages, specifically between
stages II and III. This drawback of the staging system can
lead to employing adjuvant treatment for patients that do not
need to be treated and vice versa, since although patients
with stage III CRC receive therapy, this is not the rule for
stage II patients (129). In addition, as the TNM system lacks
credibility concerning the discrimination between stages II
and III, it is probable that it fails to predict disease outcome
within stages (4).

Although CRC is one of the most common types of cancer
encountered, the use of currently available screening
methods such as colonoscopy is not as common as would be
anticipated. People presenting high risk for developing CRC,
for instance people with personal or familial CRC history,
are expected to undergo examination on a regular basis; still,
several hindrances are encountered, with the most prominent
being the patient discomfort for the procedure (6). The
treatment of choice for CRC includes surgery and
implementation of adjuvant therapy. However, as stated
above, a large percentage of patients develop distant
metastases after the resection of the primary tumor.

All the aforementioned obstacles emphasize the need for
the introduction of a new staging system which can
minimize the problems continually encountered; the use of
molecular markers is very promising in this direction. Every
assessable biochemical parameter can serve as a molecular
marker, e.g. an oncogene, an enzyme or a hormone.
Molecular markers are present and can be measured in
tumor tissues or the lymph nodes and in occult tumor cells
in peripheral blood, bone marrow and other body fluids
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(130). For all the mentioned reasons, it is quite clear that a
staging system based on molecular parameters shows great
potential. The use of cancer markers would prove valuable
in cancer prognosis; defining the outcome of a certain
cancer case, in terms of recurrence and survival is a
necessity in cancer medicine. Moreover, as stated earlier,
defining administration of adjuvant therapy is essential;
observation of individual patients’ responses to therapy is
also of great significance.

Identifying occult metastases can be an excellent weapon
against cancer, since metastases can occur as an early event
in cancer development, or as a postsurgical event. Ito et al.,
using real-time RT-PCR, found elevated levels of CEA
mRNA in preoperative blood samples from 99 patients with
CRC compared to postoperative samples from the same
patients; they also observed a correlation between CEA
positivity and reduced disease-free survival (131).
Examining bone marrow and blood samples from patients
undergoing hepatic metastases resection, Koch et al. found
that detection of occult tumor cells in intraoperative blood
and preoperative bone marrow samples can be an
independent prognostic factor for tumor relapse (132). The
use of molecular markers has provided the ability for
predicting development of lymph node metastases in
histopathologically negative lymph nodes, as described above
(41, 79, 107, 108, 133).

Conclusion

Despite the controversial results of the studies dealing with
the molecular detection of disseminated CRC cells, there is
increasing interest in the use of molecular staging in CRC
prognosis and treatment. The discrepancies observed in the
studies emphasize the need for the establishment of a
universally applied standardized method that would provide
comparable results. For that purpose, care concerning several
parameters that affect the efficiency of a method should be
taken. The choice of molecular markers is one of the most
prominent; given the fact that, at least in the case of CRC,
there is no such thing as the perfect marker, the best choice
would include a combination of sensitive and specific
markers in a multimarker assay in order to achieve maximum
clinical relevance. In addition, the use of quantitative
methods and the implementation of enrichment techniques
are proposed. As far as false-positive or -negative results are
concerned, cautious sample preparation should reduce
contamination; careful design of primers can help to avoid
amplification of genomic sequences or pseudogenes; use of
internal controls can provide assurance for RNA quality;
time of performing PCR based protocols, vis-à-vis surgery
and multisampling, can overcome intermittent shedding, thus
defining the suitable timing of blood sampling which can
solve the problem of cell dissemination during surgical

intrusion. Future studies of large cohort size and long-term
follow-up of the patients included are mandatory so as to
evaluate the clinical relevance of the detection of circulating
colorectal cancer cells, based on PCR protocols which will
involve multiple tumor markers.

In conclusion, the use of molecular markers in cancer
medicine is still evolving and it is clear that there is much yet
to be clarified. It is evident that we stand at the beginning of
a new era for cancer prognosis, disease staging and treatment
choice. Further analyses will reveal the potential of molecular
diagnostics and allow their routine use in clinical practice.
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