
Abstract. Colorectal cancer is a major health problem
worldwide. Aberrant activation of the Wingless-type mouse
mammary tumour virus integration site family (Wnt)/β-catenin
signalling pathway due to mutation of adenomatous polyposis
coli (APC), β-catenin (CTNNB1) or AXIN genes is the most
common and initial alteration in sporadic colorectal tumours.
Numerous epidemiological and experimental studies have
indicated a protective action of vitamin D against colorectal
cancer. Previous work has demonstrated that the most active
vitamin D metabolite, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3)
inhibits β-catenin transcriptional activity by promoting vitamin
D receptor (VDR) binding to β-catenin and the induction of E-
cadherin expression. Recently, 1,25(OH)2D3 has been shown
to distinctly regulate two genes encoding the extracellular Wnt
inhibitors DICKKOPF-1 and DICKKOPF-4 (DKK-1, DKK-4).
By an indirect transcriptional mechanism, 1,25(OH)2D3
increases the expression of DKK-1 RNA and protein, which
acts as a tumour suppressor in human colon cancer cells
harbouring endogenous mutations in the Wnt/β-catenin
pathway. In contrast, 1,25(OH)2D3 represses DKK-4
transcription by inducing direct VDR binding to its promoter.
Unexpectedly, DKK-4 is a target of the Wnt/β-catenin pathway
and is up-regulated in colorectal tumours, and it has been

shown to increase cell migration and invasion and to promote
a proangiogenic phenotype. Together, these results show that
1,25(OH)2D3 exerts a complex set of regulatory actions
leading to the inhibition of the Wnt/β-catenin pathway in colon
cancer cells that is in line with its protective effect against this
neoplasia.

Vitamin D and Colon Cancer – Brief Overview

Colorectal cancer is the second most frequent malignancy
and the second leading cause of death from cancer in
Europe, with 412,900 cases diagnosed and 207,400 deaths in
2006. By sex, it constitutes the second most frequent tumour
in women after breast cancer and the third in men after lung
and prostate tumours (1).

There is strong evidence supporting the hypothesis that
vitamin D may reduce the risk of colorectal cancer (2). It is
now becoming clear that adult vitamin D deficiency is
endemic and epidemiological data suggest a link between
UV-B exposure or vitamin D deficiency and cancer (3).
Several studies have recently revealed an inverse relationship
between 25-hydroxyvitamin D3 (calcidiol, 25(OH)D3) levels
and colorectal cancer mortality (4-7), showing that the
improvement of vitamin D status may reduce the risk and the
incidence of cancer (8-10). The involvement of calcium in
this effect is unclear.

The majority of the pleiotropic actions of 1α,25-
dihydroxyvitamin D3 (calcitriol, 1,25(OH)2D3), the most
active vitamin D metabolite, are mediated by its nuclear
receptor (VDR), a ligand-regulated transcription factor and a
member of the nuclear receptors superfamily, that binds to
specific sequences (vitamin D response elements, VDRE) in
its target genes and modulates their expression (11, 12).
VDR is expressed in nearly all human tissues and although
initially considered to be exclusively nuclear, is now believed
to shuttle constantly between the nucleus and the cytoplasm
upon ligand activation.
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In addition to its classical actions on the normal
development and mineralization of a healthy skeleton,
1,25(OH)2D3 suppresses tumour progression by restraining
cell proliferation and inducing cell differentiation and
apoptosis in a large variety of tumour cells, including cells of
the intestine (13-16). The predominant effect of
1,25(OH)2D3, be it pro-differentiative, anti-proliferative or
pro-apoptotic, depends largely on the differentiation status,
the VDR expression level and the cancer cell type (17).
Briefly, cell-cycle arrest may result from the induction of
cyclin-dependent kinase inhibitors such as p21WAF1/CIP1 and
p27KIP1 and the repression of cyclin D1, or direct induction of
alpha growth arrest and DNA-damage-inducible α
(GADD45α), whereas the inhibition of B-cell
CLL/lymphoma 2 (BCL2) and the activation of BCL2-
associated X (BAX) and BCL2-antagonist/killer (BAK)
contribute to the apoptosis sensitization (reviewed in (12,
14)).

High VDR expression has been reported to be associated
with a favourable prognosis in colorectal cancer (18, 19).
However, VDR expression is lost during tumour
dedifferentiation, which correlates with the up-regulation of
SNAIL1, a transcriptional repressor of VDR (20, 21). This
may help to explain the loss of responsiveness to the
antitumour effects of 1,25(OH)2D3 and its analogues in vitro
and in vivo, and therefore be used as an indicator of patients
who are unlikely to respond to this therapy (reviewed in (22)).

Many genes are regulated by 1,25(OH)2D3 either directly,
through VDR binding to their regulatory regions, or indirectly,
via intermediate genes, or by affecting other pathways such as
Wnt/β-catenin (see below). The blockade of β-catenin
transcriptional activity and the induction of E-cadherin, a
major contributor to intercellular adhesion that is lost in the
adenoma to carcinoma transition, must be important for the
phenotypic change of tumour cells towards a normal epithelial
phenotype induced by 1,25(OH)2D3 (13, 23).

The Wnt/β-catenin Signalling Pathway

The Wnts comprise a large family of highly conserved growth
factors that are responsible for important developmental and
homeostatic processes throughout the animal kingdom (24).
Secreted Wnt proteins may bind to a plethora of potential
Wnt membrane receptors which include Frizzleds, low
density lipoprotein receptor-related proteins (LRPs), RYK
receptor-like tyrosine kinase (RYK)/Derailed, retinoid-related
orphan receptor (Ror)-2, and FRL1/Cripto, and elicit different
types of intracellular responses. In the best understood Wnt/β-
catenin or Wnt canonical signalling pathway, Wnt binding to
Frizzled and LRP5/6 co-receptors induces β-catenin protein
stabilization and entry into the nucleus where it modulates the
transcription of target genes (Figure 1). In the absence of Wnt
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Figure 1. Extracellular inhibitors of the Wnt/β-catenin pathway. Wnt
signalling leads to stabilization of cytosolic β-catenin through the
inactivation of a multiprotein complex which phosphorylates
β-catenin and targets it for degradation by the proteasome. Stabilised
β-catenin enters the cell nucleus and associates with LEF/TCF
transcription factors, modulating the transcription of Wnt-target
genes. There are two types of Wnt/β-catenin pathway extracellular
inhibitors: on one hand, secreted Frizzled-related proteins (SFRPs),
Wnt inhibitory factor-1 (WIF-1), and Xenopus Cerberus that bind
directly to Wnt factors and block their interaction with Frizzled
proteins; and on the other hand, DKK -1 and -4, and in some cases
DKK-2, and Wise that bind to LRP5/6 and block Wnt signal
transduction by preventing Wnt-Frizzled-LRP interaction and/or
inducing LRP endocytosis in the presence of the DKK co-receptors
Kremen proteins.



ligands, free β-catenin is phosphorylated by casein kinase 1
(CK1) and glycogen synthase kinase 3β (GSK3β) in a
destruction complex that contains the scaffolding proteins
axin and APC (Figure 1). Phosphorylated β-catenin is
recognized by the E3 ubiquitin ligase β-transducin repeat
containing protein (β-TrCP) and targeted for proteasomal
degradation. Wnt binding to Frizzled/LRP induces the co-
clustering of receptors in LRP-signalosomes, which leads to
the phosphorylation of LRP by GSK3β and CK1γ (25, 26).
Axin docking to the phosphorylated residues in LRP
promotes the inactivation of the destruction complex and the
accumulation of β-catenin. Then a population of β-catenin
molecules translocates into the cell nucleus where it partners
with members of the lymphoid enhancer factor/T-cell factor
(LEF/TCF) family of transcription factors to activate the
transcription of target genes (Figure 1). Numerous TCF or
Wnt target genes have been identified in diverse biological
systems. For a comprehensive, updated overview of TCF
target genes, the reader is referred to the Wnt homepage
(http://www.stanford.edu/~rnusse/wntwindow.html).

Wnt reception is modulated by secreted extracellular Wnt
antagonists which can be divided into two functional classes:
those that bind directly to Wnts (secreted Frizzled-related
proteins (SFRPs), Wnt inhibitory factor-1 (WIF-1), and
Xenopus Cerberus), thereby altering their ability to bind to
the Wnt receptors; and those that inhibit Wnt signalling by
binding to LRP5/6 (Dickkopf (Dkk) proteins, and Wise) (27)
(Figure 1). The Dickkopf family encodes secreted proteins of
255-350 aminoacids and consists of four main members in
vertebrates (Dkk-1 to -4) (28). Dkk-1, the most widely
studied member of this family, and Dkk-4 proteins act as pure
inhibitors of Wnt/β-catenin signalling. In contrast, Dkk-2 and
Dkk-3 can activate or inhibit the pathway depending on the
cellular context (28-30). The inhibitory effect of Dkks may
be brought about by two mechanisms. First, Dkk binding to
LRP5/6 can directly block the LRP-Wnt interaction (31). And
second, Dkks can form a ternary complex with LRP5/6 and
another class of high affinity Dkk receptors named Kremen
(Krm1/2), which induces rapid endocytosis and removal of
LRP56 from the plasma membrane, thereby presumably
blocking Wnt/β-catenin signalling (32, 33).

Abnormal Wnt/β-catenin signalling is associated with
many human diseases, including cancer, osteoporosis,
degenerative disorders and with aging (34, 35). Mutations
that strongly and constitutively activate the Wnt/β-catenin
pathway are involved in the initiation and progression of
several types of cancer. The best-known example of a disease
involving a Wnt pathway mutation that produces tumours is
familial adenomatous polyposis (FAP), an autosomal,
dominantly inherited disease in which patients inherit one
defective APC allele (36, 37) and as a consequence develop
large numbers of colon adenomas, or polyps, in early
adulthood. Polyps are benign, clonal outgrowth of epithelial

cells in which often the second APC allele is later inactivated
causing some of them to progress into malignant
adenocarcinoma. Loss of both APC alleles occurs in the large
majority of sporadic colorectal carcinomas (38) leading to
inappropriate stabilization of β-catenin. In rare cases where
APC is not mutated, AXIN2 is mutant (39) or activating
mutations in CTNNB1 (β-catenin) are found (40).

Functional Interplay between 1,25(OH)2D3 and
the Wnt/β-catenin Pathway

Results from our group have demonstrated that 1,25(OH)2D3
and several analogues can antagonize canonical Wnt signalling
in human colorectal cancer cells (13). In SW480-ADH cells,
1,25(OH)2D3 inhibits the transcriptional activity of β-catenin
by two mechanisms. Firstly, it rapidly increases the amount of
VDR bound to β-catenin, thus reducing the interaction
between β-catenin and TCF4. Therefore, 1,25(OH)2D3
modulates LEF/TCF target genes in the opposite way to
β-catenin. This effect is independent of E-cadherin, as it takes
places in LS-174T cells that lack E-cadherin expression (13).
Secondly, the reduction of β-catenin transcriptional activity
caused by 1,25(OH)2D3 is accompanied by the nuclear export
of β-catenin and its relocalization to the plasma membrane, an
effect that has recently been shown to be abolished in vitro
and in vivo by SNAIL1 (41). The nuclear export of β-catenin
is concomitant to E-cadherin protein induction. These results
indicate that 1,25(OH)2D3 down-regulates the Wnt/β-catenin
signalling pathway, which may control the phenotype of colon
epithelial cells. Upon β-catenin stabilization in colon cancer
cells, due to its own mutation or that of APC or AXIN, binding
to VDR may buffer its stimulatory action on TCF4 target
genes, a protective effect which can be lost along with VDR
expression during malignant progression. Additionally, we
found that nuclear β-catenin transiently potentiates VDR
transcriptional activity before β-catenin moves out of the
nucleus and/or VDR is extinguished (13).

Shah and colleagues have confirmed our results and showed
that the effects of β-catenin on VDR activity were due to
interaction between the activator function-2 (AF-2) domain of
the VDR and the C-terminal region of β-catenin (42). Moreover,
acetylation of the β-catenin C-terminal region differentially
regulates its ability to activate LEF/TCF or VDR-regulated
promoters and the mutation of a specific residue in the AF-2
domain, which renders a VDR that can bind hormone, but is
transcriptionally inactive in the context of classical co-activators,
still allows interaction with β-catenin and ligand-dependent
activation of VDRE-containing promoters. Interestingly, VDR
antagonists, which block the VDRE-directed activity of the VDR
and recruitment of classical co-activators, do allow VDR to
interact with β-catenin, which suggests that these and perhaps
other ligands would permit those functions of the VDR that
involve β-catenin interaction (42).

Pendás-Franco et al: Vitamin D Antagonizes Wnt Signalling (Review)

2615



In the skin, the canonical Wnt pathway controls both
epidermal stem cell renewal and lineage selection (43-45).
Likewise, VDR is essential for adult epidermal homeostasis
(46) and mutations in the VDR gene in humans result in
familial 1,25(OH)2D3-resistant rickets, which can be
associated with alopecia (47). In vivo, the expression of a
mutant VDR that can bind β-catenin, but not 1,25(OH)2D3
rescues alopecia in Vdr null mice, demonstrating ligand-
independent functions of VDR in the skin (48). Recently,
two independent groups have shown that the absence of VDR
impairs canonical Wnt signalling in keratinocytes and leads
to the development of alopecia (49, 50). Cianferotti and
colleagues found a gradual decrease in the size of the stem
cell compartment in Vdr–/– epidermis and this correlated with
a failure of β-catenin to induce proliferation (49). In
contrast, Palmer et al. saw no evidence that VDR loss
impaired the proliferative response to β-catenin (50, 51).
Alternatively, they have demonstrated that β-catenin is a co-
activator of VDR in epidermal keratinocytes and that a
number of Wnt target genes in the skin are likely to be
regulated through VDREs. For these researchers, the primary
role of the VDR/β-catenin interaction in the skin is to
promote the transcription of genes associated with
differentiation of the hair follicle lineages. Constitutive
activation of the Wnt pathway leads to ectopic hair follicle
formation and, subsequently, to a type of benign tumour
called trichofolliculloma. In the presence of the
1,25(OH)2D3 analogue EB1089 (Seocalcitol), the
differentiation of ectopic hair follicles is stimulated and
trichofolliculloma development is blocked. Conversely, in the
absence of VDR, differentiation of ectopic follicles is
inhibited and the tumours that develop in response to β-
catenin are undifferentiated basal cell carcinomas (50). Thus,
vitamin D analogues may be beneficial in the treatment of
tumours in which the canonical Wnt pathway is activated
inappropriately. An interesting corollary to this work is that
β-catenin can no longer be considered as chiefly an activator
of LEF/TCF target genes. The interaction of β-catenin with
other transcription factors, such as VDR, is likely to
contribute to the pleiotropic effects of the Wnt pathway,
which has different target genes in different cell types.

The skeleton is also a direct target of vitamin D action,
which modulates the proliferation of osteoblast precursors,
their differentiation into mature osteoblasts and their
functional activity (52). Some of these effects of
1,25(OH)2D3 are reminiscent of those orchestrated by the
Wnt signalling pathway (53). Indeed, the Wnt co-receptor
LRP5 is now known to play a particularly important role in
bone formation such that loss of this component results in a
reduction in osteoblast number, a delay in mineralization and
a reduction in peak bone mineral density (54, 55).
Interestingly, it has recently been reported that the LRP5
gene is a direct transcriptional target of 1,25(OH)2D3 (56)

highlighting the existence of a functional interaction between
the Wnt and 1,25(OH)2D3 pathways in this tissue.

1,25(OH)2D3 Induces the Expression of
DICKKOPF-1 Gene

Dickkopf (Dkk)-1, the founding member of the Dkk gene
family, was originally identified as an embryonic head
inducer and Wnt antagonist in Xenopus (57). Since then,
Dkks have been identified in other vertebrates including
humans as well as in invertebrates such as Dictyostelium,
cnidarians, urochordates and ascidians (58-61), but not in
Drosophila or Caenorhabditis elegans. Thus, Dkks are an
evolutionarily ancient gene family that was already present
in the last common ancestor of cnidarians and bilaterians and
which was probably secondarily lost during evolution in
protostomes. A distant Dkk family member, soggy (sgy; also
called Dickkopf-like protein 1, Dkkl1), has been described in
vertebrates (61) and shows unique homology to Dkk3.

Human DKK-1 seems to have wide and complex effects
on cell proliferation and differentiation, it induces the
proliferation of human adult bone marrow stem cells (62)
and inhibits osteoblastic differentiation (63) which is in line
with the finding that high circulating levels of DKK-1 in
patients with multiple myeloma are associated with
osteolytic lesions (64). Moreover, glucocorticoids, which are
associated with bone loss and osteoporosis (65), enhance
DKK-1 expression in osteoblasts (66). In contrast, DKK-1
expression promotes preadipocyte differentiation (67), and
in the mouse small intestine and colon, forced Dkk-1
expression inhibits the proliferation of the crypt progenitor
cells that is induced by the transcriptional activity of β-
catenin/TCF (68, 69). Additionally, human DKK-1 was
reportedly induced by p53 (70), although in another study
DKK-1 was induced by DNA damage and sensitized to
apoptosis in a p53-independent manner (71).

Thus, DKK-1 seems to have distinct effects depending on
the cell type, which agrees with the different effects of
Wnt/β-catenin signalling. While Wnt/β-catenin promotes
proliferation and blocks differentiation in colon epithelial
cells, in mesenchymal precursors it stimulates
osteoblastogenesis and represses differentiation to alternative
cell types, such as adipocytes (72, 73). Also, the role of Wnt
signalling in melanoma cells is controversial as it probably
depends upon a regulated, temporal expression pattern of
Wnts. Expression at a particular time will lead a cell to
tumourigenesis and invasion, while expression at other times
may have the opposite effect, resulting instead in cellular
apoptosis (74).

In breast cancer, the role of DKK-1 is controversial. It has
been reported that DKK-1 is expressed in hormone-resistant
breast tumours and thus it has been proposed as a new
prognosis marker (75). On the other hand, Mikheev et al.
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described tumour suppression in breast carcinoma cells
mediated by DKK-1. Ectopic expression of DKK-1 in these
cells was associated with increased phosphorylation and
degradation of β-catenin and inhibition of cyclin D1 (CCND1)
and c-MYC oncogenes (76). Likewise, the overexpression of
DKK-1 in hepatocellular carcinoma cell lines down-regulates
CCND1 and c-MYC, so inhibiting cell growth and migration
during the metastatic process (77). Moreover, DKK-1 is down-
regulated by the neural (n)-MYC (MYCN) oncogene and
inhibits neuroblastoma cell proliferation (78). The DKK-1-
inducible neuroblastoma IMR32-DKK-1 cell line showed
impaired proliferation upon DKK-1 expression. Surprisingly,
DKK-1 expression did not inhibit the canonical Wnt/β-catenin
pathway, suggesting a role of DKK-1 in an alternative route
(78). Also in lung and oesophageal carcinomas, DKK-1 has
been proposed as prognostic and a serological marker. Gene
expression profiling of both carcinomas has revealed that
DKK-1 was highly transactivated in the majority of lung
squamous cell carcinomas and serum DKK-1 levels were
higher in lung and oesophageal cancer patients than in healthy
controls (79). In conclusion, the antitumoural activity of
DKK-1 is strictly dependent on the tissue and cancer type.

Curiously, over-expression of DKK-1 has also been
associated with neuronal degeneration in the brain of
Alzheimer’s patients. In this case, the cascade was triggered
by the β-amyloid peptide which up-regulates TP53.
Subsequently, DKK-1 expression was enhanced and the
Wnt/β-catenin pathway inhibited (80).

We and others have observed that the transcription of the
DKK-1 gene is enhanced by β-catenin/TCF acting on several
sites in the promoter region (81-83). Our group reported also
that DKK-1 is down-regulated in colon cancer (82),
indicating the loss of a negative feedback control of the
Wnt/β-catenin pathway in this neoplasia. We also showed
that DKK-1 down-regulation occurs, at least in part, due to
promoter methylation, which is specifically found in 25% of
advanced, less differentiated tumours (Dukes’ stages C and
D) (84). Interestingly, DKK-1 seems to have antitumoural
effects independently of the antagonism of β-catenin/TCF
transcriptional activity in H28 and MS-1 mesothelioma,
HeLa cervical, and JAR and JEG3 human placental
choriocarcinoma cancer cells (23, 85, 86). Activation of the
Jun N-terminal kinase (JNK) pathway is involved in some
of these tumour suppressor effects (23, 85). Also in DLD-1
colon cancer cells, which bear a truncated APC gene and so
have a constitutively active Wnt/β-catenin pathway,
transfection of DKK-1 decreases cell growth in vitro and
tumour formation in immunodeficient mice (84). These data
indicate that DKK-1 can inhibit tumourigenesis by different
mechanisms. Nevertheless, further studies will be necessary
to reveal whether DKK-1 may be acting in ways other than
inhibiting the canonical Wnt signalling pathway or holding
back the pathway in an unknown manner.

The gene expression profile associated with exposure of
human SW480-ADH colon cancer cells to 1,25(OH)2D3 has
shown that numerous genes are modulated by this hormone,
including many involved in transcription, cell adhesion, DNA
synthesis, apoptosis, redox status, and intracellular signalling
(23). Among them, DKK-1 seemed to be up-regulated by
1,25(OH)2D3. We have validated that 1,25(OH)2D3 increases
the level of DKK-1 RNA and protein in SW480-ADH cells.
This effect is slow and depends on the presence of a
transcription-competent VDR (87). The regulation of DKK-
1 expression by 1,25(OH)2D3 is transcriptional, but indirect.
The slow kinetics of DKK-1 RNA accumulation and the lack
of VDR binding to the promoter region that is activated by
the hormone, together with the absence of effect on the half-
life of DKK-1 RNA and the requirement of VDR
transcriptional activity strongly suggest that 1,25(OH)2D3
up-regulates the transcription of DKK-1 via intermediate
proteins encoded by early response genes that remain
uncharacterized. The induction of DKK-1 by 1,25(OH)2D3
constitutes a third mechanism by which this hormone
antagonizes the Wnt/β-catenin pathway. The existence of
several mechanisms of Wnt/β-catenin signalling antagonism
by 1,25(OH)2D3 reinforces the importance of this pathway
and of its regulation for the biology of the colonic
epithelium.

Another interesting finding is that DKK-1 is up-regulated
by ectopic E-cadherin in SW480-ADH cells and that a
blocking antibody against E-cadherin inhibits 1,25(OH)2D3-
mediated DKK-1 induction. These data strongly indicate that
the regulatory effect of 1,25(OH)2D3 is an indirect
consequence of the induction of the epithelial adhesive
phenotype (87).

The finding that DKK-1 expression is silenced by promoter
methylation in a subset of advanced, typically dedifferentiated
colorectal tumours and the association of DKK-1 with the
differentiated phenotype suggest the interesting hypothesis
that DKK-1 silencing is not only concomitant with, but also
plays a role in the dedifferentiation process. This may thus
explain the correlation between DKK-1 and VDR expression
in human tumours: VDR expression has been reported to be a
marker of differentiation in colon carcinoma cells (18, 88)
and is lost through colon cancer progression together with
that of E-cadherin in parallel to the up-regulation of SNAIL1
(20, 21, 41).

DICKKOPF-4 Induces a Malignant
Phenotype in Colon Cancer Cells and
is Repressed by 1,25(OH)2D3

DICKKOPF-4 (DKK-4) is the least studied and
characterized member of the DKK family. This gene was first
described by Krupnik and collegues in 1999 (61) but
information is limited in the scientific literature. Probably,
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one of the main reasons is that during adult life DKK-4 is
not expressed or its levels are very low. In fact, its pattern of
expression is unclear. Although Northern blot analysis of
several adult and fetal human tissues did not detect DKK-4
RNA, a survey of a human cDNA library panel by PCR with
specific primers generated products from libraries prepared
from cerebellum, activated human T-lymphocytes, lung and
oesophagus (61). Dkk-4 mRNA was also detected in the pre-
placodes in a murine model, being expressed at sites of
presumptive epithelial-mesenchymal interactions during
appendage morphogenesis including the dental lamina,
mammary gland, eccrine gland, and primary and secondary
hair follicles (89).

Interestingly, the expression of DKK-4 has also recently
been detected in some pathological processes such as
inflammation, cancer and squizophrenia. Aung et al. have
reported that the RNA level of DKK-4 was increased in 11
out of 44 (25% ) gastric cancer biopsies, even though they
only detected DKK-4 protein in 2 out of 151 (1.3% ) by
immunohistochemistry (90). In another study, significantly
higher expression of DKK-1 and DKK-4 RNA and protein
was detected in the distal squamous mucosa of the
oesophagus in oesophagitis patients compared to healthy
controls and patients with Barrett’s oesophagus. In this case,
the authors suggested that those genes might play a role in
the development of different injuries in response to
pathological gastro-oesophageal acid reflux (91). Also,
DKK-4 was the molecular marker that showed the highest
expression in microarray (46.9-fold increase) and
quantitative RT-PCR (138-fold increase) analyses in the
endometrium of Hong Kong Chinese women with
endometrial cancer (92). Moreover, DKK-4 RNA levels
were increased in patients with ulcerative colitis (93) and
also with colon cancer (94, 95). Finally, Proitsi et al.
identified single nucleotide polymorphisms (SNPs) in the
DKK-4 gene, which is located in genome regions previously
linked to schizophrenia, suggesting that DKK-4 might play
a role in this disease (96).

Regarding its biological activity, DKK-4 protein has been
described as an antagonist of Wnt/β-catenin signalling (33,
61) and has been shown to be transcriptionally induced by
this pathway (89, 95) as is DKK-1 (81-83) (Figure 2).
DKK-4 is a weaker Wnt inhibitor than DKK-1, although its
effect is increased if Kremen 2 is overexpressed ((33) and
our unpublished data). In apparent contradiction, DKK-4
inhibits the Wnt/β-catenin pathway and is overexpressed in
several pathological diseases including some types of cancer
(90-92, 94, 95). As stated above, we and others have found
DKK-4 RNA expressed in human colorectal tumours while
it was undetectable in normal adjacent tissue (94, 95). This
result contrasts with the common silencing of the DKK-4
gene in colon cancer cell lines that we and others (97) have
found and that may be related to cell culture conditions.

To investigate whether DKK-4 up-regulation in human
colon cancer could have functional implications for tumour
progression, we expressed DKK-4 ectopically in two human
colon cell lines, SW480-ADH, which expresses low levels
of the endogenous gene, and DLD-1, with undetectable
expression. Exogenous DKK-4 enhanced the migratory and
invasive potential in vitro of both cell lines. These effects
were partially inhibited by the transfection of DKK-4
siRNA oligonucleotides. Moreover, the migration and
morphogenetic capacity of primary human microvascular
endothelial cells (HMVEC) were robustly increased in the
presence of conditioned medium from DKK-4-expressing
cells or recombinant DKK-4 protein (95). The ability to
induce and sustain angiogenesis is essential for incipient
neoplasias to grow, and the capability for invasion enables
cancer cells to metastasise. Thus, although DKK-4 can act
as a Wnt inhibitor, these findings support new roles for this
protein in human colon cancer, probably inducing β-
catenin-independent actions during the progression of this
neoplasia.

Wnt antagonists other than DKK-4 are also up-regulated
and may contribute to tumourigenesis in different systems.
For example, SFRP4 is expressed in the stromal cells
surrounding endometrial and breast carcinomas, but is barely
detectable in the stroma of secretory or menstrual
endometrium (98). Moreover, the expression of SFRP1 and
SFRP2 is up-regulated in glioma-derived cell lines, and
SFRP2 promotes tumour growth in nude mice (99).
Additionally, SFRP1 induces angiogenesis in chick
chorioallantoic membranes and increases migration and
organization of endothelial cells into capillary-like structures
(100). Strong DKK-3 expression has been detected in tumour
endothelial cells of glioma, high-grade non-Hodgkin’s
lymphomas, melanoma and colorectal carcinoma (101, 102),
and the authors proposed that DKK-3 might be a marker for
endothelial cell activation during tumour angiogenesis. In
contrast, DKK-3 is frequently inactivated in lung cancer by
promoter hypermethylation (29). In conclusion, up-
regulation of DKK-4 and several Wnt inhibitors in some
cancer cell types imply their involvement in roles other than
the control of this signalling pathway.

Unlike DKK-1, the available data indicate that DKK-4 is a
target gene induced by Wnt/β-catenin that remains up-
regulated in colon tumours. The pro-tumourigenic actions of
DKK-4 in cultured cells suggest that they overcome its weak
inhibitory effect on the Wnt/β-catenin pathway (Figure 2).
The discrepancy between the regulation of DKK-4 in colon
and breast tumours, in which variable levels but no up-
regulation was found in a first study (95), reveal tissue-
specific actions and promotes interest in extending the study
of DKK-4 effects to other types of carcinomas. Notably,
1,25(OH)2D3 inhibits DKK-4 expression in colorectal cancer
cells and diminishes transcription from the DKK-4 promoter
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in SW480-ADH and in three human breast cancer cell lines
(MCF-7, MDA-MB-468, MDA-MB-453) (95). The
repression appears to be direct as, again in contrast to DKK-
1, 1,25(OH)2D3 promotes the binding of VDR and also of the
silencing mediator of retinoic acid and thyroid hormone
receptor (SMRT) co-repressor to a consensus sequence
adjacent to the transcription initiation site and the abrogation
of histone H4 acetylation. Interestingly, the inverse
correlation found between VDR and DKK-4 RNA levels in
human colorectal tumours suggests that the regulation of
DKK-4 observed in cell lines also occurs in patients.

The regulation and expression of DKK-1 and DKK-4
occur in opposite directions in human colorectal cancer.
While the induction of DKK-1 by 1,25(OH)2D3 is slow and
requires intermediate proteins (87), 1,25(OH)2D3 represses
DKK-4 rapidly promoting direct VDR binding to the gene
promoter region (95). Both, DKK-1 and DKK-4 proteins
putatively have β-catenin-independent activities that,

however, must differ markedly. While DKK-1 has anti-
tumoural effects (84), the effects of DKK-4 on the
phenotype of colon cancer cells and its up-regulation in
colon cancer indicate tumour-promoting actions (95). The
induction of DKK-1 and the repression of DKK-4 by
1,25(OH)2D3 agrees with and may contribute to its
protective effects against this neoplasia. The elucidation of
the roles of DKK-1 and DKK-4 proteins in colon cancer
cells may be important for understanding the biology of
colon cancer and 1,25(OH)2D3 action.
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