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Restoration of FGF Receptor Type 2 Enhances Radiosensitivity
of Hormone-refractory Human Prostate Carcinoma PC-3 Cells
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Abstract. Background: This study was undertaken to
investigate the radiosensitizing effects of fibroblast growth
factor receptor 2I1Ib (FGFR2IIIb) in androgen-independent
human prostate carcinoma PC-3 cells devoid of normally
resident epithelial cell FGFR2IIIb. Materials and Methods:
A clonal line of PC-3 cells expressing FGFR2IIIb was
established by stable transfection. Clonogenic cell survival,
apoptosis and cell cycle distribution with and without
gamma-irradiation were then compared between FGFR2IIIb-
expressing PC-3 cells and control cells mock-transfected
with vector alone. Results: Gamma-irradiation resulted in an
increase of clonogenic cell death concurrent with enhanced
apoptosis and cell cycle arrest in the G2/M-phase in both
transfected and untransfected cells. A quantitative analysis
of all three parameters indicated that cells expressing
FGFR2IIIb were significantly more sensitive to irradiation
than control cells. Conclusion: These results indicate that
restoration of FGFR2IIIb to PC-3 cells enhances their
sensitivity to irradiation through acceleration of apoptosis
and cell cycle arrest.

Prostate cancer is initially androgen-dependent and sensitive
to androgen ablation therapy. However, it eventually acquires
the ability to grow independently of androgen and thus
becomes resistant to hormonal therapy (1). For this so-called
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hormone-refractory prostate cancer (HRPC), currently
available methods such as chemotherapy and radiotherapy
are only modestly effective. It is therefore very important to
elucidate the mechanisms of malignant progression from
androgen dependence to independence and to develop a
novel therapeutic strategy for inducing apoptosis and cell
death preferentially in HRPC cells.

Fibroblast growth factor (FGF) signaling has been shown
to be a local mediator of stromal-epithelial dialogue and
homeostasis in both animal and human normal prostate and
prostate tumors (2-8). The IIIb isoform of FGF receptor 2
(FGFR2IIIb), a splice variant of FGFR2 tyrosine kinase, is
the resident isoform of the FGFR family expressed in
prostate epithelial cells and, in partnership with epithelial
cell heparan sulfate, is specific for FGF7 (also known as
keratinocyte growth factor, KGF) and FGF10, whose
expression is limited to stromal cells (2, 3, 6, 9, 10). FGF7
and FGF10 have been proposed as candidate andromedins,
which mediate the effect of androgen on stromal cells and
epithelial cells (2, 3). Concomitant loss of FGFR2IIIb and
FGFR?2 kinase is a common correlate of loss of androgen
responsiveness and response of epithelial cells to stromal
signaling during their progression to malignancy in prostate
tumor cell lines and animal models (6-8, 11-13). In the same
models, restoration of FGFR2IIIb to tumor cells has been
reported to restore responsiveness to the stroma and
dramatically reduce tumorigenicity in vivo (14, 15). Loss of
FGFR2 has also been confirmed in human prostate tumors
and loss of FGFR2IIIb in particular is associated with tumor
androgen independence (7, 16). In addition, restoration of
FGFR2IIIb by transfection in a prototypic hormone-
refractory human prostate cancer cell line PC-3 has been
shown to suppress cell growth and tumorigenicity concurrent
with increased cell differentiation and apoptosis (16).
Similar results have also been obtained in human models of
salivary and bladder cancer (17, 18).
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Given this background and observations suggesting that the
FGF system affects radiosensitivity by controlling apoptosis
or the cell cycle in various kinds of cells (19, 20), we
hypothesized that FGFR2IIIb might improve the response of
HRPC to radiotherapy.

Materials and Methods

Cell culture and transfection. Cloned PC-3 cells were maintained in
OPTI-MEMI medium (Life Technologies, NY, USA) supplemented
with 5% heat-inactivated fetal bovine serum (FBS; Life
Technologies) and 100 mg/ml kanamycin (Life Technologies).
Preparation of FGFR2IIIb ¢cDNA and transfection to PC-3 were
performed as described elsewhere (16). Briefly, wild-type, full-length
FGFR2IIIb cDNA (15) was cloned into the expression vector IRES2
neo (Clontech Laboratories, Inc., Palo Alto, CA, USA; IRES2
FGFR2IIIb). PC-3 cells were transfected with IRES2 FGFR2IIIb, or
the IRES2 empty control vector, by electroporation using the Gene
Pulser II apparatus (Bio-Rad, Hercules, CA, USA). The cells were
then incubated for 14 days in selection medium comprising OPTI-
MEMI medium containing the antibiotic G418 sulfate (200 pg/ml;
Promega, Maddison, WI, USA). Colonies of cells emerging from the
selection medium were isolated and selected according to their level
of FGFR2IIIb expression, which was determined by immunoblot
analysis. Among them, a clonal PC-3 cell line expressing FGFR2IIIb
at the highest level was chosen for analysis and designated PC-3
R2IIIb. Control cell cultures transfected with the empty vector were
designated PC-3 neo.

Clonogenic cell survival. Cells grown to subconfluency in 90-mm
dishes were exposed to 0,4 or 8 Gy irradiation from a 9Co gamma-ray
source (Shimazu Seisakusyo, Tokyo, Japan). Forty-eight hours later,
the cells were retrieved, plated into 90-mm dishes at 103 cells/dish and
cultured in OPTI-MEM1 medium supplemented with 5% heat-
inactivated FBS at 37°C under a 5% CO, atmosphere. After 14 days
of culture, the cells were fixed and stained with crystal violet and
colonies containing more than 50 cells were counted. The surviving
fraction was normalized to that of untreated cells.

Assay of apoptosis. An APOPercentage™ kit (Biocolor Ltd.,
Belfast, N. Ireland, UK) was used for detection of apoptotic cells
in accordance with the manufacturer’s protocol. Cells at 2x103 and
5x103 cells/well for PC-3 neo and PC-3 R2IIIb, respectively, were
plated in 96-well plates in OPTI-MEM1 medium supplemented with
5% FBS and subjected to 0, 4 or 8 Gy of gamma-ray irradiation.
After 48 h of culture, the cells were exposed to fresh OPTI-MEM 1
medium containing APOPercentage™ Dye Label for 1 h. After two
washes with phosphate-buffered saline (PBS), the numbers of
positively stained red to purple apoptotic cells were counted using
an inverted microscope.

Radiation-induced cell apoptosis was also confirmed by dual-
colored (propidium iodide, PI, and Annexin V) flow cytometry.
Cells were grown to subconfluency in 90-mm dishes and exposed
to 0 or 8 Gy of gamma-irradiation. After 48 h of incubation, 1x105
cells were prepared and stained with an antibody against Annexin-
V conjugated to FITC and with PI using an Apoalert Kit (Clontech
Laboratories, Inc.) in accordance with the manufacturer’s
instructions. Cells that were viable (Annexin-V—/PI-), apoptotic
(Annexin-V*/PI-), or showing residual damage (Annexin-V+/PI*,
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Annexin-V-/P*+) were estimated by fluorescence-activated cell
sorting (FACS) using a FACS Calibur (Beckton-Dickinson, San
Jose, CA, USA).

Cell cycle analysis by flow cytometry. Cell cycle phase distribution
after irradiation was assessed using flow cytometry. Cells grown to
subconfluency in 90-mm dishes were exposed to 0 or 8 Gy gamma-
irradiation and incubated for 48 h. They were then washed with ice-
cold PBS, fixed with ice-cold 70% ethanol, and incubated at —20°C
overnight. The cells were centrifuged, pellet-washed twice with ice-
cold PBS, and resuspended in the staining solution containing PI
and RNase. Cell cycle phase distribution was analyzed using a
FACS Calibur.

Statistical analysis. Each experiment was performed at least three
times. Results are expressed as the mean valuexstandard deviation
(SD). Statistical analysis was performed using repeated measures
ANOVA and Wilcoxon test.

Results

Increased radiosensitivity in PC-3 expressing FGFR2IIIb.
PC-3 cells expressing high levels of FGFR2IIIb (PC-3
R2IIIb cells) and control cells (PC-3 neo) were prepared as
described in Materials and Methods. To test the effect of
FGFR2IIIb and irradiation on PC-3 cell population
dynamics, clonogenic cell survival was assessed. Figure 1
shows the effect of PC-3 R2IIIb and PC-3 neo after exposure
to 4 and 8 Gy of radiation. The mean survival fraction
without irradiation was 0.54 for PC-3 neo and 0.25 for PC-
3 R2MIb (p<0.05, Wilcoxon) (data not shown). These
differences were normalized to the indicated percentage
survival curves. Although cell survival exhibited a radiation
dose-dependent decrease in both cell types, the survival
fraction of the PC FGFR2IIIb population decreased to 40%
and 8% that of the PC-3 neo cells at 4 and 8 Gy, respectively
(p<0.01, repeated measures ANOVA). This indicated that
restoration of FGFR2IIIb to PC-3 cells dramatically
increased their radiosensitivity.

FGFR2IIIb-dependent increase in radiosensitivity s
accompanied by increased apoptosis. Based on the results of
the clonogenic cell survival assay and our previous
observations that the growth suppression of PC-3 cells by
restoration of FGFR2IIIb resulted in increased cellular
apoptosis (16), we compared the rate of apoptosis in PC-3
R2IIIb to that in PC-3 neo cells upon irradiation.

As expected, the APOPercentage™ assay indicated that the
percentage of apoptotic cells in both populations of PC-3 R2IIIb
and PC-3 neo cells increased proportionally to the dose of
radiation (Figure 2A, B). As reported earlier, PC-3 R2IIIb cells
exhibited a significantly higher rate of apoptosis than PC-3 neo
cells in the unirradiated state (p<0.05, Wilcoxon). Similar to
cell population survival rates, the rate of apoptosis increased
proportionally to the dose of radiation in both cell populations.
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Figure 1. Clonogenic cell survival after gamma-ray irradiation. Clonal
PC-3 cells transfected with FGFR2IIIb ¢cDNA (PC-3 R2I1Ib) and those
transfected with a control vector (PC-3 neo) were exposed to 4 or 8 Gy
of gamma-ray radiation and cultured for 14 days. The resulting colonies
were stained and counted (>50 cells). The number of colonies at each
dose point was normalized to that of the corresponding unirradiated
control. Resulting survival curves were fitted using a linear quadratic
model. Each point on the graph represents a mean value+SD of three
independent experiments, each plated in triplicate. The significance of
differences between the two cell types was determined by repeated
measures ANOVA (p<0.01).

Most notably, at 8 Gy the rate of apoptosis in the PC-3 R2IIIb
population was nearly 3-fold that of mock-transfected PC-3 neo
cells (p<0.05 for all measurement points, Wilcoxon). The rates
of increase in numbers of apoptotic cells resulting from
irradiation were significantly higher for PC-3 R2IIIb than for
PC-3 neo (p<0.01, repeated measures ANOVA).

The Annexin-V/PI apoptotic assay confirmed that the
percentages of apoptotic cells (Annexin-V*/PI") increased
with 8 Gy of radiation in both cell types (Figure 2C). PC-3
R2IIIb cells exhibited a higher rate of apoptosis than did PC-
3 neo cells when unirradiated, although the difference did not
reach significance (11.7+1.4% vs. 9.1+£0.7% for PC-3 R2IIIb
and PC-3 neo). At 8 Gy, the rate of apoptosis in the PC-3
R2IIIb population was 1.5-fold higher than that of PC-3 neo
cells (20.7+3.8% vs. 13.7+0.4% for PC-3 R2IIIb and PC-3
neo, p<0.05, Wilcoxon). The rates of increase in numbers of
apoptotic cells resulting from irradiation were significantly
higher for PC-3 R2IIIb than for PC-3 neo (p<0.01, Wilcoxon).

Cell cycle arrest in G2/M correlates with increased
radiosensitivity. Finally, the effect of FGFR2IIIb on
irradiation-induced cell cycle distribution was assessed by
FACS analysis. Parallel to the increased rates of apoptosis,
PC-3 cells with restored FGFR2IIIb exhibited an increased
proportion of cells in the G2/M stage relative to control cell
populations, independent of irradiation (Figure 3). Although
less dramatic than clonogenic population survival rates and

the coincident rates of apoptosis, PC-3 R2IIIb cells exhibited
1.4-fold more cells in the G2/M-stage at 8 Gy relative to the
1.7-fold increase in control cell populations devoid of
FGFR2IIIb (p<0.05, Wilcoxon).

Discussion

PC-3 is a representative hormone-refractory human prostate
cancer (HRPC) cell line, highly tumorigenic and metastatic
in nude mice, and resistant to normal rates of apoptosis (21-
23). We previously confirmed that the expression of
normally resident epithelial cell FGFR2IIIb is lost in PC-3
tumor cells and that restoration of FGFR2IIIb dramatically
promoted apoptosis and suppressed overall population
growth rates and tumoriginicity of these cells (16). Here, we
report results of a preclinical study that shows that
restoration of FGFR2IIIb sensitizes PC-3 cells to irradiation,
a commonly used treatment in refractory prostate cancer.

Clonogenic PC-3 cells with restored FGFR2IIIb exhibited
a significantly reduced rate of survival compared to control
mock-transfected cells that is further reduced relative to
control cells upon exposure to ionizing radiation. This was
coincident with a significant increase of apoptosis and cell
cycle arrest in G2/M phase. These results indicate that even
though HRPC cells have lost FGFR2 expression, functional
downstream reception mechanisms are intact and these
signals are capable of sensitizing the HRPC cells to
irradiation through enhanced apoptosis.

Radiotherapy remains a viable treatment for HRPC, but
its efficacy for restriction of HRPC is modest and generally
only palliative for symptoms such as bone pain (1). In
addition, recent phase II clinical studies using single agent
therapy aimed at specific molecular targets such as
hyperactive epidermal growth factor receptor (EGFR)
tyrosine kinase in HPRC are disappointing (24-26). For
these reasons, attention has turned to a combined
therapeutic strategy for HRPC in many clinical trails (27).
Our results indicate that the combination of radiotherapy
and reactivation of FGFR2 kinase may be a promising
treatment strategy for HRPC.

In animal models, forced overexpression of FGFRI in
epithelial cells expressing normal levels of FGFR2IIIb overrides
homeostasis and accelerates tumorigenicity (14, 28). In contrast,
restoration of FGFR2IIIb appears to induce apoptosis and
overrides the tumor-promoting effect of ectopic FGFR1 in
malignant cells (14-16). Restored FGFR2 kinase may act as an
apoptosis inducer through a fundamentally different
downstream signaling pathway than FGFR1 (16). Alternatively,
“dominant-negative” heterodimerization by forced coexpression
of both FGFR2 and FGFR1 kinases may also contribute to a
dampening effect of one over the other (16).

The mechanisms underlying the combined apoptosis-
promoting and radiosensitizing effect of FGFR2IIIb when
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Figure 2. Effect of FGFR2IIIb on radiation-induced apoptosis in PC-3 cells. Cells undergoing apoptosis were determined by APOPercentage™ staining
(A) as described in Materials and Methods. The purple stain indicates apoptotic cells. Images are representative examples from triplicate wells. The
percentage of positively stained cells was estimated by direct counting of at least 300 cells in each of triplicate wells (B). Each point on the graph
represents the mean+SD of three independent experiments, each plated in triplicate. The P-value between PC-3 R2IIIb and PC-3 neo for the rate of
increase in apoptotic cells induced by irradiation was <0.01 (repeated measures ANOVA). Apoptosis was also analyzed by Annexin-V/propidium iodide
staining as described in Materials and Methods. (C). Apoptotic cells (Annexin-V*+/PI-) were detected in the lower right quadrant. A representative
example from three independent experiments is shown. The figures indicated in the lower right quadrant are percentages of apoptotic cells.

restored to malignant HRPC cells remain to be
established. Recent studies have shown that down-
regulation of antiapoptotic factors such as Bcl-2 confers
sensitization of PC-3 cells to both radio- and
chemotherapy (29, 30). It is conceivable that the FGFR2
kinase inactivates such antiapoptotic factors in PC-3 cells.
Further studies are needed to clarify how restored
FGFR2IIIb promotes apoptosis in HRPC and its
enhancement of radiosensivity in order to establish
clinical application of combined FGFR2IIIb restoration
therapy with irradiation.
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