
Abstract. Pancreatic ductal adenocarcinoma is a dismal
disease with a median survival of less than 6 months and an
overall 5-year survival rate less than 1% . This bad prognosis
is due to early lymphatic and hematogenic dissemination.
Effective therapies for locally advanced or metastatic tumors
are very limited and curatively resected patients experience
relapse in over 80% of cases. Together, these findings reflect
the aggressive biology of the disease. Here, we describe
molecular mechanisms leading to unrestrained proliferation,
insensitivity to growth inhibitory signals, evasion of apoptosis,
limitless replicative potential, tissue invasion, metastasis and
sustained angiogenesis. Potential therapeutic targets are
highlighted.

Pancreatic ductal adenocarcinoma (PDAC) is a chronic
disease resulting from defective genome surveillance and
signal transduction mechanisms. Key cellular processes, which
were summarized by Hannahan and Weinberg as self-
sufficiency in growth signals, insensitivity to growth inhibitory
signals, evasion of apoptosis, limitless replicative potential,
tissue invasion and metastasis and sustained angiogenesis
contribute to the emergence of this neoplasia and its malignant
progression (1). This review will cover important new aspects

of the molecular biology of the disease. For a comprehensive
overview of the molecular biology of pancreatic ductal
adenocarcinoma, we refer the reader to recent excellent
reviews (2-4).

Growth Signals

Self-sufficiency in growth signals in PDAC is ensured on
multiple levels, namely autocrine production of growth factors,
overexpression of growth factor receptors, activation of
oncogenes and inactivation of tumor suppressor genes. The
epidermal growth factor (EGF) system is a good example of
how autocrine stimulation contributes to the self-sufficiency in
growth signals of PDAC cells. Overexpression of EGF
receptors (ErbB1/EGFR and ErbB3) is found in the vast
majority of PDAC. Together with the overexpressed ligands,
EGF and TGFα, a signaling circuit is built, driving unrestrained
cell cycle progression (5-8). In line with this fact, EGF
receptor antagonists are now used for the treatment of
pancreatic cancer patients. In addition to the EGF system, other
growth factor systems such as the IGF, HGF or FGF system
contribute to the carcinogenesis of pancreatic cancer (9).

Synergistic to the growth factor receptor/ligands circuits,
oncogenes and inactivated tumor suppressor genes promote the
proliferation of PDAC. The K-RAS oncogene is mutated in
nearly all human PDACs. Since K-RAS codon 12 mutations are
found in early pancreatic preneoplastic and neoplastic lesions
and oncogenic K-RAS induces PDAC in mouse models, the K-
RAS mutation is an initiating event in the pathogenesis of
pancreatic cancer (10, 11). Oncogenic K-RAS is linked to the
cell cycle machinery of PDAC cells by the activation of multiple
mitogenic signaling pathways, notably the PI3K, RAF-mitogen-
activated kinase (MAPK) and the NF-κB pathway. Therefore,
targeting K-RAS expression was shown to reduce proliferation
of PDAC cells (12).

PDAC cells are characterized by a profound acceleration of
the G1-phase to S-phase progression due to a functionally
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inactivated retinoblastoma (RB)-dependent G1-phase
checkpoint (13). Multiple alterations contribute to RB
inactivation in PDAC cells. Here, the frequent overexpression
of cyclins, such as cyclin D1, cyclin D3, cyclin A and cyclin
E, as well as cyclin-dependent kinases, such as CDK2 and
CDK4, was recently described in PDAC (14, 15). High cyclin
E expression, occurring in around one third of PDAC, is an
independent predictor of patient outcome, pointing to the
importance of this cell cycle regulator (16). At the genetic
level, RB inactivation is explained by the frequent mutation of
the tumor suppressors INK4A and TP53. INK4A blocks S-
phase progression by inhibiting the cyclin-dependent kinases
CDK4 and -6, leading to RB activation. Loss of INK4A
expression, mediated by mutation, deletion or promoter
hypermethylation is observed in up to 95% of sporadic PDAC
(13). The sequence-specific transcription factor p53 is
activated by γ-irradiation, DNA-damage or oncogene
activation. Activated p53 is involved in cell cycle control,
induction of apoptosis or the senescent program. The TP53
gene is mutated in greater than 50% of PDACs (17). Since
the pan-CDK-inhibitor p21Cip1 is a p53 target gene, TP53
mutations enable G1- to S-phase progression under conditions
of oncogenic stress conditions.

In addition to p21Cip1, another pan-CDK inhibitor, p27Kip1,
is critically involved in controlling the G1- to S-phase
progression of PDAC cells. Pancreatic cancer cells express
little or no p27Kip1, suggesting contribution of this pan-CDK-
inhibitor to pancreatic carcinogenesis (18-20). Regulation of
p27Kip1 is complex and although p27Kip1 is controlled at the
level of synthesis, the protein abundance is regulated mainly
by posttranslational modifications, affecting p27Kip1 protein
turnover. Phosphorylation of p27Kip1 on Thr-187 by the cyclin
E-CDK2 complex tags the protein for recognition by S-phase
kinase associated protein 2 (SKP2), an F-box protein that
functions as a receptor component of the SCF ubiquitin ligase
complex, resulting in p27Kip1 ubiquitination and degradation
(21). High level SKP2 expression was observed in about one
third of pancreatic cancer specimens and is an independent
predictor of patient outcome (22). Even though SKP2 protein
stability is regulated, recent work demonstrate that
transcriptional control is important for SKP2 regulation in
PDAC. Two important signaling pathways, namely the NF-κB
and the PI3K pathway, are integrated at the SKP2 gene
promoter and both pathways are known to lower p27Kip1
expression in PDAC cells (23-25). In addition to NF-κB and
PI3K signaling, p27Kip1 protein abundance is lowered by the
jun activation domain-binding protein (JAB1), an AP1 co-
activator. JAB1 is overexpressed in 100% of pancreatic
cancers and lowers p27Kip1 expression in a SKP2-independent
fashion (26). Whether the miRNAs miR-221 and miR-222,
shown to be highly expressed in pancreatic cancer and
potentially targeting p27Kip1 mRNA, contribute to low p27Kip1
expression awaits further functional investigations (27).

Together, these data show that PDAC cells use different
pathways to assure low p27Kip1 expression. Therefore,
increasing p27Kip1 is a promising approach for new
therapeutic strategies.

Recently the transcription factor “nuclear factor of activated
T-cells”, NF-ATc1, commonly overexpressed in PDAC and
controlled by the Ca2+-sensing phosphatase calcineurin, was
shown to contribute to growth control by inducing the
transcription of oncogenic c-myc (28). Therefore, targeting
calcineurin may offer therapeutic intervention in the future.

In addition to the mentioned genetic alterations,
proliferation of pancreatic cancer cells is controlled by the
epigenetic machinery. In particular, histone deacetylases
(HDACs) promote proliferation of pancreatic cancer cells.
HDACs catalyze the removal of acetyl groups from histones
which results in chromatin condensation and transcriptional
repression (29). Treatment of pancreatic cancer cells with
HDAC inhibitors induces a cell cycle arrest in the G1- or
G2/M-phases in pancreatic cancer cells (30-32). Notably, the
HDAC inhibitor suberoylanilide hydroxamic acid (SAHA),
inhibiting HDAC 1, 2, 3 and 6, was shown to cease
proliferation of pancreatic cancer cells by down-regulating the
cell cycle-promoting proteins cyclin B1, cyclin D1 and c-myc
(33, 34). Since HDAC 3 was recently shown to accelerate the
proliferation of the pancreatic cancer cell line MiaPaCa2,
HDAC 3 might be the target for the growth inhibition of
pancreatic cancer cells induced by HDAC inhibitors (35).

The PI3K pathway is crucial to many aspects of cell growth
and survival and is active in around 60% of pancreatic cancer
cases (36, 37). PI3K/AKT signaling regulates chemo-
therapeutic resistance and proliferation of pancreatic cancer
cells (23, 25, 38-43). Although PI3K signaling induces
proliferation of pancreatic cancer cells, the mode of activation
of the PI3K pathway is not entirely clear. Here, the tumor
suppressor phosphatase and tensin homolog deleted in
chromosome ten (PTEN) and the insulin receptor substrate 1
(IRS-1) are known to contribute to PI3K activation (44, 45).
Although oncogenic K-RAS activates PI3K-AKT signaling, a
novel and unexpected pathway was recently shown to mediate
the activation of PI3K-AKT signaling in pancreatic cancer
cells (Figure 1). This pathway is regulated by the architectural
transcription factor HMGA1. HMGA1 is highly overexpressed
in pancreatic cancer and known to account for the unrestrained
proliferation of pancreatic cancer cells (46-48). Recently, it
was shown that HMGA1 activates PI3K-AKT signaling of
pancreatic cancer cells (49, 50). Activation of PI3K-AKT
signaling is likely downstream of the insulin receptor, whose
transcription is controlled by an HMGA1 and C/EBPβ
containing complex in pancreatic cancer cells (51). Finally,
the HMGA1-insulin receptor pathway increases cyclin D1
translation to promote proliferation (51). The new aspects of
PI3K-AKT signaling in pancreatic cancer cells are
summarized in Figure 1.
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A further pathway clearly increasing proliferation of
pancreatic cancer cells is that of sonic hedgehog signaling (52).
This pathway is activated by the NF-κB-dependent aberrant
expression of the ligand sonic hedgehog and acts at multiple
stages during pancreatic carcinogenesis (53-55). Interfering
with sonic hedgehog signaling ceases proliferation of pancreatic
cancer cells by the induction of a G1-phase arrest (56). At the
molecular level, sonic hedgehog signaling transcriptionally
induces cyclin D1 expression and reduces p21Cip1 expression,
explaining the effect of this pathway towards the G1-phase of
the cell cycle (57). Since small molecules exists which interfere
with sonic hedgehog signaling, this pathway is a suitable target
for future therapies (58).

Insensitivity to Growth Inhibitory Signals
The best-documented signaling molecule with antigrowth
properties is transforming growth factor (TGF) β. During
carcinogenesis, TGFβ displays functional duality: it inhibits the
growth of early malignant lesions, whereas proliferation of
advanced tumors is promoted (59). TGFβ inhibits proliferation
of normal epithelial cells by inducing the expression of the
cyclin-dependent kinase inhibitors p15INK4b and p21Cip1, or by
repression of the c-myc gene. The SMAD transcription factor
family transfers TGFβ signaling to the nucleus (60). In
pancreatic cancer, the TGFβ-mediated growth inhibitory signal
is frequently lost (61). In part, this loss is due to the mutation
of the MADH4/SMAD4/DPC4 gene. Loss of heterozygosity for
the SMAD4 gene locus is found in up to 90% of pancreatic
cancers while no SMAD4 expression is found in about 50%
(62, 63). In addition to SMAD4 mutation, PDAC cells
underexpress the type 1 TGFβ receptor and overexpress the
inhibitory SMADs, SMAD6 or SMAD7 (64-67). These
alterations result in increased mitogenic signaling of the TGFβ
pathway together with loss of growth inhibitory function.
Furthermore, the TGFβ signaling pathway, activated by
autocrine production of TGFβ, induces invasiveness of PDACs,
mediated by target genes such as MMP-2, uPA or CUTL1 (68-
70). Moreover, angiogenesis is controlled by the TGFβ-SMAD
pathway, since SMAD4 represses the vascular endothelial
growth factor (VEGF) and induces the angiogenesis inhibitor
thrombospondin 1 (TSP1) in PDAC cells (71).

Tumor suppressive function of the TGFβ pathway in the
carcinogenesis of the pancreas is best proven in the conditional
K-RasG12D mouse model. As well as the conditional deletion
of MADH4/SMAD4/DPC4 in the pancreas as the blockage of
TGFβ signaling by conditional deletion of the type II TGFβ
receptor synergizes with K-RasG12D to induce pancreatic
tumors (72-74).

Evasion of Apoptosis
The apoptosis sensing, inducing and executing machinery is
regulated at multiple levels, whereby every level can be

disturbed in cancer cells, leading to an apoptosis resistant
phenotype (75). In pancreatic cancer cells, the executing
machinery is intact and resistance mechanisms have evolved
working especially at the death receptor, mitochondrial and
caspase inhibitor levels (76, 77). Most pancreatic cancer
cells are resistant towards CD95L- or TRAIL-mediated
apoptosis, although they express the corresponding death
receptors. Several strategies are exploited in pancreatic
cancer cells to evade death receptor-induced apoptosis,
ranging from the overexpression of the decoy receptor 3
(DcR3), a soluble receptor for the Fas-ligand, to the
overexpression of c-Flip, which is a potent inhibitor of
caspase 8 activation (78, 79). Additionally, the death receptor
system is not only blocked, but also abused by the pancreatic
tumor cells to switch the death signal towards an invasion
signal. Recently, the death receptor signaling intermediate
TRAF2 was shown to be overexpressed, switching the CD95
signal from apoptosis to the induction of invasiveness in
pancreatic cancer cells (80).

At the mitochondrial level, the fine-tuned expression of pro-
death and pro-survival Bcl-2 family members sense and decide
about live or death of a cell (81). In contrast to Bcl2, whose
expression is not significantly altered, BclxL is overexpressed in
pancreatic cancer cells, suggesting an important role for this
pro-survival Bcl2-family member in apoptosis-resistance of
pancreatic cancer cells (82, 83). A second pro-survival Bcl-2
family member, Mcl-1, is overexpressed and regulates survival
of pancreatic cancer cells (84, 85). Functionally, Mcl-1 was
recently linked to the integrative stress response (86).
Therefore, high Mcl-1 might protect pancreatic cancer cells
from hypoxia and oxidative stress, conditions frequently found
in the tumor microenvironment.

The third level of apoptosis resistance is conferred by the
IAP protein family, including cIAP1, cIAP2, XIAP and
survivin. One molecular action of this protein family is to
inhibit executioner caspase activity. At least for the family
members XIAP and survivin, increased protein abundance was
demonstrated in pancreatic cancer cells (87-90). Interestingly,
survivin expression is cell cycle-dependent, being low in the
G1-phase in PDAC cells. In line with this, a sensitization
towards TRAIL-induced apoptosis by the arrest of pancreatic
cancer cells in the G1-phase of the cell cycle was observed
(91). Furthermore, TRAIL resistance of pancreatic cancer cells
is known to be regulated at the level of XIAP (92). In addition
to TRAIL, targeting XIAP was shown to sensitize pancreatic
cancer cells for gamma-irradiation and gemcitabine (90, 93).
Therefore, a combined sensitizer (G1-phase arrest or XIAP
targeting)/inducer (TRAIL/gamma-irradiation/ chemotherapy)
strategy may be a therapeutic approach for the future. While
TRAIL treatment is attractive due to its tumor selective mode
of action, recent experiments demonstrate a protumoral and
metastasis-inducing function of TRAIL for PDAC cells in vivo,
which might limit clinical applications (94).
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Many of the gene products mediating apoptosis resistance
are regulated by the NF-κB transcription factor family in
PDACs, pointing to an important contribution of NF-κB
towards apoptosis and chemotherapeutic resistance (95, 96).
Recently, the GADD45α gene was shown to be downstream
of an IκBα-regulated pathway in PDAC. GADD45α acts in a
non-cancerous environment as a pro-apoptotic protein and was
surprisingly found to be overexpressed at the mRNA and
protein levels in PDAC, mediating proliferation and apoptosis
resistance in a so far unknown molecular pathway (97).

Limitless Replicative Potential

Mammalian cells carry an intrinsic, cell autonomous program
which limits the possible number of mitoses. The deactivation
of these failsafe programs is a prerequisite of cancer and
senescence is an important mechanism for restricting the

replicative potential (98). Senescence, a permanent growth/cell
cycle arrest that occurs after extended periods of cell division,
oxidative stress or activated oncogenes, is clearly induced by
K-RAS in non-immortal human and mouse cells. Senescent
cells are characterized by an active metabolic state and altered
morphology, physiology and gene signature. These cells
typically show a senescence-associated β-galactosidase activity
and are unable to express genes needed for cell cycle
progression, even in a mitogenic environment (99). The ARF-
p53 and the p16INK4A-RB tumor suppressor systems are
critically involved in the molecular regulation of oncogene-
induced premature senescence; the relative contribution of each
system differs significantly among species and tissues (99). In
recent years, the definitions of markers for senescence, such as
p15INK4b, DCR2 and DEC1, have helped to demonstrate the
senescence concept in vivo (100). Since senescence markers
are found predominantly in premalignant lesion (PanINs) in a
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Figure 1. New aspects of PI3K-AKT signaling in pancreatic cancer cells. An HMGA1 and C/EBPβ-containing complex activates the insulin receptor
gene in pancreatic cancer cells. Insulin receptor signaling activates PI3K-AKT signaling and augments cyclin D1 translation by influencing the
binding of translation inhibiting factor eIF4E binding protein, 4E-BP, to the translation initiation factor eIF4E. In addition, PI3K-AKT signaling is
linked to the cell cycle by the transcription factor E2F1, controlling S-phase-promoting genes such as SKP2.



mouse tumor model that targets the K-RasV12 oncogene to the
pancreas, senescence is an early event during carcinogenesis of
the pancreas (101). This might explain the frequent alterations
found in the CDKN2A locus, the TP53 locus and the
functionally inactivated RB in PDAC cells.

Invasion and Metastasis

Metastasis plays a major role in pancreatic cancer morbidity
and the vast majority of human pancreatic cancer deaths are
caused by the formation of metastases. Metastasis is a
nonrandom, highly organ-specific carcinogenic process that
requires multiple steps and interactions between tumor cells
and the host, such as detachment of the tumor cells from the
primary tumor, invasion into the host stroma, intravasation into
lymph and blood vessels, survival in the circulation,
extravasation into target organs and subsequent proliferation

and induction of angiogenesis (102). A central mechanism of
metastasis is the change from a highly differentiated epithelial
cell morphology to a mesenchymal phenotype. This process is
called epithelial-mesenchymal transition (EMT). During EMT,
an epithelial cell loses polarity and intercellular adhesions and
acquires a fibroblastoid phenotype. Furthermore, the
transcriptome and proteome is changed from epithelial
towards a mesenchymal profile, leading to expression of
mesenchymal markers such as vimentin, N-cadherin, Snail and
Twist, whereas epithelial markers, such as E-Cadherin, are lost
(103). EMT leads to a more invasive, migratory phenotype, a
prerequisite of metastasis. The molecular mechanisms of EMT
have not been investigated in detail for PDACs. At least in cell
lines with an intact TGFβ pathway, TGFβ signaling is known
to induce a mesenchymal phenotype (104). Furthermore,
signaling induced by the extracellular matrix is important for
the down-regulation of E-cadherin, a central player in the
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Figure 2. Targeted metastasis of primary pancreatic cancer cells to the liver and lung. Metastasis is a non-random, highly organ-specific multistep
process that requires distinct interactions between tumor cells and the host. First, pancreatic cancer cells of the primary tumor proliferate and
induce angiogenesis. Tumor cells then detach from the primary tumor, invade into the host stroma, intravasate into lymph and blood vessels thus
entering the systemic circulation. The chemokine CXCL12 that recognizes the chemokine receptor CXCR4 expressed on the surface of pancreatic
cancer cells is released in high quantities only by certain organs, such as the liver and lung. Other organs, such as the brain contain only low
amounts of CXCL12. Binding of CXCL12 to CXCR4 induces the migration of cancer cells into normal tissues such as the liver and lung, where the
cells form metastatic tumors.



formation of epithelial polarity and organization, and increased
invasion and proliferation of PDAC cells (105, 106). E-
cadherin mutations or loss of E-cadherin expression is
observed in 50-60% of primary sporadic PDAC and is
significantly associated with lymph node and liver metastasis
(107, 108). In contrast to E-cadherin, N-cadherin is up-
regulated by oncogenic K-RAS and functions as an important
modulator of migration and invasion of PDAC cells (109). The
transcription factors involved in EMT of pancreatic cancer
cells are mainly unknown, but recent evidence demonstrates
the contribution of SP1 and Snail (110, 111).

Although liver and lung metastasis are key prognostic
markers of PDAC, mechanisms leading to the homing of
pancreatic cancer cells are largely unknown. In a recent report,
the influence of the chemokine receptor CXCR4 for targeting
pancreatic cancer to the liver and lung was demonstrated.
Furthermore, a small molecule antagonist of CXCR4, AMD
3100, blocked targeted metastasis, offering the opportunity for
a novel antimetastatic therapy (112). Figure 2 illustrates
CXCR4-mediated metastasis to the liver and lung.

Angiogenesis

The process by which a new blood supply is built from
existing vessels is termed angiogenesis. This process is
important for tumors to grow greater than 1 to 2 mm, the
distance oxygen is supplied by diffusion. Vessel density is
increased in PDAC compared to normal pancreas (113). High
vessel density is associated with a poor prognosis after
curative resection and represents a risk factor for metastasis
(113-116).

Angiogenesis is regulated by secreted pro- and
antiangiogenic factors. Tumor cells as well as tumor stroma
cells secrete proangiogenic factors, such as growth factors,
cytokines or chemokines. The VEGF system plays a central
role in regulating tumor angiogenesis (117). This system is
regulated by hypoxia, a characteristic feature of the tumor
microenvironment. Hypoxia is sensed by the transcription
factor HIF1, containing a constitutive nuclear subunit HIF1β
and hypoxia-regulated subunit HIF1α. HIF1 targets genes
important in increasing oxygen tissue levels, such as
erythropoietin, glycolytic pathway enzymes, carbonic
anhydrase, heme oxygenase and VEGF-A. In addition, HIF1
upregulates CXCR4 expression, thereby linking angiogenesis
and tumor metastasis. Under normoxia, HIF1α is ubiquitinated
by the E3 ubiquitin ligase and tumor suppressor von Hippel-
Lindau (pVHL) and proteasomal degraded. HIF1α mRNA
level is upregulated in pancreatic ductal adenocarcinoma and
positively correlates with VEGF-A mRNA expression (118,
119). Although it has been demonstrated that targeting the
VEGF system in preclinical models suppresses the tumorigenic
growth in xenografts, a phase III study of the Cancer and
Leukemia Group B 80303 trail failed to demonstrate significant

differences regarding overall survival using the recombinant,
humanized anti-VEGF monoclonal antibody bevacizumab
combined with gemcitabine (120-122). This points to a
complex regulation of tumor angiogenesis in PDAC.
Correspondingly, the overexpression of potential angiogenic
growth factors EGF, TGFα, FGF-2, PDGFβ and chemokines
IL-8 and CCL20 has been demonstrated in PDACs (123, 124).

Conclusion

Although our knowledge of the molecular basis of PDAC has
increased during the past decade, an effective treatment is still
missing. It is not time to raise the white flag, it is time to
develop novel therapeutic strategies which should focus on
signaling circuits which lead to unrestrained proliferation,
insensitivity to growth inhibitory signals, evasion of apoptosis,
limitless replicative potential, tissue invasion, metastasis and
sustained angiogenesis. The FDA approval of Sunitinib, an
oral small molecular tyrosine kinase inhibitor, for the
treatment of advanced renal cell cancer demonstrates: (i) that
such an approach is feasible and (ii) that therapy refractory
solid cancers are treatable.
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