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The Role of Regulatory T Cells in Malignant Glioma

ADAM M. SONABEND, CLEO E. ROLLE and MACIEJ S. LESNIAK

The Brain Tumor Center, Section of Neurosurgery, The University of Chicago Pritzker
School of Medicine, 5841 South Maryland Ave, MC 3026, Chicago, IL 60637, U.S.A.

Abstract. The aggressive nature of gliomas is closely
related to their capacity to evade the anti-tumoral immune
response. The mechanisms implicated in this phenomenon
are only partially understood. A subset of T cells, termed
CD4* CD25" regulatory T cells (Treg), have been shown to
inhibit the actions of effector lymphocytes. These Tregs are
increased in the blood and tumors of glioma patients and
animals with experimental brain tumors. Moreover, tumor
infiltration by Tregs correlates with tumor grade and in
animal models, depletion of Tregs is associated with
prolonged survival. This review focuses on the role of Tregs
in the immune suppression exhibited by malignant gliomas.
The biology of these cells is briefly described in this context
and finally, potential therapeutic strategies related to Treg
ablation are explored.

High grade gliomas represent the most common primary
malignant tumor of the adult central nervous system (CNS)
and unfortunately, the one with the worst prognosis. The
aggressive nature of this neoplasia is closely related to its
complex pathophysiology. In particular, evasion of the
immune system by gliomas limits an effective anti-tumoral
response.

The immunodeficient status associated with gliomas was
described more than twenty years ago. Initially, it was noted
that the cellular immune response of patients and animals
with gliomas is impaired (1-3). The first reports described a
lack of proliferation of the peripheral T cells of these patients
after exposure to phytohemagglutinin (1, 2). More recently,
the immunodeficiency induced by these tumors has been
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partially explained by the secretion of TGF-beta (4-8) and
prostaglandins by tumor cells (9, 10). Moreover, tumor-
infiltrating microglia express immunosuppressive cytokines
such as interleukin 10 (IL-10) (11). In addition, the
decreased level of major histocompatibility complex (MHC)
class I expression by gliomas (12, 13) and the expression of
human leukocyte antigen (HLA)-G, a non-typical class
MHC molecule (14) appear to play a role in this
immunosuppressant status (15). To date, multiple factors
contributing to the evasion of immune response by gliomas
have been described, albeit, the precise relation between
these mechanisms and their relative roles remain unknown.

CD4* CD25* regulatory T cells (Tregs) have been
recently shown to infiltrate gliomas and their fraction is
increased in the blood of patients bearing these tumors.
Current evidence suggests a major role in the evasion of
immune rejection by these cells (16-24). In this review, the
role of Tregs in immune evasion by glioma is explored. In
addition, the biology and the mechanism of action of these
cells are described.

Biology of Regulatory T Cells

Tregs are lymphocytes that have a physiological role in the
modulation of the immune response. Specifically, these cells
prevent autoimmunity by inhibiting autoreactive effector T
lymphocytes. Systemic depletion of Tregs has been
associated with a wide variety of autoimmune diseases in
murine models as well as in humans (25-31). In the context
of cancer, the presence of Tregs is believed to maintain a
lack of immune rejection of neoplastic cells in many
malignancies including colorectal (32, 33), esophageal (34),
gastric (34), pancreatic (35), breast (36-39), lung (39-42)
and ovarian (42) tumors. Therefore, the precise
understanding of the modus operandi of Tregs has potential
therapeutic implications that should be explored.
Essentially, Tregs are distinguished from other lymphocytes
by several characteristics. First, instead of being induced de
novo from naive T cells upon antigen exposure, Treg
development takes place in the thymus. These cells leave the
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thymus as a mature and distinct population with a defined
functional phenotype (43). Moreover, these cells express IL 2
receptor a chain (IL-2R o chain or CD25) and are dependent
on stimulation with IL-2 for their expansion and function (25,
44, 45). Consistent with this fact, mice that are deficient in IL-
2, IL-2R, or signal transducer and activator of transcription 5
(STATS5) have a marked reduction in Tregs and subsequently
develop autoimmunity (44, 46-50). The majority of the IL-2
needed for the activation of these cells is secreted by other T
cells. Thereby, the presence of effector T cells and the resultant
IL-2 secretion activate Tregs that subsequently modulate the
activity of reactive cells. This feedback mechanism has been
proposed to be constantly limiting the autoimmune response
(reviewed by Sakaguchi in (51)). Tregs specifically express
forkhead box P3 (FoxP3), a transcription factor that plays a key
role in the definition of their phenotype (52-54). FoxP3 appears
to be distinctive for Tregs as it is expressed in CD4* CD25* T
cells and CD4* CD25* CD8- thymocytes whereas it is not
found in other thymic cells, T cells, B cells, natural killer or
natural killer T cells (52, 53). FoxP3-deficient mice fail to
develop Tregs and die from inflammatory diseases that can be
abrogated by the transfer of these cells from naive mice.
Similarly, in the case of humans, a syndrome characterized by
immune dysregulation, diabetes mellitus type I, thyroiditis,
inflammatory bowel disease, and allergies is associated with
mutations on the FoxP3 gene (55-57). Finally, Tregs are capable
of suppressing the proliferation and action of other T cells.
FoxP3 and CD25 are reliable and constant markers that have
served to isolate and characterize Tregs.

Recent studies have described the existence of other
populations of T regulatory lymphocytes which unlike classic
CD4* CD25" Tregs, are induced in the periphery via T cell
receptor (TCR)-MHC/peptide stimulation. At least three
populations of peripherally induced CD4* regulatory T cells
have been described, Tr1 cells, Th3 cells, and iTregs, which
differ in their genesis, their suppressive mechanisms, and their
respective FoxP3 expression. Trl cells are induced in the
periphery in a process that is dependent on IL-10 (58) and
interactions with immature dendritic cells (DC) (which lack
the expression of co-stimulatory molecules). Trl cells are
characterized by the expression of CD4+ CD25high 4pq
mediate suppression by secreting large amounts of I1L-10. In
contrast to Tregs, FoxP3 is not constitutively expressed in Tr1l
cells (59). Th3 cells are induced in the periphery through a
TGF-beta dependent process, and these cells require IL-10 for
expansion. Th3 cells suppress via the secretion of transforming
growth factor beta (TGF-beta) (60). Both Trl and Th3 cells
are implicated in oral tolerance (61). With respect to their role
in neoplasia, these cells constitute part of the tumor infiltrating
lymphocytes from gastric cancer patients (34, 62). Lastly,
iTreg are induced from CD4* CD25 T cells upon the
exposure to the suppressive cytokine milieu at the tumor site.
These cells express high levels of FoxP3 and can suppress via
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both cell-cell contact and soluble factors. iTreg can also be
induced via interactions with Tregs (63).

While there are multiple populations of regulatory T cells
with distinct suppressive mechanisms, this review will focus on
Tregs, characterized by co-expression of CD4, CD25 and
FoxP3. The precise means by which Tregs inhibit effector T
cells has not been fully elucidated. Some evidence has
suggested the implication of cell-cell contact, with a significant
contribution of cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) (64-67) and membrane-bound TGF-beta (68, 69).
In addition, heme oxygenase-1 (HO-1), a rate-limiting enzyme
in heme catabolism, seems to play a role in the immune
suppressive phenotype of Tregs. HO-1 is constitutively
expressed in human CD4* CD25" Tregs (70) and its expression
is induced by FoxP3 (71). HO-1 suppresses T cell proliferation
through the production of carbon monoxide (72, 73).

Regulatory T Cells in Glioma

Our group has found tumor infiltration of Tregs in patients
with glioblastoma multiforme (GBM) (17). The expression
of CD4* CD25* FoxP3* T cells was significantly higher in
patients with GBM than in controls, with a mean of 24.7%
of Tregs among the glioma-infiltrating lymphocytes, whereas
these cells were absent from control brain specimens
(p<0.01). Moreover, higher levels of FoxP3 expression in the
CD4* CD25" cells were observed in regulatory T cells
isolated from the tumor tissue (55.1% ) in comparison to
autologous patient blood (33.4% ) and blood from control
individuals (15.6% ) (p<0.01). In an in vitro suppression
assay Tregs inhibited T cell proliferation in a dose-dependent
manner. Among various markers analyzed, the expression of
CD62L and CTLA-4 was elevated in the glioma Tregs in
comparison to that of the controls.

At the same time, Fecci et al., (20) found that whereas the
absolute counts of both CD4* T cells and CD4* CD25*
FoxP3* CD45RO" Tregs were greatly diminished in the
peripheral pool of patients with malignant glioma, the Treg
fraction was increased in the remaining CD4 compartment in 5
out of the 8 patients evaluated (Figure 1). The proportion of
Tregs in the peripheral blood of patients with GBM was 2.63
times higher than that found in the blood of normal volunteers
(p=0.004). Interestingly, their experiments suggested that
despite the reduction in their total number, the increased Treg
fraction (p=0.0003 versus controls) was sufficient to elicit the
characteristic impairment of T-cell responsiveness in vitro
(Figure 2). The patients with an elevated Treg fraction showed
significant CD4" T cell proliferative dysfunction (p<0.0001),
whereas the patients without Treg elevation possessed CD4* T
cells that proliferated at normal levels. After Treg depletion in
vitro, T cells from the patients bearing malignant gliomas
regained their function and proliferated to levels equivalent to
those of normal controls (20).
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Figure 1. The fraction of Tregs (top) and the proliferation levels of
CD4+ cells (bottom) in eight patients with GBM (P1 to P8) and four
healthy individuals (N1 to N4) who underwent leukophoresis. Of note,
the 5 patients with an increased Treg fraction had a poor CD4*
lymphocyte proliferation (white columns). 3[H]: CPM (counts per
minute). Reprinted with permission from (20).

More recently, our group has found a correlation between
glioma Treg infiltration and tumor grade (Figure 3) (74).
In this study, the correlation between FoxP3 and HO-1 was
investigated. The highest level of FoxP3 expression was
found in patients with grade IV tumors (11.54% ) versus
grade I1I (6.74% ) or grade II (2.53% ) (p<0.05). Moreover,
in grade IV tumors, the frequency of HO-1 mRNA
expression in CD4" CD25% cells was 11.8+2.45% vs.
7.42+031% in grade III and 2.33+0.12% in grade II.
HO-1 has been shown to accumulate during glioma
progression, and apparently, it plays a role in FoxP3
mediated immune suppression. Tumor infiltrating Tregs
stained positively with anti-HO-1 antibody and the
expression of HO-1 correlated with CD4* CD25% FoxP3*
infiltration (r=0.966). These results suggested that the
induction of HO-1 mRNA expression is linked to the
expression of FoxP3 in CD4* CD25" glioma infiltrating
Tregs. Collectively, this data supports the notion that HO-1
is a key suppressive factor for regulatory T-cells during the
growth of malignant brain tumors (74).
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Figure 2. The increased Treg fraction in 5 out of the 8 patients with
GBM is associated with a proliferative impairment of CD4% lymphocytes
from healthy human donors. For this experiment Tregs from GBM
bearing patients and CD4% cells from healthy controls were isolated and
mixed to a final fraction of an absence of Tregs (0% ), physiological
fraction of Tregs (8% ), or the Treg fraction observed in patients with
GBM (16% ). The cells were stimulated with anti-CD3. Increases in the
Treg fraction to those levels found in patients with GBM were sufficient
to produce significant deficits in the ability of T cells to proliferate.
Reprinted with permission from (20).

Chemokines: Mediators of Tumor
Infiltration by Tregs

Chemokines are a series of soluble peptides that have
been implicated in various processes including
angiogenesis and CNS development. Of utmost interest,
chemokines play a central role within the immune system,
as the secretion of these molecules leads to “chemotactic”
migration of leucocytes (75-77). The vast variety of
known chemokines are classified according to their cystin
motifs (C), and accordingly, different families for these
receptors such CXC, CC, C and CX3C have been
described (78). Binding of specific chemokines to their
cognate receptors, which are coupled to G proteins,
promotes distinct chemotactic effects depending on the
leucocyte population and chemokine receptor expression
patterns. Chemokines appear to play a significant role in
various human diseases including cancer (79-82). Since it
is known that chronic inflammation can predispose to
cancer formation and progression, it is suspected that the
expression of chemokines could contribute to this process
(reviewed by Rollins in (79)). On the other hand,
chemokines might elicit an intrinsic effect on tumor cells.
For instance, multiple human cancers including leukemias,
lymphomas, gliomas and various epithelial carcinomas
express CXC receptor 4 (CXCR4) and respond to its
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Figure 3. Frequency of tumor infiltrating lymphocytes in patients with astrocytoma (grade 1I-1V). (A) Tregs infiltration in human astrocytoma was
examined by flow cytometry analysis of CD4 and CD25 expression of electronically gated lymphocytes. (B) shows the frequency of Tregs with grade
of disease. The mean frequency of regulatory T-cells was 11.33+1.52% (range: 10.46 —13.5% ) in grade 11, 15.75+1.5% (range: 14.88-17.5% ) in
grade 111, and 24.85+2.67% (range: 20-28.4% ) in grade 1V glioma tumors (p<0.02) in total CD3* T-cells. TIL (tumor infiltrating lymphocytes).
Reprinted with permission from (74). SSC (Site scatter), FSC (Forward scatter).

ligand CXC ligand 12 (CXCL12). This ligand-receptor
interaction promotes the migration and metastatic
establishment of tumor cells (82).

With regards to the migration of Tregs into tumors, there
is data suggesting that cancers express a series of
chemokines that promote the infiltration by these regulatory
lymphocytes. For instance, chemokine CCL22 promotes the
migration of Tregs into prostate and ovarian carcinomas (83,
84). Human gliomas express chemokines CCL2 and CCL22,
and secrete CCL2. This has been investigated in the human
glioma cell lines D-54, U-87, U-251, and LN-229 as well as
in tumor cells from eight patients with GBM. Interestingly,
the Tregs from these brain tumor patients had significantly
higher expression of the CCL2 receptor CCR4 than the Tregs
from healthy controls. Migration experiments have suggested
that Treg migration is mediated by CCL2 and CCL22.
Moreover, this migration was blocked by antibodies to the
chemokine receptors CCR2 and CCR4 (85).

Future Perspectives: Therapeutic Ablation of Tregs

Ideally, the ablation of Tregs could lead to an effective
immune response against gliomas. This rational is supported
by two facts. Firstly, effective anti-tumoral responses
documented in anti-glioma immunotherapies suggest an
important role for T cells. Secondly, the main targets of
Tregs’s suppressive features are also T cells.

Anti-CD25 antibodies. Different alternatives to neutralize
Tregs are being explored. The use of an anti-CD25 antibody

1146

is an illustrative example of this principle (16, 21, 22).
Consistent with findings in human patients with gliomas
(86), in addition to CD4 lymphopenia, the Treg fraction is
increased in glioma-bearing mice (16, 87). To evaluate the
role of Tregs in tumor development, our group has tested an
anti-CD25 antibody in a murine model for glioma, where
tumors were established by intracranial implantation of the
cell line GL261. The tumor-infiltrating lymphocytes isolated
from mice with GL261 tumors were found to have a
significant increase in Tregs compared with the control
animals (p<0.05). The animals injected with anti-CD25
antibody exhibited a decrease in Tregs (CD4* CD25%) and
lived significantly longer than the untreated tumor-bearing
control animals (Figure 4) (p<0.05).

Fecci et al., have also found that the anti-CD25 antibody
is beneficial for the treatment of experimental brain tumors
(21). Consistent with their findings in human patients with
gliomas, in addition to CD4 lymphopenia, the Treg fraction
was increased in glioma-bearing mice, but systemic anti-
CD25 administration failed to completely eliminate Tregs,
reducing their number only moderately. Nonetheless, the
suppressive function of the Tregs decreased leading to
enhanced lymphocyte proliferative and interferon gamma
(IFN-gamma) responses and up to 80% specific lysis of
glioma cell targets in vitro (21).

Targeting by TLR ligands. Toll-like receptors (TLR) are
interesting molecules in the context of tumor immunity.
Specifically, stimulation of TLR9 by DNA containing CpG
sequences has been shown to elicit an effective anti-tumor
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Figure 4. Prolongation of survival of mice with experimental GL261
gliomas after treatment with anti CD25 antibody is represented on the
Kaplan-Meier plot. Median survival was increased from 27 to 40 days.
40% of the mice treated with the anti CD25 antibody remained long-term
survivors (>70 days) (p<0.005). Reprinted with permission from (16).

response for various neoplasias including experimental brain
tumors (19, 88-92). With regard to Tregs, some evidence
suggests the possibility of neutralizing their effects by
stimulating TLRs. For instance, one study has described the
reversal of Treg suppressive function by stimulation with
synthetic or natural ligands for human TLR8 (93).
Interestingly, in this case, the effect was independent of DC,
but required functional TLRS, MyD88 and IRAK4
(molecules implicated in the intracellular signaling pathway
for various TLRs) signaling in the Treg cells. Most
importantly, the transfer of TLR8 ligand-stimulated Tregs
cells into tumor-bearing mice led to the enhancement of anti-
tumor immunity (93).

Systemic treatment with TLRO ligands has a deleterious
effect on Tregs. We have described apoptosis induction in
experimental brain tumors and the prolongation of survival
following stimulation of TLRY with CpGs. Interestingly, in
addition to apoptosis, CpG stimulation of murine gliomas
enhanced the antigen presenting capacity of microglia,
shifted the immune response toward CD8* T cells, and
decreased the number of infiltrating Tregs (19). The
mechanism for this phenomenon is not clear, and in this
study the extent to which Treg decrease contributed to the
therapeutic benefit of CpG was not explored. Nevertheless,

this finding supports the possibility of antagonizing Tregs by
stimulation of TLRs, an illustrative example of modulation
of lymphocyte function by the innate immunity.

Summary

Tregs contribute to the evasion of the immune response
required for the development of malignant gliomas. These
cells are found infiltrating tumors, and in the blood of
patients and animals with gliomas. Compelling evidence
suggests that tumoral infiltration by Tregs leads to the
suppression of effector T cells, which would otherwise be
capable of mounting an immune response against gliomas.

The causative relation of Tregs tumor infiltration and the
progression of malignant gliomas is not clearly defined.
Nevertheless, the possibility of Treg suppression of the anti-
tumor immunity contributing to the development of gliomas
is suggested by the correlation of Treg tumor infiltration and
tumor grade, and by the fact that these cells are capable of
suppressing tumor immunity.

In contrast to the development of other lymphocyte
populations, naturally occuring Tregs seem to mature in the
thymus rather than in the periphery. An interesting question
that remains unanswered is the means by which gliomas can
promote the generation of Tregs in the thymus or in the
tumor site.

The role of Tregs in the tumor biology of gliomas might
be of interest for its potential therapeutic implications.
Indeed, animal models have shown evidence of antitumor
effects derived from the ablation of Tregs and some
preliminary studies suggest than these cells can be targeted
by various means. Neutralization with anti-CD25 antibodies
or DNA oligonucleotides that stimulate TLR ligands are two
examples of such a principle. Further research is needed to
investigate the best way to limit the activity of these
regulatory cells. The modulation of anti-tumor immunity is a
rapidly evolving field within brain tumor biology. This area
of research warrants close attention by the professionals who
treat patients with such a devastating disease, since a
thorough understanding of this process might lead to
interesting therapeutic implications in the near future.
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