First *In Vivo* Evaluation of Liposome-encapsulated ²²³Ra as a Potential Alpha-particle-emitting Cancer Therapeutic Agent THORA J. JONASDOTTIR¹, DARRELL R. FISHER², JØRGEN BORREBÆK³, ØYVIND S. BRULAND⁴ and ROY H. LARSEN³ ¹The Norwegian School of Veterinary Science, Department of Companion Animal Clinical Sciences, Small Animal Section, P.O. Box 8146 Dep., N-0033 Oslo, Norway; ²Pacific Northwest National Laboratory, Richland, Washington, 99354 U.S.A.; ³Algeta ASA, P.O. Box 54 Kjelsås, N-0411 Oslo; ⁴Department Group of Clinical Medicine, University of Oslo and Department of Oncology, The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway Abstract. Background: Liposomes carrying chemotherapeutics have had some success in cancer treatment and may also be suitable carriers for therapeutic radionuclides. This study was designed to evaluate the biodistribution and to estimate the radiation doses of the alpha emitter ²²³Ra loaded into pegylated liposomes in selected tissues. Materials and Methods: ²²³Ra was encapsulated in pegylated liposomal doxorubicin (PLD) by ionophore-mediated loading. The biodistribution of liposomal ²²³Ra was compared to free cationic ²²³Ra in Balb/C mice. Results: Liposomal ²²³Ra circulated in the blood with an initial half-life in excess of 24 hours, which agreed well with that reported for PLD in rodents, while the blood half-life of cationic ²²³Ra was considerably less than an hour. When liposomal ²²³Ra was catabolized, the released ²²³Ra was either excreted or taken up in the skeleton. This skeletal uptake increased up to 14 days after treatment, but did not reach the level seen with free ²²³Ra. Pre-treatment with non-radioactive PLD 4 days in advance lessened the liver uptake of liposomal ²²³Ra. Dose estimates showed that the spleen, followed by bone surfaces, received the highest absorbed doses. Conclusion: Liposomal ²²³Ra was relatively stable in vivo and may have potential for radionuclide therapy and combination therapy with chemotherapeutic agents. The application of alpha-emitting radionuclides for targeted tumor therapy is an exciting new field of cancer research. A number of candidate compounds have been clinically tested (1-3), and recently the first phase II study with radium-223 Correspondence to: Roy H. Larsen, Ph.D., Algeta ASA, P.O. Box 54 Kjelsås, N-0411 Oslo, Norway. Tel: +47 23007990, Fax: +47 23007991, e-mail: roy.larsen@algeta.com Key Words: Alpha-emitting ²²³Ra, pegylated liposomes, in vivo evaluation. (²²³Ra), as a dissolved dichloride salt, in the targeted therapy of calcified bone metastases was completed (4). ²²³Ra is a promising radionuclide for tumor therapy because it can be produced in large quantities relatively inexpensively (compared to other alpha emitters), its half-life of 11.4 days allows sufficient time for preparation, shipment and handling (4), and it has a favorable decay chain with short-lived daughters that emit three additional alpha-particles (Table I). To extend the use of ²²³Ra to applications other than bone metastases, it would have to be incorporated in a carrier compound with tumor-seeking properties. However, efforts to prepare conjugates, *e.g.*, for radioimmunotherapy, with proven *in vivo* applicability have been unsuccessful to date (5). Liposomes carrying a chemotherapeutic agent have been successfully introduced into cancer therapy (6). Recently, we presented a study demonstrating that liposome-encapsulated radium and actinium could be prepared from pre-formed liposomes by ionophore-mediated loading (7). The ²²³Ra was incorporated with a good loading yield and was stably retained for several days when incubated at 37°C in serum. The current work represents the first evaluation of liposome-encapsulated ²²³Ra *in vivo*. Biodistribution and blood clearance measurements were performed with a liposome formulation (Caelyx™/Doxil™; Schering Plough, Kenilworth, NJ, USA) having well-characterized properties *in vivo*. The *in vivo* behavior and stability of liposome-encapsulated ²²³Ra was also compared to that of dissolved ²²³RaCl₂. ### **Materials and Methods** Preparation of radionuclide. 223 Ra was produced from 227 Ac ($t_{1/2}$ =22 years) and 227 Th ($t_{1/2}$ =18.7 days) according to previously described methods (8). Briefly, 223 Ra was separated from the actinides 227 Ac and 227 Th by the use of Ac-resin, followed by cation exchange chromatography and filtration through a sterile filter 0250-7005/2006 \$2.00+.40 Table I. Summary of effective energy and dose constants for ²²³Ra and progeny for all emissions combined. | Radionuclide (half-life, decay mode) | Effective energy ¹ (MeV) | Dose constant Δ (Gy kg Bq ⁻¹ s ⁻¹) | | |--------------------------------------|-------------------------------------|--|--| | ²²³ Ra (11.43 days α) | 5.991 | 9.58x10 ⁻¹³ | | | | 5.56^2 | 8.90×10^{-13} | | | ²¹⁹ Rn (3.96 sec α) | 6.95^{1} | 1.11x10 ⁻¹² | | | | 6.72^2 | $1.08 \text{x} 10^{-12}$ | | | ²¹⁵ Po (1.78 microsec, α) | 7.531 | 1.20x10 ⁻¹² | | | | 7.39^2 | 1.18x10 ⁻¹² | | | ²¹¹ Pb (36.1 min, β) | 0.518^{1} | 8.29x10 ⁻¹⁴ | | | ²¹¹ Bi (2.17 min, α) | 6.751 | 1.08x10 ⁻¹² | | | | 6.572 | $1.05 \text{x} 10^{-12}$ | | | ²⁰⁷ Tl (4.77 min, β) | 0.494^{1} | 7.90x10 ⁻¹⁴ | | | Total | 28.21 | 4.5x10 ⁻¹² | | | | 26.4^2 | $4.2x10^{-12}$ | | From Nuclide Explorer data sheets, Institute for Transuranium Elements, Karlsruhe, Germany. European Commission, Joint Research Centre, Program Version 1.00 (1999). Branching of less than 1% was not considered. (Millex GV 0.22 $\mu m;$ Millipore Ireland B.V., Tullagreen, Carrigtwohill, Co. Cork, Ireland). The properties of ^{223}Ra are presented in Table I. Loading of ²²³Ra into liposomes. Pegylated liposomal doxorubicin (PLD), Caelyx™, which consists of liposomes averaging about 80 nm in diameter, and corresponding to 2 mg doxorubicin per mL, was used. The liposomes were subjected to buffer exchange with a buffer containing 20 mM HEPES and 300 mM sucrose, adjusted with NaOH to pH 7-8. The lipsomes were added to the buffer and concentrated three times in a centrifuge concentration cartridge (Millipore UFV2BTK10, 30 KNMWL membrane, 15 mL maximum volume; Millipore, Bedford, IL, USA) inserted into an Eppendorf Centrifuge 5810R (Eppendorf, Germany), operated at 20°C and 1400 relative centrifugal force (rcf). The calcium-ionophore (Calcimycin; Sigma, St. Louis, MO, USA) was dissolved to a concentration of 1 mg per mL in chloroform. Approximately 15 μL was added to a 2-mL vial and the chloroform evaporated off in a stream of argon to generate a thin film of Ca-ionophore on the inner surface of the vial. The 223Ra solution was diluted in a solution of sucrose (300 mM) and HEPES (20 mM). The solution was preheated to 60°C and 200 µL of concentrated PLD was added. The loading mixture was shaken for 45 minutes on a Thermomixer (Eppendorf) followed by the addition of 200 µL 10 mM EDTA solution. After further shaking for 5-10 minutes, the mixture was transferred to a Sephadex G-25 PD-10 column (Pharmacia, Lund, Sweden) and eluted with 0.9% NaCl solution. The fraction containing the liposomes, recognized by its red color, was collected, and 10% of a 10x Dulbecco's Modified Eagle's Medium (Sigma) was added. Subsequently, inside a sterile hood, the liposomes were sterile-filtered through a 0.22- μ m sterile filter (Millex GV 0.22 μ m; Millipore Ireland B.V.) into a 10-ml sterile vial that was immediately capped with a metal-and-rubber cap. The vial was stored for at least 3 hours to reach equilibrium between 223 Ra and its daughter nuclides. A Capintec CRC-15R dose calibrator (Capintec Inc., Ramsey, NJ, USA), which was calibrated for the 223 Ra decay chain in equilibrium with the daughter nuclides, was used to quantify the radioactivity. Animal model. Healthy white Balb/C mice of both genders (around 12 weeks old and weighing 18-25 g) were used to determine the biodistribution of liposomal ²²³Ra. The research protocol fulfilled the requirements of the European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes (ETS 123) issued by the Council of Europe and approved by The Norwegian Animal Research Authority. The mice were housed under standard condition with access to food and water ad libitum. Biodistribution study. The mice were divided into four test groups. Each group consisted of six or seven animals of both genders. Six mice in each group received an intravenous (i,v) pre-treatment with doxorubicin liposomes (8.1 mg/kg) 4 days prior to the main treatment with 375 kBq/kg ²²³Ra and doxorubicin liposomes (0.9 mg/kg) i.v. to reduce the uptake of liposomal ²²³Ra by the reticulo-endothelial system and to achieve the highest possible blood: liver ratio. One mouse in each of groups 2, 3 and 4 was left untreated and used to measure the possible re-assimilation of the liposomal ²²³Ra from the feces or bedding. For each group, all available blood was drawn by cardiac puncture under anesthesia (Enflurane; Abbott Laboratories, Ltd., Queen Borough, Kent, UK) followed by euthanasia. On dissection, all assessable blood was carefully wiped off the organs. At least 12 hours after dissection, when ²²³Ra would be in equilibrium with the daughter nuclides, the radioactivity in the blood, urine and different tissues was measured in a Crystal II Multidetector System (Packard Instrument Company, Downers Grove, IL, USA), and was compared with the injection standards at 1 hour, 24 hours, 6 days and 14 days postinjection with liposomal ²²³Ra. Comparative biodistribution study of free ²²³Ra. To study the difference between liposomally-encapsulated ²²³Ra and free ²²³Ra, one group of mice was injected *i.v.* with dissolved ²²³RaCl₂. Five animals were sacrificed at 1 hour, 24 hours and 14 days postinjection, tissue samples were removed, and the radioactivity per unit tissue mass was determined, as described above for the biodistribution study on liposomal ²²³Ra. Localization indices (LI) for an organ or tissue at a specific time were calculated for liposomal *vs.* free ²²³Ra by the following equation: LI=[% administered activity/g tissue for liposomal ²²³Ra]/[% administered activity/g tissue for free ²²³Ra]. Dosimetry calculations. Radiation absorbed doses were calculated for the major organs, tissues, and for the whole body using methods previously described (9). An equilibrium dose-constant of 4.51x10⁻¹² Gy kg/Bq-sec was used, which assumes equilibrium between ²²³Ra and its decay products in each tissue. An energy-absorbed fraction of 1.0 was assumed, since the primary contributor to the dose is the short-range alpha-particles, and since the relative ¹Includes alpha, beta, photon, X-ray and electron energies. ²Includes only alpha particle energies. Table II. Biodistribution, as percent of administered activity per gram of tissue¹, of liposomal ²²³Ra in Balb/C mice (corrected for decay). | Tissue | 1 hour | 24 hours | 6 days | 14 days | |-----------------|------------------|------------------|------------------|-------------------| | Blood | 30.51±3.19 | 17.21±1.88 | 1.08±0.77 | 0.05±0.02 | | Lung | 11.89 ± 2.17 | 8.37 ± 1.63 | 1.29 ± 0.58 | 0.19 ± 0.10 | | Heart | 3.85 ± 2.54 | 2.85 ± 0.59 | 0.38 ± 0.25 | ND^2 | | Liver | 4.59 ± 0.80 | 3.19 ± 0.37 | 0.53 ± 0.07 | 0.17 ± 0.04 | | Spleen | 13.78 ± 2.32 | 32.36 ± 7.04 | 42.46±16.92 | 29.47 ± 12.16 | | Kidney | 17.41±2.34 | 9.07 ± 0.87 | 3.11 ± 0.82 | 0.53 ± 0.39 | | Stomach | 1.90 ± 0.29 | 2.50 ± 0.52 | 0.88 ± 0.24 | 0.32 ± 0.12 | | Small intestine | 2.22 ± 0.25 | 2.12 ± 0.24 | 0.39 ± 0.12 | 0.06 ± 0.02 | | Large intestine | 1.27 ± 0.20 | 2.97 ± 1.04 | 0.63 ± 0.11 | 0.09 ± 0.04 | | Muscle | 0.61 ± 0.13 | 0.46 ± 0.15 | 0.26 ± 0.14 | 0.18 ± 0.15 | | Brain | 0.71 ± 0.21 | 0.42 ± 0.15 | ND | ND | | Skull | 4.31 ± 1.55 | 6.38 ± 1.25 | 15.05 ± 4.56 | 12.38 ± 3.57 | | Femur | 5.82 ± 1.73 | 7.63 ± 0.74 | 15.63 ± 3.90 | 16.99 ± 3.85 | | Skin | 0.69 ± 0.55 | 1.96 ± 1.14 | ND | ND | $^{^{1}}$ Mean \pm SD, n=5 to 6 animals. contributions to the organ dose from cross-organ irradiation by beta-particles and γ -rays is negligible for 223 Ra decay-chain emissions. To validate the assumed equilibrium between ²²³Ra and the daughter nuclides, one animal, injected 24 hours earlier with liposomal ²²³Ra, was sacrificed by cervical dislocation and dissected. Count rates for ²²³Ra, ²¹¹Pb and ²¹¹Bi were measured according to their characteristic γ-rays using a solid-state photon detector (GEM-50; ORTEC, Oak Ridge, TN, USA) coupled to a digital γ-ray spectrometer (Dispec Jr., ORTEC) and analyzed using the computer software Gammavision-32, version 6.01 (ORTEC). For ²²³Ra, the 324-keV γ-ray (3.65% abundance) was chosen, while for ²¹¹Pb and ²¹¹Bi, the 405-keV (3.84%) and 351-keV (13.0%) γ-rays (Nuclide Explorer 2000, Version 1.2, European Communities 2000, Institute for Transuranium Elements, Karlsruhe, Germany) were chosen to determine the levels of the different radionuclides which were present shortly after the animal had been sacrificed. ## Results *Loading yield.* The amount of 223 Ra loaded into the Caelyx[™] liposomes was 51% to 67% for three individual experiments. A control experiment using 223 Ra and liposomes under identical conditions, but without the ionophore, showed less than 1% of the 223 Ra in the liposome fraction eluted from the Sephadex G-25 D-10 column. Animal studies. The data for the biodistribution study are shown in Table II and Figures 1 and 2. These results showed that the blood clearance of injected liposomal radium was relatively slow, as expected for pegylated liposomes (Figure 1). Among soft-tissue organs, the highest uptake was observed in the liver (Figure 2). The uptake as a percent of the Figure 1. Blood clearance of liposomal ²²³Ra in Balb/C mice. administered activity per gram was comparatively low in the liver relative to the substantial uptake in the spleen, particularly at later time-points (Table II, Figure 2). Skeletal uptake, reflected by activity in the femur and the skull, increased with time, probably due to gradual catabolism of the liposomes and release of free ²²³Ra. No significant differences were observed in the radioactivity uptake between marrow-containing samples (femur) and those with no marrow (skull). It appeared that ²²³Ra bone uptake reflected the free radium and not an accumulation of liposomal radium in the bone marrow. When the results from the biodistribution study were analyzed for gender differences, only one tissue at 6 days and one tissue at 14 days indicated significant differences (p < 0.05, Student's paired t-test). At 6 days, females had a significantly higher splenic uptake (p < 0.05, Student's paired t-test), while at 14 days the males had significantly higher colonic uptake (p < 0.05, Student's paired t-test). Liposomal ²²³Ra LI were determined for various tissues and, on comparison with cationic ²²³Ra at 1 hour, 24 hours and 14 days after injection (Figure 3), distinct differences were observed. The LI were particularly high for blood as a result of much slower blood clearance of liposomal ²²³Ra vs. free ²²³Ra. The LI for most soft tissues were significantly more than 1.0, whereas the indices for bone samples were less than 1.0. Assessment of daughter radionuclide distribution. Data concerning the daughter radionuclide biodistributions are shown in Table III. Because of the short half-lives of 219 Rn ($t_{1/2}$ =4 sec) and 215 Po ($t_{1/2}$ =1.8 microsec), the first three alpha-particle emissions in the 223 Ra decay series take place at or near the site of parent 223 Ra deposition. The final alpha decay in the series (211 Bi, $t_{1/2}$ =2.17 min) follows the ²ND=not determined (because of low activity counts *vs.* background counts). Figure 2. Biodistribution of liposomal ²²³Ra for selected tissues of Balb/C mice after intravenous injection. Figure 3. Localization indices LI=[percent of administered activity per gram for liposomal ^{223}Ra]/[percent of administered activity per gram for free ^{223}Ra] for a tissue at a specific time-point in Balb/C mice. Bl – blood; Lu – lung; He – heart; Li – liver; Sp – spleen; Ki – kidney, St – stomach; SI – small intestine; Co – colon; Fe – femur; Mu – muscle; Br – brain; Sk – skull. decay of 211 Pb ($t_{1/2}$ =36.1 min) and, therefore, redistribution away from the site of 223 Ra is possible. Table III shows the relative γ peak activity determinations for 223 Ra, 211 Pb and 211 Bi in samples (urine, blood, kidneys, femur, liver and spleen). Measurements indicated depletion of ²¹¹Pb/²¹¹Bi in the urine and spleen and some accumulation of ²¹¹Pb/²¹¹Bi in the kidneys. For blood, depletion of ²¹¹Pb but not of ²¹¹Bi was found. The assumed equilibrium between ²²³Ra Table III. Relative levels of ²¹¹Pb and ²¹¹Bi compared to ²²³Ra in mouse samples 24 h after intravenous injection of liposomal ²²³Ra. | Sample | Time (min) from sacrifice to measurement | Theoretical ph | nysical ingrowth ¹ 211Bi | Measured ratio ²¹¹ Pb vs. ²²³ Ra | Measured ratio ²¹¹ Bi vs. ²²³ Ra | | |--------|--|----------------|-------------------------------------|--|--|--| | Urine | 1 | 0.017 | 0.002 | 0.39 | 0.36 | | | Blood | 3 | 0.054 | 0.019 | 0.43 | 1.20 | | | Kidney | 7 | 0.124 | 0.075 | 1.42 | 1.57 | | | Femur | 12 | 0.204 | 0.155 | 0.86 | 1.00 | | | Liver | 17 | 0.277 | 0.155 | 1.23 | 1.36 | | | Spleen | 22 | 0.343 | 0.301 | 0.60 | 0.44 | | ¹Ratio of daughter radionuclides to ²²³Ra in a sealed source of pure ²²³Ra from time of sacrifice to time of measurement. Table IV. Fraction¹ of administered ²²³Ra retained per gram organ or tissue in Balb/C mice from 1 to 226 h after intravenous injection of liposomal ²²³Ra (not corrected for decay). | Organ | Time (h) | | | | | | |-----------------|----------|---------|---------|---------|--|--| | or
tissue | 1 h | 24 h | 144 h | 226 h | | | | Blood | 0.304 | 0.162 | 0.00750 | 0.00021 | | | | Lung | 0.119 | 0.0788 | 0.00896 | 0.00081 | | | | Heart | 0.0384 | 0.0268 | 0.00264 | ND^2 | | | | Liver | 0.0458 | 0.0300 | 0.00368 | 0.00073 | | | | Spleen | 0.137 | 0.305 | 0.295 | 0.126 | | | | Kidney | 0.174 | 0.0854 | 0.0216 | 0.00227 | | | | Stomach | 0.0190 | 0.0235 | 0.00611 | 0.00137 | | | | Small intestine | 0.0221 | 0.0200 | 0.00271 | 0.00026 | | | | Large intestine | 0.0127 | 0.0280 | 0.00438 | 0.00038 | | | | Muscle | 0.00608 | 0.00433 | 0.00181 | 0.00077 | | | | Brain | 0.00708 | 0.00395 | ND | ND | | | | Skull | 0.0430 | 0.0600 | 0.105 | 0.0529 | | | | Femur | 0.0580 | 0.0718 | 0.109 | 0.0726 | | | | Skin | 0.00688 | 0.0185 | ND | ND | | | ¹Accounts for both physical decay and biological clearance. and its daughters is, therefore, quite relevant for blood, femur and liver. For the kidneys, we observed more ²¹¹Bi than estimated, while for the spleen the observed levels were less than estimated. Liposomal 223 Ra biokinetics and dosimetry. Radionuclide clearance was fitted to a single exponential equation for all tissues according to the equation: $y=ae^{-bx}$ (x=time in hours, a=intersection at the y-axis, b=slope), except for blood, where clearance was best fitted to a two-exponential equation of the form: $y=ae^{-bx}+ce^{-dx}$. For blood, the coefficients a=0.299, b=0.0256, c=0.0597 and d=1.56 were obtained, corresponding to blood clearance half-times of 0.44 hour (6%) and 27.1 hours (64%). The remaining 30% did not clear from the blood, but rather was redistributed *via* fluids and was retained in soft tissues and the skeleton. Table V. Biokinetic parameters¹ for ²²³Ra in organs and tissues of Balb/C mice receiving liposomal ²²³Ra. | Organ
or
tissue | a | b | r | $T_{\rm eff}$ | ti | Residence
me, τ, (μCi-
hours per
μCi admi-
nistered) | |-----------------------|---------|---------|-------|---------------|-------|--| | Lung | 0.104 | 0.0149 | 0.991 | 46.5 | 56.0 | 7.00 | | Heart | 0.0398 | 0.0189 | 0.999 | 36.6 | 42.3 | 2.10 | | Liver | 0.0366 | 0.0124 | 0.965 | 56.1 | 70.5 | 2.96 | | Spleen | 0.295 | 0.00443 | 1.000 | 156.0 | 364.0 | 108.0 | | Kidney | 0.138 | 0.0124 | 0.991 | 55.8 | 70.1 | 11.1 | | Stomach | 0.0212 | 0.00900 | 0.990 | 77.0 | 107.0 | 2.86 | | Small intestine | 0.0231 | 0.0137 | 0.995 | 50.8 | 62.3 | 1.70 | | Large intestine | 0.0257 | 0.0136 | 0.997 | 50.8 | 62.4 | 2.36 | | Muscle | 0.00519 | 0.00597 | 0.971 | 116.0 | 201.0 | 0.870 | | Brain | 0.00708 | 0.0254 | 1.000 | 27.3 | 30.4 | 0.279 | | Skull | 0.105 | 0.00355 | 1.000 | 195.0 | 681.0 | 40.6 | | Femur | 0.0726 | 0.00253 | 1.000 | 274.0 | >8212 | 58.5 | | Skin | 0.0185 | 0.00253 | 1.000 | 274.0 | >821 | 7.59 | $^{1}Retention$ in organs according to the following equation: y=ae-bx (a=intercept at y-axis, b=slope, x=time in hours). r=correlation coefficient, $T_{\rm eff}$ =effective half-life, $T_{\rm bio}$ =biological half-time, τ =residence time, an integral corresponding to the the total number of radioactive transformations in a tissue per unit administered activity. 2 Corresponding to three physical half-lives of 223 Ra. Tables IV and V and Figure 4 show the effective (sum of the physical and biological clearance rates) retention parameters, and absorbed dose estimates for individual tissues containing liposomal ²²³Ra and daughters. The absorbed doses were calculated for injections of 375 kBq/kg (approximately 8.1 kBq/animal). These results showed that the spleen among the soft tissues received the highest absorbed dose, *i.e.*, 14.1 Gy, a value even higher than for the femur and the skull (Figure 4). The liver and intestines received quite modest doses. The dose to the blood was calculated using microdosimetry methods (10), assuming the ²ND- not determined. Figure 4. Radiation absorbed doses in various tissues after injection of liposomal ²²³Ra in Balb/C mice. It was assumed that ²²³Ra was in equilibrium with the daughter nuclides. The values were calculated according to an administered activity of 375 kBq/kg (approximately 8.1 kBq per animal). mean blood vessel and capillary diameter to be about 25 μ m (yielding an average energy-absorbed fraction of approximately 0.13). From this assumption, and by integrating the time-activity curves for 223 Ra in equilibrium with the daughter products in blood, an absorbed dose to circulating blood of 0.2 Gy was calculated. ## Discussion This work is the first *in vivo* study of *i.v.* injected alphaemitting radio-liposomes. The observed half-time in blood of liposome-encapsulated 223 Ra differed significantly from that of dissolved 223 RaCl₂. The observed half-times agreed well with values reported for Caelyx[™]/Doxil[™] in rodents. These results showed that 223 Ra was largely retained in the liposomes, a finding compatible with the *in vitro* stability testing presented for doxorubicin-containing liposomes in this study and also to that reported previously for empty pegylated liposomes loaded with 223 Ra (7). The metabolic activity of the reticulo-endothelial system, and thus the biodistribution of liposomes, could depend significantly on the immune status of the animal. Therefore, this study was performed using immuno-competent Balb/C mice without tumors. Because of the promising blood half-time of liposomal ²²³Ra observed in the current study, a tumor uptake study in immuno-suppressed animals with tumor xenografts is warranted to evaluate whether sufficient tumor targeting can be achieved. To use radioactive liposomes in cancer therapy, it would be important to minimize the soft tissue exposure and, in particular, exposure to tissues involved with uptake in the reticulo-endothelial system. As previously shown (11), pretreatment with conventional PLD reduced the reticuloendothelial system uptake. Pre-treatment with PLD was therefore included in our study. A commercially available liposome formulation was employed as the carrier compound, instead of using drug-free liposome, for the following reasons: (i) PLD represents the state of the art in terms of clinically approved liposomal tumor therapy (6, 12), which (ii) made it possible to use the same liposomal formulation in the pre-treatment/pre-loading regimen to help diminish reticulo-endothelial system activity. The current data indicate that the reticulo-endothelial system interacted with the lipsomes. Even though pretreatment with non-radioactive liposomes was performed, the spleen had the highest uptake and thus received a considerable radiation dose. ²²³Ra uptake in the spleen was relatively high in terms of percent of administered activity per gram, even though the splenic uptake did not exceed 5% of the total administered activity. Some preliminary data from biodistribution in dogs indicated that splenic uptake is less in dogs than in mice. In addition, the skeleton, probably mostly the bone surfaces, received significant radiation doses. The latter was probably caused by the release of cationic ²²³Ra when the liposomes were metabolized, since the biodistribution at later time-points more closely resembled that of injected free ²²³RaCl₂. Knowledge of the chemical integrity of PLD containing ²²³Ra, prior to or at administration, is important for interpreting in vivo data. In the current work, the PLD could be loaded with ²²³Ra without affecting the release of doxorubicin. This was evident as both ²²³Ra and the bright-redcolored doxorubicin were observed in the same high molecular fractions when eluted from the gel exclusion column. Control experiments with liposomes heated to over 80°C resulted in elution of the bright-red doxorubicin in the low molecular weight fractions. We also confirmed that cationic ²²³Ra would elute in the low molecular weight fraction unless the proper procedure for loading had been performed. PLD with ²²³Ra stored for several weeks in the injection buffer had a gel exclusion elution profile indicating an intact product. These observations indicate that co-injection of substantial amounts of free ²²³Ra or doxorubicin could be ruled out. In accordance with previously published data for the *in vitro* serum stability of liposomal ²²³Ra (7), we confirmed (data not shown) that ²²³Ra was not released from the doxorubicin-containing liposomes when incubated in fetal calf serum for up to 7 days at 37°C. Thus, any generation of cationic ²²³Ra *in vivo* could not be ascribed to a general chemical instability. As observed in the biodistribution study, liposomal ²²³Ra slowly cleared from the blood and was metabolized, probably by macrophages in the reticulo-endothelial system. This process gradually generated free, cationic ²²³Ra, which was eliminated either by intestinal or renal clearance, or was incorporated onto bone surfaces. A similar clearance pattern with time was observed for liposomal ²²³Ra in the majority of tissues, except for the spleen and bone. In the skull and femur, an increased ²²³Ra uptake was observed during the first 6 days, and this activity level was maintained up to 14 days after injection, indicating that most of the radium was released from the liposomes within the first 6 days. Free ²²³Ra²⁺ uptake in bone could cause bone marrow toxicity, but recent studies have suggested that skeletal tolerance to ²²³Ra is higher than previously expected (13, 14) and would, therefore, probably not be doselimiting for long-circulating liposomal ²²³Ra. On the other hand, the significant levels of circulating liposomal ²²³Ra during the first few days could cause considerable bone marrow exposure. Therefore, a marrow toxicity assessment should be included in future studies. The LI showed that, at 14 days, less ²²³Ra was observed in bone in the group given liposomal ²²³Ra vs. cationic ²²³Ra. This finding could not be accounted for by the splenic uptake alone, but was probably due to retention in the reticulo-endothelial system. For maximum utility, the physical half-life of any therapeutic radionuclide should match the *in vivo* retention half-time of its carrier compound. The reported plasma half-lives of Doxil™ (US brand name for Caelyx™) is 24-35 hours in the rat and 23-27 hours in the dog (12). This closely matched the blood half-times that were observed in the current study. With liposomes, the physical half-life of the radionuclide should not be too short (less than 1 day), since concentration of the liposomal radionuclide in tumor tissue may require a few days. Only a few radionuclides appear suitable for liposomal encapsulation. One possibility is 212 Pb ($t_{1/2}$ =10.6 hours), a beta emitter that decays to the alpha emitter 212 Bi ($t_{1/2}$ =60 minutes). 212 Pb is an *in vivo* generator of alpha particles since the beta transformation does not seem to cause a significant release of 212 Bi from liposomes (15). Because of its short half-life, the use of 212 Pb would probably be limited to regional delivery where rapid targeting is anticipated. For systemic therapy against solid tumors, where the time to achieve a maximum tumor uptake could be 24 hours or more, longer-lived radionuclides would be more appropriate than ²¹²Pb. Alpha emitter candidates with suitable half-lives are 225 Ac ($t_{1/2}$ =10.0 days), 224 Ra ($t_{1/2}$ =3.6 days) and 223 Ra $t_{1/2}$ =11.4 days). Each decays *via* multiple steps, releasing four alpha-particles. Unless micrometer-sized liposomes are used, the recoiling nucleus from the first alpha decay would escape from the liposomes (16). Given that the optimum size for i.v. liposomes is within the range of 100 nm or less, the use of these radionuclides in liposomal delivery may be problematic and the properties of the decay product must be considered. 225 Ac decays to 221 Fr ($t_{1/2}$ =4.9 minutes) in the first decay, so that only the first alpha decay would be associated with the liposome if nano-sized liposomes were used, as is true for 224 Ra which decays to 220 Rn ($t_{1/2}$ =55.6 seconds). For ²²³Ra, however, the three first alpha decays would decay within or in the close vicinity of the liposome because the two decays following the ²²³Ra transformation are from alpha-emitting daughters with half-lives of 3.96 seconds (²¹⁹Rn) and 1.78 microseconds (²¹⁵Po), respectively. Thus ²²³Ra appears to be the best suited for liposomal delivery among the longer-lived alpha emitters which have been considered for radionuclide therapy. In this work, the fate of the daughter nuclides were studied in an animal at the 24-hour point. Measurements of ²²³Ra daughters are difficult due to their short half-lives. We focused on the blood, liver, spleen, kidneys and bone for analysis of ²¹¹Pb and ²¹¹Bi. It was found that ²²³Ra was quite close to equilibrium with ²¹¹Bi in the blood, liver and femur, while less ²¹¹Pb and ²¹¹Bi were measured in the spleen and more in the kidneys. Depletions of ²¹¹Pb and ²¹¹Bi were observed in urine, which may account for the increased levels in the kidney. Since the kidney was measured several minutes after sacrifice, the precise amount of ²¹¹Bi in the kidney at the time of death remains unknown. If, for purposes of dosimetry, one assumed the same difference between ²¹¹Pb and ²¹¹Bi uptakes in the kidney, as described by Ando et al. (17), the level of ²¹¹Bi may be about three times that of ²²³Ra at that point, suggesting a two-fold increase in the alpha-particle dose to the kidney compared to the dose obtained on the basis of an assumed parent/daughter equilibrium. Tissue samples were routinely counted, using the non-discriminating multi-well counter, within 3 hours post-mortem, and were recounted after 12 hours or more when radium was in equilibrium with its daughters. When the decay-corrected data were analyzed, the blood counts increased with time. This was probably due to release of some 211 Pb (half-life=36.1 minutes) from liposomes, as indicated by the γ peak measurement at the 24-hour point. #### Conclusion Liposome-encapsulated ²²³Ra was found to display favorable physical and radiological characteristics for use as a therapeutic agent in cancer therapy, including *in vivo* stability as a carrier and promising biodistribution properties in mice. Further studies in tumor-bearing animals are warranted to evaluate the potential targeting of soft-tissue tumors with liposome-encapsulated ²²³Ra. # ${\bf Acknowledgements}$ This work was financially supported by the Norwegian Research Council Grant E53544/110 and Algeta ASA, Oslo, Norway. We thank Solveig Garman-Vik, Animal Department, the Norwegian Radium Hospital, Oslo, Norway, for assistance with the animal experiment, and Gro Salberg, Algeta ASA, Oslo, Norway, for help with counting the radioactive samples. #### References - 1 Zalutsky, MR, Zhao XG, Alston KL and Bigner DD: High-level production of α-particle-emitting ²¹¹At and preparation of ²¹¹At-labeled antibodies for clinical use. J Nucl Med 42: 1508-1515, 2001. - 2 Jurcic JG, Larson SM, Sgouros G, McDevitt MR, Finn RD, Divgi CR, Ballangrud ÅM, Hamacher KA, Ma D, Humm JL, Brechbiel MV, Molinet R and Scheinberg DA: Targeted αparticulate immunotherapy for myeloid leukemia. Blood 100: 1233-1239, 2002. - 3 Nilsson S, Larsen RH, Fosså SD, Baltesgard L, Borch KW, Westlin JE, Salberg G and Bruland ØS: First clinical experience with α-emitting radium-223 in the treatment of skeletal metastases, Clin Cancer Res 11: 4451-4459, 2005. - 4 Bruland ØS, Nilsson S, Fisher DR and Larsen RH: High-linear energy-transfer irradiation targeted to skeletal metastases by the alpha emitter ²²³Ra: adjuvant or alternative to conventional modalities? Clin Cancer Res, in press, 2006. - 5 Henriksen G, Hoff P and Larsen RH: Evaluation of potential chelating agents for radium. Appl Rad Isot 56: 667-671, 2002. - 6 Gabizon AA: Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res 7: 223-225, 2001. - 7 Henriksen G, Schoultz BW, Michaelsen TE, Bruland ØS and Larsen RH: Sterically stabilized liposomes as a carrier for alpha-emitting radium and actinium radionuclides. Nucl Med Biol 31: 441-449, 2004. - 8 Henriksen G, Hoff P, Alstad, J and Larsen RH: ²²³Ra for endoradiotherapeutic applications prepared from an immobilized ²²⁷Ac/²²⁷Th source. Radiochim Acta 89: 661-666, 2001. - 9 Henriksen G, Fisher DR, Roeske JC, Bruland ØS and Larsen RH: Targeting of osseous sites with alpha-emitting ²²³Ra: comparison with the beta-emitter ⁸⁹Sr in mice. J Nucl Med 44: 252-259, 2003. - 10 Fisher DR and Harty R: The microdosimetry of lymphocytes irradiated by alpha particles. Int J Radiat Biol *41*: 315-324, 1982 - 11 Gabizon A, Tzemach D, Mak L, Bronstein M and Horowitz AT: Dose dependency of pharmacokinetics and therapeutic efficacy of pegylated liposomal doxorubicin (DOXIL) in murine models. J Drug Target 10: 539-548, 2002. - 12 Gabizon A, Shmeeda H and Barenholz Y: Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet 42: 419-436, 2003. - 13 Nilsson S, Larsen RH, Fosså SD, Baltesgard L, Borch KW, Westlin JE, Salberg G and Bruland ØS: First clinical experience with α-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res 11: 4451-4459, 2005. - 14 Larsen RH, Saxtorph H, Skydsgaard M, Borrebaek J, Jonasdottir TS, Bruland ØS, Klastrup S, Harling R and Ramdahl T: Radiotoxicity of the alpha-emitting bone-seeker ²²³Ra injected intraveneously into mice: histology, clinical chemistry and hematology. In Vivo 20: 325-332, 2006. - 15 Henriksen G, Schoultz BW, Hoff P and Larsen RH: Potential in vivo generator for alpha-particle therapy with ²¹²Bi: presentation of a system to minimize escape of daughter nuclide after decay of ²¹²Pb to ²¹²Bi. Radiochim Acta 91: 109-113, 2003. - 16 Sofou S, Thomas JL, Lin HY, McDevitt MR, Scheinberg DA and Sgouros G: Engineered liposomes for potential alphaparticle therapy of metastatic cancer. J Nucl Medic 45: 253-260, 2004. - 17 Ando A, Ando I, Hiraki T and Hisada K: Relation between the location of elements in the periodic table and various organuptake rates. Nucl Med Biol *1*: 57-80, 1989. Received April 28, 2006 Accepted May 30, 2006