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Keratinocyte Growth Factor (KGF) Induces Tamoxifen
(Tam) Resistance in Human Breast Cancer MCF-7 Cells
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Abstract. Background: Both estrogen receptor-a. (ER-a) and
progesterone receptor (PR) are good prognostic factors and
indicators of benefit from endocrine therapy in breast cancer
patients. The relationship of the ER-a and PR status and the
difference in clinical benefit from endocrine therapy in breast
cancer is currently unclear. It has been suggested that keratinocyte
growth factors (KGFs) are important regulatory factors in breast
cancer. Our laboratory has demonstrated that KGF can act as
an estromedin for the stimulation of breast cancer cell growth.
Also, KGF stimulates aromatase activity in primary cultured
human breast cells. This enzyme is a key to the conversion of
androgens to estrogens. In the present study, ER-a, two estrogen-
regulated genes, PR and PTPy, KGF and their relationship with
endocrine resistance in human breast cancer cells were
investigated. Materials and Methods: MCF-7 cells were treated
with KGF (1, 5, 10, 20 ng/ml), KGF-13 (0.1, 1, 10 uM) or
vehicles as control for 24 hours. KGF-13 is a potential receptor-
binding pentapeptide constructed using the KGF peptide residues
101-105 (RTVAYV) as a template, located within the beta 4 - beta
5 loop. Total RNA were isolated and real-time PCR was
employed to identify ER-a, PR and PTPy gene expressions in
response to KGF and KGF-13. Western blot analysis was used
to verify the levels of ER-a and PR protein, whereas
immunohistochemical staining was used to detect PTPy
expression in MCF-7 cells. To determine the response of MCF-7
cells to endocrine therapy, MCF-7 was treated with either
20 ng/ml KGF or 10 uM KGF-13 combined with 1, 3 and 5 uM
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of 4-hydroxytamoxifen (4OH-Tam). A non-radioactive cell
proliferation assay was applied to determine the growth rate of
MCF-7 cells. The results of real-time PCR and the cell
proliferation assay were analyzed by Student’s t-test and p-values
of less than 0.05 were considered statistically significant. Results:
Our data showed that KGF significantly suppressed ER-a, PR
and PTPy expression in MCF-7 cells. KGF suppressed ER-a, PR
and PTPy mRNA to a maximal inhibition at 20 ng/ml by 88%,
57% and 61%, respectively. Western blot analysis and immuno-
histochemical staining confirmed the down-regulation of ER-a,
PR and PTPy by KGF in protein levels. Ten uM KGF-13 also
decreased ER-a expression. Ten uM KGF-13 significantly
decreased ER-a, PR and PTPy mRNA expressions by 51%, 57%
and 67%, respectively. These KGF-13-mediated mRNA down-
regulations were also observed in protein levels. In a cell
proliferation assay, 4OH-Tam (3, 5 uM) induced MCF-7 cell
death. KGF and KGF-13 alone did not stimulate MCF-7 cell
growth. KGF significantly disrupted 4OH-Tam cell killing effects
by 1.2- and 1.3-fold at 4OH-Tam concentrations of 3 uM and
5 uM, respectively. KGF-13 significantly disrupted 4OH-Tam cell
killing effects by 1.2- and 1.7-fold at 4OH-Tam concentrations
of 3 uM and 5 uM, respectively. Conclusion: Our results
suggested that not only ER-a and PR but also PTPy could be
potential bio-makers for growth factor-induced endocrine
resistant in breast cancer. KGF might increase the endocrine
resistance via decreasing ER-a, PR and PTPy as well. Moreover,
the functional analysis of KGF-13 implied possible applications
of using short receptor-binding peptides derived from intact KGF
as breast cancer therapeutic agents. Thus, our experimental data
provided evidence of KGF-induced anti-hormone resistance in
human breast cancer and suggested novel strategies for breast
cancer via interference with KGF signaling.

The steroid hormone estrogen is an essential factor for the
normal human breast and for the development and
progression of human breast cancer (1, 2). The effects of
estrogens are mediated primarily through interaction with the
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estrogen receptor-a (ER-a)). Upon estrogen binding, the ER-
o becomes hyper-phosphorylated at several serine and
tyrosine residues, resulting in dissociation of heat-shock
proteins, receptor dimerization and nuclear localization (3).
These facilitate ER-a association with estrogen response
elements (EREs) or with proteins bound to other responsive
elements within promoters of target genes (4). Functional
analysis of ER-a has shown it to be a modular protein, with a
DNA-binding domain (DBD) flanked by two transcriptional
activator functions (AF), AF-1 and AF-2 (5, 6). The activity
of AF-2 appears to be largely ligand-enabled, showing
relatively strict specificity for estrogens, while AF-1 activity is
ligand-independent. Anti-estrogens primarily compete for
ER-a and are widely used for the management of estrogen-
responsive human breast cancers. Tamoxifen (Tam) is the
most frequently prescribed anti-estrogenic agent and is also
used in prevention for women at high risk of developing breast
cancer (7, 8). Despite the relative safety and the beneficial
effects of Tam, many breast cancer patients who initially
respond frequently acquire Tam resistance (9).

The progesterone receptor (PR) is an ER-a-regulated
gene which requires estrogen and ER-a. PR is synthesized
in normal and cancer cells and mediates progesterone’s
effects in the development of the mammary gland and
breast cancer (10). PR is expressed in two isoforms (PR-a
and PR-f) from a single gene. Like ER, PR contains a DBD
and multiple AFs (11). PR in human breast cancers has
recently been reported to be associated with resistance to
Tam and the increased risk of breast cancer (12, 13). The
increase in breast cancer incidence in women taking both
estrogen and progesterone, compared with estrogen alone,
emphasizes the importance of progesterone and the PR in
breast cancer (14). Both ER-a and PR are good prognostic
factors and indicators of benefit from endocrine therapy in
breast cancer patients (15). The etiology of the change of
ER-a and PR status and the difference in clinical benefit
from endocrine therapy in breast cancer is currently unclear.
Hypotheses propose that these regulatory mechanisms
involve molecules such as ER, PR, growth factor-receptor,
and their cross-talk (16-20).

Keratinocyte growth factor (KGF) fibroblast growth factor
7 (FGF7) is one of the FGF family, that comprises over 22
members, such as FGF1 (acidic), FGF2 (basic), FGF3 (int2),
FGF4 (hst), FGF5, FGF6, FGF8 (AIGF) and FGF9 (GAF)
(21-23). KGF has a stromal origin and appears to act
specifically on epithelial cells and is, therefore, exclusively a
paracrine growth factor in humans (24, 25). KGF has been
detected in normal and cancerous human breast tissues (26-
28). Reports have documented the importance of KGF in
controlling the growth of mammary epithelium. These
include the finding KGF induced the growth of murine
mammary epithelial cells in a collagen gel matrix in a
heparin-independent manner (29), and that systemic
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administration of KGF to rodents resulted in mammary
epithelial hyperplasia (30, 31). Our laboratory has shown that
breast malignant transformation may be associated with a
positive feedback stimulation, whereby KGF mRNA
expression was elevated by estradiol-178 (E,;), KGF
stimulated aromatase mRNA expression and its enzyme
activity, which increased the conversion of androgens to
estrogens and raised the E, level to produce more KGF.

FGFR2IIIb, also known as the KGF receptor (KGFR),
belongs to the FGF receptor (FGFR) family which consists
of four genes including FGFR-1, FGFR-2, FGFR-3 and
FGFR-4. These receptors are glycoproteins with two or
three immunoglobulin (I)-like domains, a transmembrane
region and a tyrosine kinase catalytic site in the cytoplasm.
Alternative splicing of the C-terminal half of the third
immunoglobulin-like domain produces the FGFR2IIIb and
FGFR2IIIc isoforms and changes the ligand-binding
properties of FGFR2 (32-34). FGFR2IIIb is expressed in
epithelial cells and binds specifically to KGF (33, 35). The
findings that normal mammary epithelial ductal tissue is
very sensitive to KGF and the presence of KGFRs in breast
cancer are sufficient for KGF stimulation of cell
proliferation and motility suggest that KGFR could
potentially influence the development and progression of
breast cancer (31).

KGF contains ten beta strands to form five double-strand
anti-parallel beta sheets (36). The region in the beta 4 - beta
5 loop of KGF contributes to KGFR binding and recognition.
Therefore, a potential receptor-binding pentapeptide,
KGF-13, was constructed using the KGF peptide residues 101-
105 (RTVAV) as a template, located within the beta 4 - beta
5 loop. KGF was also evaluated for its biological activity in
breast cancer cells. Small receptor-binding peptides are
currently the agents of choice for tumor targeting because
peptides have a number of distinct advantages over proteins
and antibodies. These advantages include: (i) small size, (ii)
easy preparation, (iii) tolerance of harsh conditions of
chemical modification, (iv) rapid clearance from blood and
non-target tissues, (v) high penetration into tumor tissue, and
(vi) a high affinity and specificity for receptors (37).

Protein tyrosine phosphatases (PTPases) are a family of
proteins which perform the enzymatic roles of removing
phosphate groups from phosphotyrosine residues of specific
targets inside cells. PTPases regulate important cellular
processes like gene expression, cell activation and
proliferation, differentiation, development, transport and
locomotion, since they counterbalance the growth-promoting
effects of protein tyrosine kinases (PTKs), which catalyze the
phosphorylation of tyrosine residues (38). Inhibition of
PTPases in cell culture leads to increased amounts of
phosphotyrosine-containing  proteins and  cellular
transformation. Therefore, alterations in PTPases expression
might promote cell growth, neoplastic processes and
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transformation (39, 40). PTPy is a member of the receptor-
like family of PTPases originally cloned from human brain
stem and placental cDNA libraries using probes derived
from the intracellular domain of CD45 (41) or the
Drosophila PTPase cDNA clone, DPTP12 (42), respectively.
Receptor-like PTPy has a carbonic anhydrase-homologous
amino terminus followed by a fibronectin type three domain,
a cysteine-free domain, a transmembrane domain and two
intracellular PTPase catalytic domains (15, 43, 44). PTPy has
been implicated as a candidate tumor suppressor gene in
kidney, ovarian and lung tumors (45, 46). Our results
suggested that PTPy was a potential estrogen-regulated
tumor suppressor gene in human breast cancer that may play
an important role in neoplastic processes of human breast
epithelium (47). In the human breast, PTPy was expressed
in normal and malignant epithelium. PTPy mRNA
expression was lower in cancerous than in normal breast
tissues (48). In whole breast tissues, PTPy mRNA and
protein diminished by E, or a non-estrogenic agent with
estrogenic action, Zeranol, in the epithelium through an ER-
mediated mechanism (49).

Our studies investigated KGF as an anti-hormone
resistant factor and the potential use of KGF-13 for
anticancer therapy. ER-a, PR and PTPy genes were used as
markers for evaluation in MCF-7 cells. We determined that
KGF down-regulated the ER-a, PR and PTPy expression of
the MCF-7 cell line. KGF-13 worked as a KGFR agonist to
suppress the expression of ER-o, PR and PTPy. In addition,
KGF and KGF-13 increased the resistance of Tam-induced
cell death in MCF-7 cells. KGF down-regulation of ER-a
and PR suggested a potential mechanism of the growth
factor-induced Tam resistance. The involvement of KGF in
the down-regulation of PTPy mRNA and protein suggested
that KGF counterbalanced the growth-inhibition of PTPy via
regulation of gene expression. To sum up, our experimental
data implicated significant steps of KGF-induced anti-
hormone resistance in human breast cancer and suggested
novel therapeutic strategies for breast cancer via interference
with KGF signaling.

Materials and Methods

Cell culture. MCF-7 cells, a human breast cancer cell line, were
purchased from the American Type Culture Collection (ATCC).
The cells were maintained in a Dulbecco’s modified Eagle’s
medium and Ham’s F12 medium (1:1) (DMEM/F12) mixture,
containing no phenol red (Sigma Chemical Co., St. Louis, MO,
USA), supplemented with 5% (v/v) fetal bovine serum (FBS)
(GIBCO Cell Culture™, Grand Island, NY, USA) and 1 X
antibiotic-antimycotic (100 U/ml penicillin G sodium, 100 ug/ml
streptomycin sulfate and 0.25 ug/ml amphotericin B) (GIBCO Cell
Culture™). MCF-7 cells were seeded and cultured in 75-cm? culture
flasks in a humidified incubator (5% CO,: 95% air, 37°C). The
media were replaced every 2 days. When growth had reached

approximately 85% confluence, the cells were washed twice with
calcium- and magnesium-free phosphate-buffered saline (PBS, pH
7.3). Adherent cells were removed from the flask surface with 1%
trypsin-5.3 mM EDTA (GIBCO Cell Culture™) in PBS for 10 min
at 37°C. The trypsinization was stopped after the addition 5% FBS
to the culture medium. The cells were removed and collected by
centrifugation, and re-suspended in new culture medium, as
described above, and subcultured into 75-cm?2 culture flasks at a
ratio of 1:3 of the original cell numbers. Recombinant KGF was
purchased from PeproTech Inc. KGF-13, a 5-amino acid peptide
sequence (RTVAV), was designed in our laboratory and
synthesized by Alpha Diagnostic International (San Antonio, TX,
USA). KGF-13 is residues 101-105 of the KGF peptide sequence
(NCBI protein data base, accession # P21781).

Cell treatments, total RNA extraction. Before treatments, MCF-7 cells
were grown overnight in original culture medium in 24-well culture
plates at a density of 2x104 cells/well. The media was replaced by
DMEM/F12 supplemented with 0.02% bovine albumin Fraction V
(GIBCO Cell Culture™) for 24 h to reduce the effect of the serum.
After serum starvation, the MCF-7 cells were treated with either
20 ng/ml KGF, 10 uM KGF-13, 20 ng/ml KGF plus 10 uM KGF-13,
or vehicles as the control in DMEM/F12 supplemented with 5%
dextran-coated charcoal (DCC) (Dextran T-70; Pharmacia;
activated charcoal; Sigma)-treated FBS for 24 h. Total RNA was
extracted from the MCF-7 cells by using the Trizol® Reagent
(Invitrogen™, Carlsbad, CA, USA).

Relative quantitation of ER-a expression and real-time PCR. The
nucleotide sequences of the hybridization probes and primers for the
ER-0 and 36B4 genes are shown as follows. The ER-o primers were
5 AGCTCCTCCTCATCCTCTCC_3’ (sense), 5 TCTCCAGCA
GCAGGTCATAG_3’ (antisense). The 36B4 primers were
5’_CTGGAGACAAAGTGGGAGCC_3’ (sense), 5°_ TCGAACAC
CTGCTGGATGAC_3’ (antisense). The PR primers were 5°_GAA
CCAGATGTGATCTATGCAGGA _3’(sense), 5> CGA AAACC
TGGCAATGATTTAGAC_3’ (antisense). The PTPy primers were
5’_GCATCCTCTGCCACATACTACG_3’(sense), 5’_TCATC
TTCTGCCAAGCTCTGGT _3’(antisense). All PCR reactions were
performed using the SYBR Green I detection chemistry system and
detected with the ABI Prism 7000 Sequence Detection System
(Perkin-Elmer Applied Biosystems, Foster City, CA, USA). For each
PCR run, a master-mix containing 25 ul 2 X SYBR® Green PCR
Master Mix (Applied Biosystems), and 5 units/ul of Platinum® Tag
DNA polymerase (Invitrogen™) was prepared on ice in a total
volume of 45 ul. Five ul of each cDNA sample were added to 45 ul of
the PCR master-mix. The thermal cycling conditions comprised an
initial step at 50°C for 2 min, 95°C for 10 min, and 45 cycles at 95°C
for 15 sec and annealing at 60°C for 1 min.

The comparative Ct method was used for the relative
quantitation of ER-a expression. The parameter Cp (threshold
cycle) is defined as the fractional cycle number at which the
fluorescence generated by cleavage of the TagMan® probe-amplicon
complex formation passes a fixed threshold above baseline. The
relative ER-a gene expression level was expressed as:

2-(ACtsample-ACrcontrol) =2-(A ACt),

The ACt was a normalized value of ER-a Ct value to the
endogenous control of 36B4 CT value. The results are represented
as a percentage of control cells. 36B4 is a cDNA clone for human
acidic ribosomal phosphoprotein PO (50, 51).
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Immunohistochemical staining. MCF-7 cells were cultured on
24x30-mm cell culture cover-slips (Nalge Nunc Int., Pittsburgh, PA,
USA) and washed in PBS three times. After —10°C methanol
fixation for 5 min and air drying, the cells were stained for PTPy
by using VECTASTAIN® Universal Quick Kit and DAB Substrate
Kit (Vector Laboratories, Inc., Carpinteria, CA, USA), according
to the manufacturer’s instructions. The primary antibody was a
goat polyclonal IgG C-18 for PTPy (Santa Cruz Biotech, Santa
Cruz, CA, USA). An optimal primary antibody dilution of 1:100
was determined by titration in this system, and omission of the
primary antibody served as a negative control.

Western blot analysis. MCF-7 cells were seeded and grown
overnight in DMEM/F12 supplemented with 5% FBS in 6-well
culture plates at a density of 2x104. The media was replaced with
DMEM/F12 supplemented with 0.02% bovine albumin Fraction V
(GIBCO Cell Culture™) and grown for 24 h. The MCF-7 cells
were treated for 24 h with 20 ng/ml KGF, 10 uM KGF-13,
20 ng/ml KGF plus 10 uM KGF-13 together, or vehicles as control
in DMEM/F12 supplemented with 5% DCC-treated FBS. After
24 h, total proteins were extracted from the MCF-7 cells with
M-PER® (Pierce Biotechnology, Rockford, IL, USA), according
to manual instructions. The protein concentrations were
determined by the BCA protein assay kit (Pierce Biotechnology).
The lysates were heated to 95-100°C for 5 min and equal mass
amounts of protein were loaded on 4-15% Tris-HCI Ready Gel
(BIO-RAD Laboratories, Hercules, CA, USA) and transferred
onto polyvinylidene fluoride (PVDF) membranes (Millipore,
Bedford, MA, USA). The membranes were blocked by immersing
the membrane in 5% non-fat milk in PBS containing 0.1% Tween-
20 (PBS-T) at 4°C overnight. The membranes were then
incubated in PBS-T for 1 h with the respective primary antibody.
A rabbit polyclonal IgG ER-a HC-20 (dilution 1:500) (Santa Cruz
Biotech), a mouse monoclonal IgG PR GR18 (dilution 1:1000)
(EMD Biosciences, Inc., La Jolla, CA, USA ) and a goat polyconal
IgG actin C-11 (dilution 1:1000) (Santa Cruz Biotech) were used.
After washing in PBS-T, the membranes were incubated with the
horseradish peroxidase-linked secondary anti-goat or anti-rabbit
immunoglobulin antibody (Amersham Pharmacia Biotech,
Buckinghamshire, UK) in 5% non-fat dry milk in PBS-T for 1 h at
room temperature. After washing in PBS-T, the ER-a, PR and
actin proteins were visualized with a chemiluminescent detection
system (ECL; Amersham Pharmacia Biotech) and the
chemiluminescent image captured on Hyperfilm™ ECL™
(Amersham Pharmacia Biotech).

Cell proliferation assay. Before treatment, MCF-7 cells were grown
in DMEM/F12 supplemented with 5% FBS in 96-well culture
plates at a density of 1x103 in 100 ul/well overnight. After cells had
attached to the wells, the medium was replaced with 100 ul of
DMEM/F12 containing 1% of DCC-FBS. The cells were then
treated with 4OH-Tam at 1, 3 or 5 uM plus 20 ng/ml of KGF, or
vehicles as control in the same fresh medium for 48 h. The
experiments were performed in 4 replicates wells for each group.
The cell proliferation rate was quantified by using CellTiter 96
AQueous assay (Promega, Madison, WI, USA). Briefly, at the end
of treatment, 100 wl of fresh medium with 20 uwl of freshly
combined MTS/PMS (the ratio of MTS: PMS was 20:1) solution
was added to each well. The plates were then incubated for 1.5 h.
The intensity of formazan was measured at 490 nm (OD 9 ) by
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an ELISA plate reader (Molecular Devices Corporation, Menlo
Park, CA, USA).

Statistical analysis. The results for the PCR reaction were presented
as the mean=standard deviation (S.D.) for three replicates per
group. The non-radioactive cell proliferation assay was presented
as the mean=S.D for four replicate culture wells per group.
Analysis was performed by StatView statistical software for
Windows (SAS Institute Inc., Cary, NC, USA). Statistical
differences were determined by using the Student’s f-test for
independent groups. P-values of less than 0.05 were considered to
be statistically significant.

Results

Regulation of ER-a and PR expression by KGF. The presence
of estrogen and progesterone receptors predicts the
likelihood of benefit from hormonal therapy (52). Estrogen
and progesterone receptor-positive breast cancers have a
greater chance of responding to hormonal therapy than
estrogen and progesterone receptor-negative breast cancers.
Reports suggested that growth factors might be associated
with decreased PR and ER-a levels in breast cancer patients
and cell lines (53, 54). Therefore, we investigated the
regulation of ER-a and PR gene expression by KGF. In our
study, MCF-7 cells were treated with several concentrations
of recombinant KGF (1, 5, 10 or 20 ng/ml) or vehicles as
control for 24 h. The total RNA from cells was isolated and
ER-a and PR mRNA expressions were measured by real-
time PCR. The proteins were also collected and subjected
to Western blot analysis. The ER-a and PR proteins were
measured on immunoblots by anti-ER-a and anti-PR
antibody. B-actin protein served as an internal control. The
dependence of ER-a and PR expressions on KGF
concentration are presented in Figure 1. The real-time PCR
results showed that KGF was able to decrease ER-a and PR
mRNA expressions in a dose-dependent manner. The
addition of KGF suppressed ER-a and PR mRNA at a
dosage of 5 ng/ml and reached maximal inhibition at
20 ng/ml. KGF displayed a significant inhibition of ER-a by
88% and PR mRNA by 43%, respectively at the dose of
20 ng/ml (Figure 1A and B). Also, the ER-a and PR
expressions at the protein level were determined by Western
blotting assay (Figure 1C). As expected, Western blot
analysis revealed that KGF down-regulated ER-o and PR
in protein levels in a dose-dependent manner.

Regulation of PTPy expression by KGF. The balance between
PTPases and PTK plays an important role in the regulation
of breast cells. Previous data from our laboratory suggest
that the overexpression of PTPy, as a tumor suppressor,
inhibits the growth of MCF-7 cells (47). To investigate the
regulation of PTPy expression by KGF, real-time PCR and
immunohistochemical staining were used to determine PTPy
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levels in MCF-7 cells. Our data showed that KGF down-
regulated PTPy mRNA expression in the MCF-7 cells. KGF
significantly suppressed PTPy mRNA levels at the dose of
10 and 20 ng/ml by approximately a 57% and 61%,
respectively (Figure 2A). The results from immuno-
histochemical staining showed that PTPy staining was
observed among MCF-7 cells (Figure 2B). The degree of
staining was decreased after 20 ng/ml KGF treatment.

Regulation of ER-a, PR and PTPy by KGF-13 in MCF-7 cells.
A small peptide, KGF-13, was synthesized and evaluated for
its potential binding ability to KGFR. KGF-13 was
evaluated to determine its role as a KGFR agonist or
antagonist for ER-a, PR and PTPy regulation. MCF-7 cells
were treated with KGF-13 at concentrations of 0.1, 1 or
10 uM, or vehicles as control for 24 h. MCF-7 cells treated
with 20 ng/ml of KGF were used as a positive control. Real-
time PCR results showed that the addition of KGF-13
displayed a significant inhibition of ER-o. and PR mRNA by

C
KGF (ng/ml)
0 1 5 10 20
KGF (ng/ml)
0 1 5 10 20

PR-B Ty e—— 119 kDa
PR-0 82 kDa
44 kDa

Figure 1. KGF down-regulated ER-a and PR in MCF-7 cells. (A and B)
Cells were treated with 1, 5, 10 or 20 ng/ml of KGF or vehicles as controls
for 24 h. Total RNA was extracted for ER-a. and PR mRNA analysis using
real-time PCR as described in "Materials and Methods". Values were
means=S.D. obtained from three independent experiments. Asterisks
indicate significant difference (p<0.05) from the control. (C) Cells were
treated as previously described for Western blot analysis of ER-a and PR
proteins in MCF-7 cells. After treatment, the total protein extracts were
collected and probed by anti-ER-a, anti-PR and anti-f-actin antibodies.
[-actin protein served as an internal control.

37% and 51%, respectively (Figure 3A) at a dose of 10 uM.
Also, ER-a and PR expressions at the protein level were
determined by Western blotting assay. The results further
supported ER-a and PR down-regulation by KGF-13 at the
protein level (Figure 3D). In addition, it was demonstrated
that 10 uM KGF-13 significantly down-regulated PTPy
mRNA by 52% (Figure 3C). Immunohistochemical staining
also showed lower PTPy protein in MCF-7 cells treated with
10 uM KGF-13 than those cells treated with vehicle only
(Figure 3E). Our data indicated that the presence of KGF-13
in the medium worked like a KGFR agonist in human
breast cancer cells.

KGF and KGF-13 maintained MCF-7 cell survival in 4OH-Tam.
Previous data from our laboratory demonstrated that PTPy
was able to inhibit proliferation and anchorage-independent
growth of breast cancer cells (47). Furthermore, the down-
regulation of ER-a and PR by KGF predicted a better chance
of cell survival during endocrine therapy because diminished
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Figure 2. KGF down-regulated PTP-y in MCF-7 cells. (A) Cells were treated with 1, 5, 10 or 20 ng/ml of KGF or vehicles as controls for 24 h. Total RNA
was extracted for PTPy mRNA analysis using real-time PCR. Values are means=S.D. obtained from three independent experiments. Asterisks indicate
significant difference (p<0.05) from the control. (B) Cells were treated with 20 ng/ml KGF or vehicles as control. After treatments, PTPy protein was
analyzed using immunohistochemical staining in MCF-7 cells. Cells were seeded on 24 x 30 mm cell culture cover-slips as previously described. The
cells were fixed and stained for PTPy protein by using VECTASTAIN® Universal Quick Kit and DAB Substrate Kit. Brown staining represents PTPy

immunoreactivity and blue staining represents nuclei.

ER-a and PR predicted the non response to endocrine
therapy. Thus, we hypothesized that the decrease of ER-a, PR
and PTPy expressions by KGF and KGF-13 might make
MCEF-7 cells less sensitive to endocrine therapy. A cell
proliferation assay was performed in order to prove our
hypothesis. MCF-7 was treated with either 20 ng/ml KGF or
10 uM KGF-13 combined with several concentrations (1, 3
and 5 uM) of 4OH-Tam. In our experiment, KGF and KGF-13
alone did not stimulate MCF-7 cell growth. KGF significantly
disrupted the 4OH-Tam cell killing effects by 1.2- and 1.3-fold
at 4OH-Tam concentrations of 3 uM and 5 uM, respectively
(Figure 4A). KGF-13 also significantly disrupted the 4OH-
Tam cell killing effects by 1.2- and 1.7-fold at 4OH-Tam
concentrations of 3 uM and 5 uM, respectively (Figure 4B).

Discussion

In the present study, we focused on the regulation of ER-a,
PR and PTPy mediated by KGF in breast cancer. We then
attempted to correlate the regulation of these molecules
with the increase of breast cancer cell survival in the
presence of 4OH-Tam. Estrogen and KGF played important
roles in the development and progression of breast cancer,
although the interactions between estrogen and KGF in
breast cancer are not fully clarified yet. Studies have shown
quantitative and qualitative changes of ER-a and PR in
breast cancer patients with resistance to endocrine therapy.
The changes of ER-o and PR levels could be associated
with growth factor signaling (55-58). Our laboratory has
demonstrated KGF as an estromedin in human breast
tissues (28). Besides, the regulation of PTPy by estrogen was
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important in the transformation and growth of the human
breast (59). This paper provided evidence that KGF down-
regulated ER-a, PR and PTPy expressions in MCF-7 cells.
KGF did not stimulate MCF-7 cell growth. However, KGF
enhanced the resistance of the estrogen-responsive MCF-7
cells to 4OH-Tam. KGF-13, a small fragment peptide
derived from KGF protein, acted as full-length KGF on
ER-a, PR and PTPy modulation. KGF-13 also increased
MCEF-7 cell survival in the presence of 4OH-Tam.

PTPy has been suggested as a molecular biomarker for
investigating the estrogen and/or non-steroidal estrogenic
agents such as Zeranol, in controlling the etiological process
of tumorigenesis in human breast. PTPy has been implicated
as a candidate tumor suppressor gene which can be
suppressed by estrogens through an ER-o-mediated
mechanism (49). Here, we demonstrated that KGF down-
regulated PTPy expression. We propose that the loss of PTPy
in our experiment as a potential biomarker for poor
prognosis and endocrine resistance in breast cancers for the
following reasons. First, PTPases regulate cellular processes
through counterbalancing the growth-promoting effects of
PTKSs, which catalyze the phosphorylation of tyrosine residues
(38). Therefore, the loss of PTPy suggests the loss of balance
between cell growth promotion and inhibition. Second,
40OH-Tam is a partial agonist of ER-o which is able to inhibit
the mitogenic activity of growth factors on hormone-
responsive MCF-7 cells via increasing the activity of
membrane-associated PTPases in a ER-a-dependent way
(60). Hence, the down-regulation of ER-o0 and PTPy in
MCEF-7 cells may be able to disrupt the anti-estrogenic action
of 4OH-Tam via both loss of PTPy and ER-a.
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KGF produces mitogenic effects on target cells through
many signal transduction components. These components
include c-Src, Ras and MAPK (61-64). In our study, no
stimulation of MCF-7 cell growth by KGF was observed.
However, 20 ng/ml KGF prevented 4OH-Tam-suppressed

D
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Figure 3. KGF-13 suppressed ER-a, PR and PTP-y expressions in MCF-7
cells. (A, B and C) Real-time PCR analysis of ER-a, PR and PTPy in MCF-7
cells. MCF-7 cells were treated with 0.1, 1 or 10 uM of KGF-13, 20 ng/ml of
KGF, or vehicles as controls for 24 h. Total RNA was extracted and detected
for ER-a, PR and PTPy mRNA expressions using real-time PCR. Results
were means+S.D. obtained from three independent experiments. Asterisks
indicate the significant difference (p<0.05) from the control. (D) Western
blot analysis of ER-a and PR in MCF-7 cells. Cells were treated as previously
described. After treatments, total protein extracts were collected and probed by
anti-ER-a, anti-PR and anti-B-actin antibodies. -actin protein served as an
internal control. (E) Cells were treated with 20 ng/ml KGF or vehicles as
control. ~ After treatments, PTPy protein was analyzed using
immunohistochemical staining in MCF-7 cells. Cells were seeded on 24 x 30
mm cell culture cover-slips as previously described. The cells were fixed and
stained for PTPy by using VECTASTAINS Universal Quick Kit and DAB
Substrate Kit. Brown staining represents PTPy immunoreactivity and blue
staining represents nuclei.

growth (Figure 4A) in MCF-7 cells. This indicates that
mechanisms other than growth stimulation were involved.
One possible mechanism is the regulation of ER-a and PR
expressions by KGF. Both ER-a and PR were prognostic
factors in breast cancers. Estrogen and progesterone
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Figure 4. KGF and KGF-13 protect MCF-7 cells from 4OH-Tam-
induced cell killing of MCF-7 cells. 1000 cells/ well were seeded in
96-well plates in DMEM/ F12 supplemented with 5% FBS and left
overnight. The cells were then treated with 4OH-Tam at 1, 3 or 5 uM, or
vehicles as control in the presence or absence of KGF (20 ng/ml) (A) or
KGF-13 (10 uM) (B) in phenol red-free DMEM]/ F12 with DCC FBS
(1%) for 2 days. The cell proliferation rate was determined by CellTiter™
AQueous assay and optical density was measured at 490 nm by an
ELISA plate reader. The results represent the mean value=S.D of four
replicate culture wells. Asterisks represent significant difference (p<0.05)
from the control group.
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receptor-positive breast cancers are more likely to be highly
differentiated and less malignant than estrogen and
progesterone receptor-negative breast cancers (45, 46). The
presence of estrogen and progesterone receptors also
predicts the possibility of benefit from endocrine therapy
(47). Our results showed that KGF down-regulated ER-a
and PR expressions and maintained MCF-7 cell survival in
the presence of 4OH-Tam. These observations support the
idea that loss of ER-a and PR predicts poor response to
endocrine therapy. These data also imply that KGF acts as
a potential ER-a and PR regulatory factor which leads to
the ER-a-negative /PR-negative phenotype and resistance
to endocrine therapy in breast cancer cells.

The PR gene is estrogen-regulated through an ER-a-
dependent pathway. The phosphorylation and genomic
activity of ER-a can be activated by kinases, or growth
factors, such as epidermal growth factor and insulin-like
growth factor type I (65-68). In the present study, PR was
shown to be down-regulated by KGF. Our results suggest
an ER-a-independent regulatory mechanism of loss of PR
expression because of KGF-induced ER-o down-regulation.
However, a growth factor-mediated down-regulation of PR,
which is not mediated via a reduction of ER levels, is
suggested. In the growth factor-mediated PR expression,
the down-regulation of PR expression involves the
activation of the PI3K/Akt pathway and repression of the
PR promoter (44, 60, 69). Therefore, further studies are
needed to fully understand how KGF inhibits PR
expression.

The molecules that are involved in the KGF-induced
down-regulation of ER-a, PR and PTPy expressions and
increase of 4OH-Tam resistance are not well understood.
Growth factors and molecular cross-talk between ER-a, PR
and growth factor-receptor signaling provides possible
explanations for the reduced Tam sensitivity in MCF-7 cells
with low ER-a and PR expressions. PI3K/Akt signaling,
which is related to the protection of breast cancer cells from
Tam (70-72), has been implied as an important pathway for
modulation of PR and ER expressions and Tam resistance
(19, 58). In addition, the cytoprotective activity of FGFs has
been associated with various signaling components, such as
(RAS)/mitogen-activated protein kinase, protein kinase C
and phosphatidylinositol 3-kinase (73-75), in which
apoptosis-related factors could be involved, such as
Fas/FasL/caspase-3, Bax and Bcl-2 in a variety of systems
(76-79). These studies define a molecular link between
activation of growth factor signaling, activation of ER-a and
inhibition of Tam-induced growth arrest or regression.
Based on these results, we believe that KGF may activate
KGFR and down-stream signaling pathways to regulate
ER-a and PR expressions, leading to alterations of cell
properties, such as Tam resistance. The investigation of
signaling transduction components involved in KGF
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modulation of ER-a and Tam resistance in MCF-7 cells are
in progress in our laboratory.

Peptides have a number of distinct advantages over proteins
and antibodies. These include: small size, easy preparation, high
penetration into tumor tissue and a high affinity and specificity
for receptors. A short peptide, KGF-13, was synthesized for
our experiment. This 5 amino acid length peptide is derived
from KGF protein and locates in a loop between f strand 4
and 5 of the KGF protein structure. KGF-13 shares no amino
acid sequence with the FGF family except KGF (NCBI
Protein Blast). In KGF protein, the peptide sequences
responsible for receptor binding and biological function
activation may locate in different sequence sites (80, 81).
Peptides within this region may be related to the binding
activity of KGF to its receptors (80). In our study, KGF-13
functioned as an agonist of KGFR in terms of down-
regulating ER-a, PR and PTPy. These results suggest that
KGF-13 may not only bind to receptors, but also have
functional action. KGF-13 is a short peptide of only 5 amino
acids. Therefore, we cannot exclude the possibility of non-
specific binding of KGF-13 to KGFR. Thus, it is necessary to
further investigate the binding ability of KGF-13 on KGFR
for regulation of breast cancer cells. In addition, our data
showed that KGF-13 was less potent than the parent peptide
based on the observation that the concentration of KGF-13
for activity induction was relatively high (10 uM) compared
with full length KGF (0.5 nM). This is probably because of
the shorter biological half-life of KGF-13 and the non-specific
binding of KGF-13. In our study, KGF-13 did not act as a
KGFR antagonist; nevertheless, our results shed light on the
possibility of using KGF-13 as a template to develop KGFR
antagonists for breast cancer therapeutic agents in the future.

In the human breast micro-environment, the growth and
progression of human breast cancer cells may be closely
regulated by steroid hormones, growth factors, their
receptors, as well as their downstream targets. We have
established that KGF increased aromatase activity (82) and
E, up-regulated KGF mRNA expression in breast cells (28).
KGFR gene up-regulation has been reported in primary
human breast tumor specimens (83). In this paper, we report
that KGF, at nanomolar concentrations, modulated ER-a
gene expression. We also found that KGF increased the
resistance of MCF-7 to 4OH-Tam. Our results predict that
the KGFR and its ligand, KGF, play the important roles in
the development of anti-hormone resistance in breast
cancers. To sum up, the positive feedback regulation between
E, and KGF in breast tissues, KGF-induced 4OH-Tam
resistance and ER-a down-regulation may be molecular
cascade events which lead breast cancer cells to become
estrogen-insensitive during breast cancer progression.
Interruption of the KGF/KGFR signal transduction pathways
may enhance the effect of anti-estrogens and prevent
estrogenic insensitivity on breast cancer cell progression.
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