Peroxisome Proliferator Activated Receptor Gamma Immunohistochemical Expression in Human Papillary Thyroid Carcinoma Tissues. Possible Relationship to Lymph Node Metastasis

BOGDAN GALUSCA¹, JEAN MARC DUMOLLARD²,4, MARIE LAURE CHAMBONNIERE²,4, NATACHA GERMAIN¹, JEAN MICHEL PRADES³, MICHEL PÉOC'H²,4 and BRUNO ESTOUR¹

¹Department of Endocrinology, ²Department of Pathology and Pathology and ³Department of Otolaryngology, Head and Neck Surgery, Bellevue Hospital; St-Etienne University Hospital Center, Saint-Etienne; ⁴EA6063, University of Saint-Etienne, France

Abstract. Background: Peroxisome proliferator activated receptor gamma (PPARγ) involvement in thyroid tumorigenesis has recently been studied, especially in follicular neoplasms. Conflicting results concerning the regulation of this receptor in human papillary carcinoma have been reported. Therefore, we quantitatively assessed PPARγ immunohistochemical expression in papillary carcinoma in comparison with other types of thyroid tumors and we evaluated its relationship with clinical criteria of aggressiveness. Materials and Methods: Immunohistochemistry (IHC) was performed on 56 human thyroid papillary carcinomas (PTC), 9 follicular carcinomas (FTC), 20 follicular adenomas (FA) and 18 Hürthle cells adenomas. PTC were divided into subgroups according to some aggressiveness criteria: tumor size, capsular invasion, lymph node metastasis. Immunostaining was semi-quantitatively analyzed using image analysis software. Results: Strong nuclear PPARγ expression was detected in a large number of PTC (42%), similar to that found in FTC (44%) or FA (63%). Only Hürthle cell adenoma showed a significantly lower proportion of PPARγ-positive immunoreactivity (11%, p<0.05). Cases of PTC-associated lymph node metastasis showed a higher percentage of PPARγ-positive immunoreactivity (11%, p<0.05). Cases of PTC-associated lymph node metastasis showed a significantly higher percentage of PPARγ-positive immunoreactivity than other case categories (63% vs. 20%), a result which was also noticed when comparing large PTC with infracentimetric tumors (60% vs. 39%, p<0.05). Conclusion: These results, combined with recently published data, suggest that the intense PPARγ immunostaining revealed in PTC could be related to high wtPPARγ gene levels. Moreover, they corroborate a strong relationship between PPARγ expression and tumor progression. PPARγ IHC evaluation is not a valuable differential diagnostic tool for thyroid tumors but it could be a reliable marker of papillary carcinoma aggressiveness and a potential predictor for an eventual therapy by PPARγ agonists.

The prognosis of papillary thyroid carcinomas, the most common form of thyroid cancer, remains uncertain and clinical, histopathological or epidemiological features are assessed as predictors of tumor aggressiveness (1-3). In order to improve prognostic evaluation, some immunohistochemical markers have been proposed, namely galectin-3 (4), p27 and cyclin D1 (5).

Peroxisome proliferator activated receptors (PPARs), members of the nuclear hormone receptor superfamily, play an important role in carcinogenesis, particularly in cell cycle control and differentiation. A high expression of PPARγ was reported in several types of tumor cells (6).

Recently, PAX8/PPARγ rearrangements were described in follicular thyroid carcinomas and adenomas and a suppressive function on wild-type PPARγ (wtPPARγ) was demonstrated (7). No PAX8/PPARγ fusion oncogene was identified in other types of thyroid tumor (8, 9).

Antiproliferative effects of PPARγ ligands already noticed in breast, colorectal carcinoma or liposarcoma (10, 11) were reproduced in papillary thyroid carcinoma cell lines expressing PPARγ mRNA (12, 13). Few data have been published using PPARγ's immunohistochemical (IHC) detection on routinely processed thyroid tissue sections (7-9, 14). Initially, strong diffuse PPARγ immunostaining in follicular thyroid neoplasia was considered relevant for the presence of PAX8/PPARγ oncogene (7, 8), though a recent study has questioned this (15). The results concerning papillary thyroid carcinoma are controversial (13, 16).
present study was performed to semi-quantitatively assess the immunohistochemical PPARγ expression in papillary tumors comparatively with other types of thyroid neoplasia and to evaluate its relationship with clinical criteria of aggressiveness.

Materials and Methods

Tissue samples. We evaluated thyroid neoplasms, including 56 papillary thyroid carcinomas (PTC), 9 follicular thyroid carcinomas (FTC), 20 follicular adenomas (FA) and 18 Hürthle cells adenomas. The tumors were classified according to the widely accepted histopathological criteria (17). Papillary carcinomas were diagnosed based on characteristic cytological features and architectural (papillary or follicular) patterns. Subgroups of this category were based on some aggressiveness criteria: tumor size (> 1cm), capsular invasion, lymph node metastasis, revealed before or immediately after the surgery (histological or isotopic confirmation). Follicular carcinomas were distinguished from adenomas on the basis of cytological patterns (18) and invasion of the edges of the tumor and/or invasion of blood vessels in or beyond the capsule. Tumors were classified as Hürthle cell neoplasm when the predominant cell subtype (almost 75 percent of cells) had oncocyotic features (19).

Immunohistochemistry. All thyroid specimens were fixed in 10% formalin for 24 hours. In all cases immunohistochemical analysis was performed on routinely paraffin-embedded sections. The tissues were sectioned onto positively-charged slides (SuperFrost Plus, Menzer-Glaser, Freiburg, Germany) and dewaxed with xylene and alcohol. Water bath antigen retrieval was performed at 97°C for 40 minutes in TRS (Target Retrieval Solution, DAKO Corporation, Carpinteria, CA, USA) pH 9.9. Thereafter, slides were incubated with the primary antibody (PPARγ, SC-7273, 1:75, Santa Cruz Biotechnology, Inc. Santa Cruz, CA, USA) for 40 minutes at room temperature on a DAKO TechMate 500 Plus. The EnVision detection system and DAB (diamino-benzidine) chromogen (K4006, DAKO Corporation) were used according to the manufacturer’s protocol for immune complex detection.

Cell immunostaining evaluation. Two semiquantitative methods, visual and a computerised image analysis, were employed. Visual analysis. Immunostaining was evaluated by two independent observers (BG, JMD) blinded to clinical data previously established. Nuclear staining of PPARγ was semiquantitatively scored by a method previously described (4, 20). We simultaneously evaluated both the distribution heterogeneity and the intensity of the brown-stained cells. Counts were performed in 10 random high-power fields. At least 1000 cells were counted. Each of the following degrees of staining intensity: absent or weak (-), moderate (1+), strong (2+, 3+, 4+), were adjusted by

Figure 1. PPARγ specimen staining score (SSS) in studied thyroid tumor groups: similar distribution in PTC and follicular neoplasia; lower values in Hürthle cell adenoma. The SSS cut-off value ≥ 2 revealed a higher percentage of positive immunoreactivity among PTC N0 than PTC N+ (χ2 test p=0.0012)

PTC, papillary thyroid carcinoma with (N+) or without lymph node metastasis (N0); FTC, follicular thyroid carcinoma; FA, follicular adenoma.

Flashed cases (A,B,C,D) correspond to photos from Figure 2.
the corresponding percentage of cells. The results were added to yield a specimen staining score (SSS). According to others (8), a sample was considered positive when a diffuse staining of strong intensity (≥ 2) was noticed. Thus, a corresponding SSS cut-off value was set at 2.

Computerised image analysis. All smears stained with PPARγ antibody were also analyzed by a computerised system (SAMBA Technologies, Grenoble, France) which allowed quantification of the percentage of stained cells (%SC), the average staining intensity (ASI) in these neoplastic cells (at least 1000) and calculation of a Computerised Lecture Index (CLI = %SC x ASI).

Statistical analysis. Staining characteristics of each category of thyroid tumors were compared by unpaired t-test, significant for a $p < 0.05$. When comparing the subgroups of papillary carcinoma a χ^2 test was also employed ($p < 0.05$).

Results

In thyroid tissue samples, PPARγ immunostaining was nuclear and was heterogeneous in distribution and intensity. Representative images of immunohistochemical staining with anti-PPARγ antibody are shown in Figure 1.

Table I. IHC expression to anti-PPARγ antibody in human thyroid tumor tissues; SSS (specimen staining score); CLI (computerized lecture index).

<table>
<thead>
<tr>
<th>Tumor type</th>
<th>% of cases PPARγ positive (SSS ≥2)</th>
<th>Mean SSS</th>
<th>Mean CLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follicular adenoma</td>
<td>63%</td>
<td>2.03</td>
<td>14.7</td>
</tr>
<tr>
<td>(n=20)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hürthle cell adenoma</td>
<td>11%</td>
<td>1.04</td>
<td>6.5</td>
</tr>
<tr>
<td>(n=18)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papillary carcinoma</td>
<td>41%</td>
<td>1.78</td>
<td>14.3</td>
</tr>
<tr>
<td>(n=56)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papillary carcinoma N+</td>
<td>63%</td>
<td>2.12</td>
<td>14.5</td>
</tr>
<tr>
<td>(n=27)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papillary carcinoma N0</td>
<td>20%</td>
<td>1.40</td>
<td>11.7</td>
</tr>
<tr>
<td>(n=29)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follicular carcinoma</td>
<td>44%</td>
<td>1.90</td>
<td>14.4</td>
</tr>
<tr>
<td>(n=29)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Strong, diffuse PPARγ nuclear immunostaining (SSS=3.3) in papillary thyroid carcinoma (PTC) N+, original magnification (A) x40, (B) x100; similar nuclear immunoreactivity and diffuse distribution (SSS=2.8) in a follicular adenoma, original magnification x100 (C); scattered faint staining (SSS=0.8) in a Hürthle cell adenoma, original magnification x100 (D).
The two semiquantitative analysis methods, classical and automatic, were compared in the entire group of specimens and a correlation index of 0.76 was found between SSS and CLI. The means of PPARγ expression scores (SSS, CLI) in each tumor type are summarised in Table I.

All subtypes of thyroid tumors expressed PPARγ at a different level. When comparing staining scores of every category of tumors by unpaired t-test, only Hürthle cell adenoma showed significantly lower values (1.04±0.05) than FA (2.03±0.26), FTC (1.9±0.3) or PTC (1.78±0.12) (p<0.05). Considering the SSS cut-off value of 2, only 2 out of 18 Hürthle cell lesions were PPARγ-positive.

PPARγ immunoreactivity on papillary carcinoma tissue samples was found to be positive in 42% of cases (specimen staining score >2). Among the 56 cases of papillary carcinomas, lymph node metastasis was identified in 27 cases. The mean SSS was significantly higher in primary lesions of FTC with metastasis (PTC N+) than those without (PTC N0) (2.12±0.19 vs. 1.40±0.13, p=0.0017) (Figure 2).

Considering other criteria of tumor aggressiveness, infracentimetric PTC (n=26) had a significantly lower SSS score (1.49±0.13) than larger tumors (n=30, 2.04±0.2) (p=0.02). Lymph node metastasis was significantly lower for infracentimetric tumors than for larger ones (9/26 vs. 18/30, χ2-test p=0.05). SSS values showed no significant difference for extracapsular penetration criteria (p=0.14).

Discussion

In our study we evaluated, by IHC, the expression of PPARγ on a large cohort of human thyroid tumor tissues. While PPARγ IHC detection has been described in literature data (7-9, 14), a detailed quantification has rarely been performed (15).

We found PPARγ-positive cases in each studied category of thyroid neoplasia (11% of Hürthle cell adenoma, 42% of papillary carcinoma, 44% in follicular carcinoma and up to 60% in follicular adenoma). So far PPARγ IHC is not a suitable differential diagnostic tool for thyroid tumors, in concordance with recent results (15). To our knowledge this study is the first to show that a large proportion of human PTC tumor cells can be strongly stained for PPARγ.

Recent studies concerning the involvement of PPARγ in thyroid tumoral pathogenesis or progression have focused on RT-PCR as the main technique of identification. Kroll et al. were the first to prove the presence of fusion oncogene PAX8/PPARγ in follicular thyroid carcinoma (7). Later, two studies detected the same rearrangement in follicular adenoma (9, 14). For papillary carcinoma the absence of this fusion oncogene was demonstrated (8) and Ohta et al. detected wtPPARγ mRNA in several cell lines and in 3 out of 6 cases of human papillary carcinomas (12, 13). Therefore we suggest that the intense immunostaining revealed in our study for this category could be related to a high wt PPARγ expression.

We showed a significantly higher percentage of PPARγ-positive cases in primary PTCs with lymph node metastasis than those without (63% vs. 20%, p<0.05). Similar results were also noticed when comparing larger papillary carcinoma with infracentimetric tumors (60% vs. 39%). Our observations were consistent with the hypothesis that PPARγ expression might be related to tumor progression. This is in agreement with the Ohta et al. study where it was shown that PPARγ-negative cells, transplanted to nude mice, could not form a tumor (13) and with Martelli et al.’s results, suggesting connections of PPARγ with cell cycle control (12).

Among studied lesions, Hürthle cell adenoma weakly stained for PPARγ. The absence of PAX8/PPARγ rearrangement in oncocytomas has already been shown by Nikiforova et al. (8). Thus our results suggest a weak expression or the absence of wtPPARγ in these tumors and give additional strength to the evidence of a different behavior of these tumors compared to other benign thyroid lesions.

Concerning the role of PPARγ agonists on thyroid tumors progression, two in vitro studies showed an antitumoral effect: i) synthetic or natural ligands of PPARγ inhibited growth of the four cell lines of thyroid papillary carcinoma expressing PPARγ (13); ii) the effect of ciglitazone was more pronounced in a highly malignant thyroid cell line consistent with abundant PPARγ gene expression and absence in a papillary cell line showing no PPARγ mRNA (12). Unfortunately, Kroll et al. showed that the PAX8/PPARγ fusion oncogene, expressed in a contingent of follicular neoplasia, inhibited thiazolidindione-induced gene trans-activation by wtPPARγ (7). Hence, for thyroid follicular tumors, a PAX8/PPARγ detection should be considered before starting a therapeutic trial by PPARγ agonists.

Our results for PPARγ IHC expression in papillary thyroid tumors, in association with literature data showing the absence of antitumoral effects of PAX8/PPARγ and PPARγ ligands (8), suggest that PTCs, especially those with a high dissemination potential, are putative candidates for treatment with PPARγ agonists.

In conclusion, PPARγ IHC evaluation is not a valuable diagnostic tool for the identification of thyroid tumors but it could be a reliable marker of papillary carcinoma lymph node dissemination and a potential predictor for an eventual therapy by PPARγ agonists.

Acknowledgements

This work was supported by grants from DRRC Saint Etienne, France. The authors thank A. J. Van Herle for his help in reviewing the manuscript.
References

Received October 10, 2003
Revised February 3, 2004
Accepted March 9, 2004