
Abstract. Caspase-3 is a key executioner cysteine protease
involved in programmed cell death or apoptosis. A ribozyme
to human caspase-3 was designed, tested by in vitro cleavage,
and transfected into a drug-resistant variant (DLKP-A5F) of
a human lung carcinoma cell line (DLKP). By both stable
and transient transfection, this ribozyme was shown to be
effective at down-regulating human caspase-3 mRNA and
protein levels. 

Many cell death stimuli, including growth factor withdrawal,

receptor ligation, drug treatment and virus infection, have

been shown to activate the cellular family of cysteine

proteases known as caspases (1-4). This protein family exists

in cells as inactive precursors. Upon activation by a death

stimulus, caspases are cleaved into two subunits, usually

20kDa and 10kDa, at aspartate residues (5, 1, 6). These

domains then form a heterotetramer, the active enzyme.

Once activated, these proteins initiate and execute a

number of apoptotic pathways in cells (7, 1, 8, 2). 

All caspases contain the amino acid sequence QACxG

(tryptophan-aspartate-cysteine-x-glutamate) which contains

the active cysteine. The protease activity of the caspase

family is unique in that they cleave following aspartate

residues (asp x). Active caspases can activate other caspases

following an initial activating stimulus as well as cleaving

themselves (5, 6). 

Caspase-3 (CPP-32) is a key executioner protein. It is a

32kDa protein widely distributed in many tissues. Purified

caspase-3 can cleave PARP, DFF (DNA fragmentation

factor), fodrin, sterol-regulatory element-binding proteins

(SREBPs), U1-associated 70kDa protein, huntingtin, DNA-

dependent protein kinase, etc (1, 9). Differences in levels of

CPP-32 in cells may influence the relative sensitivity or

resistance to apoptosis. Caspase-3 activation appears to be a

downstream consequence of anticancer drug treatment and

some studies document a down-regulation of caspase-3 in

multi-drug-resistant cancer cells (10, 11). 

Ribozymes are non-protein enzymes that catalyse RNA-

cleavage in a sequence-specific way (12, 13, 14). They can

be synthesised as tools to inhibit the expression of specific

RNA transcripts and, as they have the ability to cleave

deleterious RNAs or repair mutant cellular RNAs, have

potential therapeutic benefits. Their structures are based on

naturally occurring site-specific, self-cleaving RNA

molecules (12). Hammer-head ribozymes cleave their target

RNA directly after NUX sites, where X= C, U or A, and

N= any nucleotide. The GUC triplet is the preferred site

(15, 16). The sequences of the adjacent stems determine the

specificity of these molecules for their target (17, 18).

Cleavage depends on the presence of divalent metal ions at

neutral or higher pH and results in the production of two

truncated RNA molecules (19).

Previous studies have used hammerhead ribozymes to

target rat caspase-3 in neuronal cells (20, 21) and antisense

oligonucleotides against human caspase-3 have been described

(by Los and co-workers) (22). Here, we describe the design of

the first reported ribozyme targeting human caspase-3. 

Materials and Methods

Cell lines. DLKP is a poorly-differentiated human squamous cell

line, previously described (23, 24). DLKP-A5F is a clonal cell

population derived from the adriamycin-selected variant, DLKP-A

and this clone is 300-fold resistant to doxorubicin and

overexpresses the mdr-1 drug efflux pump, P-glycoprotein (25).

Chemicals and antibodies. Adriamycin was obtained from

Farmitalia Carlo Erba Ltd., U.K. All media used in the

maintenance of the cell lines was obtained from Gibco BRL, Life

Technologies, U.K. Anti-caspase-3 antibodies were purchased from
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Transduction laboratories (Affiniti, U.K.). All other chemicals were

obtained from Sigma Chemical Co., U.K.

Selection of ribozyme target site. M-fold is a computer program that

enables RNA secondary structure prediction. Developed by

Michael Zuker and colleagues, it allows the prediction of the

minimum free energy or optimal secondary structures of target

RNAs (26, 27). The specificity of the ribozyme was determined

using BLAST (NCBI homepage).

In vitro cleavage using MgCl2 gradient. RNA transcripts of caspase-

3 cDNA and ribozyme 1 were generated using T7 Riboprobe

System (Promega, P1440) and purified using phenol-chloroform

gradients followed by final purification using Quick Spin column

(Boehringer Mannheim, 1273990) according to manufacturer’s

protocols. Each 10Ìl reaction contained 50mM Tris-HCl, pH8.0,

40U RNasin, 0.1Ìg of human caspase-3 RNA, 1Ìg of ribozyme (or

water for control reactions) and MgCl2. The magnesium

concentrations used were 0mM, 5mM, 10mM and 15mM. Mixtures

were incubated at 37ÆC for 24 hours and stopped by the addition of

2X loading dye. Reaction products were heat-denatured at 90ÆC

for 3 minutes and then separated on 12% polyacrylamide gels

containing 7M urea (Sigma, U-5378).

Ribozyme preparation. Ribozyme 1 (Rz1) and Ribozyme 1 Reverse

(Rz1R) (see details in Results Section) were cloned into Promega’s

pTARGET vector, a CMV promoter-based expression vector

containing the gene for neomycin selection. Primers used to

construct Rz1 are:

Primer 1: TTG CTG CAT CCT GAT GAG TCC CGT GAG GAC

GAA ACA TCT GTA CCA

Primer 2: TGG TAC AGA TGT TTC GTC CTC ACG GGA CTC

ATC AGG ATG CAG CAA 

The full-length coding region of caspase-3 (used for in vitro
cleavage experiments), which was cloned into Invitrogen’s

pcDNA3, a CMV promoter-based expression vector containing the

gene for neomycin selection, was a generous gift from Prof. V.

Dixit and is described in 28. The ‚-galactosidase gene was

contained in the pCH110 plasmid (Invitrogen) and was used to

estimate transfection efficiency. 

Transient transfection of ribozyme and reverse ribozyme into DLKP-
A5F cells. To demonstrate the ability of the ribozyme to cleave

human caspase-3, DLKP-A5F cells were transiently transfected

with Rz1 or Rz1R using Fugene-6, (Roche) (method used as

described by Roche). 

RNA analysis. Gene transcript levels of caspase-3 and ‚-actin

(acting as a housekeeper gene) were analysed by semi-quantitative

RT-PCR method. The transcripts were analysed within their

exponential range and ‚-actin, used as an internal control, was co-

amplified with the gene of interest. An annealing temperature of

54ÆC was used in all amplifications and the resulting PCR products

were analysed by agarose gel electrophoresis and their size

determined by comparison with the ºX174 DNA Hae III digested

molecular weight marker (Sigma). The primer sequence and

product size for each gene are as follows. Caspase-3: (forward)

5’GAA TGA CAT CTC GGT CTG3’; (reverse) 5’ACG GCA GGC
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Figure 1. Structure and sequence of the caspase-3 hammerhead ribozyme (Rz1).



CTG AAT AAT3’; PCR cycle number, 30; product length (bp),

314. μ-actin: (forward) 5’TGG ACA TCC GCA AAG ACC TGT

AC3’; (reverse) 5’TCA GGA GGA GCA ATG ATC TTG A3’;

product length (bp), 142.

Protein analysis. Protein expression was determined by Western

blot analysis using standard methods.

Results

Design and construction of the caspase-3 ribozyme. A caspase-

3 ribozyme has been constructed targeting rat caspase-3

(20). However, when human and rat caspase-3 mRNA

sequences were aligned, no corresponding target site was

found in the human mRNA. Human caspase-3 mRNA was

analysed for its GUC sites (Clustal W & multiple sequence

alignment computer package). There are a total of six GUC

sites in the caspase-3 mRNA.

As well as examining the optimal secondary structure of

caspase-3 mRNA, another nine suboptimal mRNA folding

patterns were studied. When the GUC sites were analysed

using m-fold structure dot plot analysis for mRNA of

human caspase-3 (22), it was found that single stranded loop

regions were common to all predicted structures around

nucleotides 205, 250 and 750.

A hammerhead ribozyme was constructed to target

caspase-3 at position 205, which is within the p17 subunit of

the protein (see Materials and Methods for sequence

details). The specificity of the ribozyme for caspase-3 was

determined by BLAST sequence analysis of all human

sequences currently in the genbank. There was no homology

to any other human sequence, so theoretically the ribozyme

was specific for caspase-3 alone. The ribozyme sequence was

cloned into the pTARGET vector (Promega). In addition

to ribozyme 1, a non-functioning sequence was cloned into
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Figure 2. IVC optimisation using magnesium gradient (15% acrylamide gel). Lane 1 contains target caspase-3 and no ribozyme. Each lane following
contains increasing concentrations of MgCl2 at 0h and 24h. Cleavage products are indicated by arrows at position 619 and 205 base pairs. Full size
product is indicated at 824 bases.



the pTARGET vector (see Materials and Methods for

sequence details). This reversed sequence was

complementary to that of the ribozyme and therefore

identical to that of the caspase-3 mRNA. This Rz1R acted

as a control plasmid, unable to cleave the caspase-3 mRNA

sequence. Figure 1 shows the hammerhead structure of

ribozyme 1.

In vitro cleavage (IVC) analysis of the caspase-3 ribozyme.
The ability of the ribozyme to target caspase-3 was initially

determined by assessing its ability to cleave caspase-3

mRNA in vitro. Ribozyme (42 bases) and target sequences

(824 bases) had been cloned into pTARGET (Promega)

and pcDNA3.1 (Invitrogen) vectors, respectively. The T7

polymerase sequence in both vectors facilitates their use in

in vitro transcription reactions to produce radiolabelled

caspase-3 ribozyme and caspase-3 target. The radiolabelled

ribozyme and target RNA were then combined in the in
vitro cleavage reaction and the products were separated on

a polyacrylamide gel. 

MgCl2 initiates the cleavage reaction (29, 30). To

optimise the IVC reaction, it was necessary to use a MgCl2
gradient. The absolute requirement of the IVC reaction for

divalent metal ions is demonstrated by Figure 2. The

caspase-3 transcript is unaltered by incubation with caspase-

3 Rz1 in the absence of MgCl2. The IVC cleavage of

caspase-3 target mRNA proceeds at an optimal

concentration of 10mM MgCl2 and at a temperature of

37ÆC. Time course analysis shows that after 24 hours,

substrate concentration decreases and cleavage products

appear (205 and 619bps). It is thought that a certain amount

of ribozyme activity will take place at suboptimal conditions

and this is evident in Figure 2 which illustrates that at each

magnesium concentration after 24 hours a "bleed" of signal

appears on the X-ray. This is particularly evident at 5mM

and 15 mM MgCl2. The amount of the CPP-32 target

sequence decreases after 24hours, while those of the

cleavage bands appear after 24hours. This is entirely

consistent with a time-dependent cleavage of the CPP-32

target sequence by the CPP-32 ribozyme. 
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Figure 3. RT-PCR analysis of CPP-32 expression in transiently transfected cells. The molecular weight marker (Mr marker) is "Ê-X174" Hae III digest
(Promega: G1761). Caspase-3 primers amplify a product of 314 bp. Internal control ‚-actin amplified to yield a 142bp product. Gel shows caspase-3 levels
in control, ribozyme 1 and reverse ribozyme transfectants. 

Figure 4. Western blot analysis displaying pro-caspase-3 levels in control
and transfected cells. Pro-caspase-3 is a 32kDa protein. ‚-actin was used as
a control and is a 42 kDa protein. Protein was separated on a 12% SDS-
polyacrylamide gel. Twenty-five ug of protein was loaded in each case. 



RT-PCR for CPP-32 expression in transiently transfected A5F
cells. The effectiveness of the caspase-3 ribozyme in vivo was

assessed using a transient transfection assay. Using a ‚-

galactosidase assay, a transfection efficiency of 35% was

achieved in DLKP-A5F cells. DLKP-A5F cells were

transiently transfected with ribozyme (Rz1) and control

reverse ribozyme (Rz1R) to caspase-3 using the optimised

transfection protocol. To determine if the cells displayed a

reduction in caspase-3 mRNA levels compared to parent or

reverse ribozyme transfectants, RT-PCR was carried out on

total RNA isolated from each transfectant. Cells were

harvested for RNA extraction at 24 and 48 hours after

transfection. The expression of caspase-3 mRNA was

decreased to very low levels at 24 hours (see Figure 3). At

48 hours, caspase-3 expression had increased but was still

not back to the levels of the nontransfected or reverse

ribozyme transfectants. 

Western blot analysis of pro-caspase-3 levels in transiently
transfected A5F cells. Western blot analysis showed a decrease

in pro-caspase-3 protein levels at 24 h and to a lesser extent

at 48 h post transient transfection. ‚-actin was used as an

internal control. Results are presented in Figure 4. 

Discussion

This is the first reported ribozyme targeting human caspase-

3. Previous studies (20, 21) have used ribozymes to rat

caspase-3 in the context of neurological studies. Eldadah

and coworkers found that ribozyme expression conferred

protection against apoptosis at 24hours post-transfection

(20). Xu and coworkers found that ribozyme-transfected

PC12 cells had increased protection against apoptosis

induced by low levels of 6-hydroxydopamine when

compared with non-transfected cells (21). 

When choosing a ribozyme target site, it is desirable to

select a target NUX site in an area of single-stranded RNA

which allows target to base pair with its complementary

sequence on the ribozyme, and also ensures that the

catalytic moiety of the ribozyme, (NUX site), can access the

target region (31). Given the complexities of RNA folding

patterns, we used M-Fold, a programme that predicts the

most stable mRNA folding pattern based on calculating the

minimum free energy (26, 27). Analysis of the six GUC sites

in the caspase-3 mRNA using structure dot plot analysis for

mRNA of human caspase-3 revealed that loops occur in all

predicted structures around nucleotides 200, 250 and 750.

Ribozyme 1 was chosen to target position 205 of human

caspase-3, which lies within the p17 subunit of the protein.

Hammerhead ribozymes depend on divalent cations for

binding and cleavage of their substrate (32, 33, 29, 30). An in
vitro cleavage assay demonstrated that the purified ribozyme

was capable of cleaving the target sequence in vitro. 

The magnesium gradient in Figure 2 illustrates how this

ribozyme’s activity in vitro is affected by magnesium

concentration. Each cleavage reaction at different

magnesium concentrations showed a "bleed" of signal after

24hours incubation. This was probably due to ribozyme

activity taking place at suboptimal conditions. In vitro
cleavage of CPP-32 target cDNA proceeded at an optimal

concentration of 10mM MgCl2 – consistent with a previous

report (34).

The effectiveness of this caspase-3 ribozyme in living cells

was illustrated by developing a transient transfection assay.

The use of transient transfection, particularly in apoptosis

research, has been widely reported (22, 35-39). It is a useful

tool to illustrate the short-term effects of induced gene

expression and has become a fast and effective method in

our lab for investigating ribozyme function. 

To achieve high expression efficiency, most studies use

viral vectors thereby obtaining very high viral replication

and hence induced gene expression (39-42). However in this

study, non-viral mammalian expression vectors were

transfected into DLKP-A5F cells with 35% transfection

efficiency. This level of transfection efficiency enabled

sufficient ribozyme activity resulting in decreases in caspase-

3 at both the mRNA and protein levels in transiently

transfected cells. Other studies where cDNA and ribozyme

to rat caspase-3 were investigated used transient

transfection to illustrate the ribozyme’s efficacy (20, 35, 21). 

DLKP-A5F are a clonal population which display 300-

fold resistance to adriamycin and low levels of caspase-3

when compared with their drug sensitive parental

population, DLKP (25). Given these low levels, any change

in caspase-3 expression due to ribozyme activity should be

easily determined. Our results indicate that the caspase-3

ribozyme transfection resulted in a decrease in the

expression of caspase-3 mRNA and protein. A decrease in

mRNA was evident at 24hours and in protein at 24 and 48

hours. 

This study involved the design and construction of the

first ribozyme to human caspase-3. It is also the first study

where a ribozyme to caspase-3 was used in cancer cells. This

ribozyme functions both in vitro and in vivo, as illustrated by

in vitro cleavage, RT-PCR and Western blot. The ribozyme

proved effective at decreasing RNA and protein with some

effects on drug resistance levels (data not shown). 

There are many studies that document a down-regulation

of caspase-3 in Pgp overexpressing cells and more aggressive

cancers (11, 10). Drug resistant cervical cancer cells had

reduced levels of caspase-3 (43). Procaspase-3 expression

has been correlated with decreased incidence of lymph node

metastases and longer median survival in patients with non-

small cell lung cancer (44). Ruefli and coworkers found that

Pgp+ cells were less sensitive to those nuclear apoptotic

events that occur following caspase activation (10). 
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The caspase-3 ribozyme described here, in association

with the mdr-1 ribozyme previously described (45), may be

useful for further investigation of the interactions between

P-glycoprotein and caspase-3.
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