Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Subscribers
    • Advertisers
    • Editorial Board
    • Special Issues 2025
  • Journal Metrics
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Anticancer Research
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Anticancer Research

Advanced Search

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Subscribers
    • Advertisers
    • Editorial Board
    • Special Issues 2025
  • Journal Metrics
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Visit us on Facebook
  • Follow us on Linkedin
Research ArticleExperimental Studies
Open Access

Recombinant Methioninase Increases Eribulin Efficacy 16-fold in Highly Eribulin-resistant HT1080 Fibrosarcoma Cells, Demonstrating Potential to Overcome the Clinical Challenge of Drug-resistant Soft-tissue Sarcoma

SEI MORINAGA, QINGHONG HAN, KOHEI MIZUTA, BYUNG MO KANG, MOTOKAZU SATO, MICHAEL BOUVET, NORIO YAMAMOTO, KATSUHIRO HAYASHI, HIROAKI KIMURA, SHINJI MIWA, KENTARO IGARASHI, TAKASHI HIGUCHI, HIROYUKI TSUCHIYA, SATORU DEMURA and ROBERT M. HOFFMAN
Anticancer Research September 2024, 44 (9) 3777-3783; DOI: https://doi.org/10.21873/anticanres.17202
SEI MORINAGA
1AntiCancer Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
3Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
QINGHONG HAN
1AntiCancer Inc., San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
KOHEI MIZUTA
1AntiCancer Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
BYUNG MO KANG
1AntiCancer Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MOTOKAZU SATO
1AntiCancer Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MICHAEL BOUVET
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
NORIO YAMAMOTO
3Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
KATSUHIRO HAYASHI
3Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HIROAKI KIMURA
3Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SHINJI MIWA
3Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
KENTARO IGARASHI
3Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
TAKASHI HIGUCHI
3Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HIROYUKI TSUCHIYA
3Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SATORU DEMURA
3Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ROBERT M. HOFFMAN
1AntiCancer Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: all@anticancer.com
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Background/Aim: A major challenge in treating soft-tissue sarcoma is the development of drug resistance. Eribulin, an anti-tubulin agent, is used as a second-line chemotherapy for patients with unresectable or metastatic soft-tissue sarcoma. However, most patients with advanced soft-tissue sarcoma are resistant to eribulin and do not survive. Recombinant methioninase (rMETase) targets the fundamental and general hallmark of cancer, methionine addiction, termed the Hoffman Effect. The present study aimed to show how much rMETase could increase the efficacy of eribulin on eribulin-resistant fibrosarcoma cells in vitro. Materials and Methods: HT1080 human fibrosarcoma cells were exposed to step-wise increasing concentrations of eribulin from 0.15-0.4 nM to establish eribulin-resistant HT1080 (ER-HT1080). ER-HT1080 cells were cultured in vitro and divided into four groups: untreated control; eribulin treated (0.15 nM); rMETase treated (0.75 U/ml); and eribulin (0.15 nM) plus rMETase (0.75 U/ml) treated. Results: The IC50 of eribulin on ER-HT1080 cells was 0.95 nM compared to the IC50 of 0.15 nM on HT1080 cells, a 6-fold increase. The IC50 of rMETase on ER-HT1080 and HT1080 was 0.87 U/ml and 0.75 U/ml, respectively. The combination of rMETase (0.75 U/ml) and eribulin (0.15 nM) was synergistic on ER-HT1080 cells resulting in an inhibition of 80.1% compared to eribulin alone (5.0%) or rMETase alone (47.1%) (p<0.05). rMETase thus increased the efficacy of eribulin 16-fold on eribulin-resistant fibrosarcoma cells. Conclusion: The present study showed that the combination of eribulin and rMETase can overcome high eribulin resistance of fibrosarcoma. The present results demonstrate that combining rMETase with first- or second-line therapy for soft-tissue sarcoma has the potential to overcome the intractable clinical problem of drug-resistant soft-tissue sarcoma.

Key Words:
  • Methioninase
  • methionine restriction
  • eribulin
  • synergy
  • efficacy
  • eribulin-resistance
  • fibrosarcoma
  • methionine addiction
  • Hoffman effect

An intractable clinical problem is drug resistance of soft-tissue sarcoma, which is usually lethal for the patients (1). Eribulin, an anti-tubulin agent is a second-line chemotherapy for patients diagnosed with unresectable or metastatic soft-tissue sarcoma (2). In a clinical trial, 227 patients with advanced soft-tissue sarcoma were given eribulin. Of these patients, 173 patients had progressive disease and 176 patients died (2).

Recombinant methioninase (rMETase) targets the fundamental and general hallmark of cancer, methionine addiction, termed the Hoffman Effect (3, 4). Numerous studies have demonstrated synergy of chemotherapy in combination with methionine restriction effected by rMETase, methionine-free medium, or a methionine-depleted diet (5-44). We have previously showed synergy of rMETase and eribulin on parental HT1080 fibrosarcoma cells in vitro (37).

The present study aimed to show how much rMETase can increase the efficacy of eribulin on highly eribulin-resistant HT1080 fibrosarcoma cells in vitro.

Materials and Methods

Cell culture. The HT1080 cell line was acquired from the American Type Culture Collection (Manassas, VA, USA). The cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (GIBCO, Grand Island, NY) supplemented with 10% fetal bovine serum (FBS) and 1 IU/ml penicillin/streptomycin.

Reagents. Eribulin was acquired from Eisai Inc. (Nutley, NJ, USA). rMETase was produced by AntiCancer Inc. (San Diego, CA, USA). The procedure for producing rMETase has been previously described (45).

Establishment of eribulin-resistant HT1080 (ER-HT1080). ER-HT1080 cells were established by culturing HT1080 in stepwise increasing concentrations (0.15-0.4 nM) of eribulin for 3 months.

Drug sensitivity assay 1: IC50. Cell viability was determined by utilizing the WST-8 reagent from Dojindo Laboratory (Kumamoto, Japan). The cells (HT1080 or ER-HT1080) were cultivated in 96-well plates with a density of 3,000 cells per well. The culture medium was 100 μl DMEM per well. The cells were then incubated at 37°C overnight. HT1080 or ER-HT1080 cells were exposed to escalating concentrations of eribulin, ranging from 0.5 nM to 8 nM, for 72 h. HT1080 cells or ER-HT1080 cells were treated with increasing concentrations of rMETase, ranging from 0.5 U/ml to 8 U/ml, for 72 h. After the culture period, 10 μl of a WST-8 solution was added to each well, and the plate was further incubated for 1 h at 37°C. A microplate reader (SUNRISE: TECAN, Mannedorf, Switzerland) was used to measure absorption at 450 nm. Drug sensitivity curves were generated using Microsoft Excel for Mac 2016 ver. 15.52 (Microsoft, Redmond, WA, USA). The half-maximal inhibitory concentration (IC50) values were calculated using ImageJ ver. 1.53k (National Institutes of Health, Bethesda, MD, USA). The experiments were conducted in triplicate, with each experiment being repeated twice. Viability of HT1080 cells after eribulin and rMETase treatment was determined as previously described (37).

Drug sensitivity assay 2: Synergy. ER-HT1080 cells were seeded at 3,000 cells/well in 96-well plates. Twenty-four hours later, four treatment groups were established [control (DMEM); eribulin (0.15 nM); rMETase (0.75 U/ml); eribulin (0.15 nM) plus rMETase (0.75 U/ml)]. Seventy-two hours later, cell viability was measured in triplicate as described above. In the present study, we defined synergy as an effective combination greater than either component alone.

Statistical analyses were performed using EZR software developed by the Saitama Medical Center, Jichi Medical University, Saitama, Japan (46). Tukey-Kramer analysis was conducted to examine the relationships between variables. Statistically significant results were defined as those with p-values ≤ 0.05.

Results

Drug sensitivity assay 1: IC50 of eribulin and rMETase on HT1080 and ER-HT1080 cells. The IC50 value of eribulin on HT1080 cells was 0.15 nM [data from (37)]. The IC50 of eribulin on ER-HT1080 cells was 0.95 nM, a six-fold increase in resistance. The IC50 for rMETase on HT1080 cells was 0.75 U/ml [data from (37)] and the IC50 of rMETase on ER-HT1080 cells was 0.87 U/ml, demonstrating that the efficacy of rMETase alone on ER-HT1080 cells was similar to that on HT1080 cells (Figure 1).

Figure 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1.

IC50 of eribulin and rMETase on HT1080 and ER-HT1080 cells (mean±SD, n=3). A) IC50 of eribulin on HT1080 cells [data from (37)]. B) IC50 of eribulin on ER-HT1080 cells. C) IC50 of r-METase on HT1080 cells [data from (37)]. D) IC50 of r-METase on ER-HT1080 cells. rMETase: recombinant methioninase; ER-HT1080: eribulin-resistant HT1080.

Drug sensitivity assay 2: Synergy of rMETase and eribulin on ER-HT1080 cells. The combination of rMETase (0.75 U/ml) and eribulin (0.15 nM) was synergistic on ER-HT1080 cells resulting in lethality of 80.1% of the cells compared to eribulin alone (5.0%), or rMETase alone (47.1%) (p<0.05) (Figure 2). rMETase increased the efficacy of eribulin on ER-HT1080 cells 16-fold.

Figure 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 2.

Synergy of the combination of eribulin and rMETase on ER-HT1080 cells. The combination of rMETase (0.75 U/ml) and eribulin (0.15 nM) was synergistic on ER-HT1080 cells resulting in 80.1% lethality of the cells compared to eribulin alone (5.0%) and rMETase alone (47.1%).

Discussion

An intractable clinical problem in treating soft-tissue sarcoma is drug resistance. Once drug resistance is established, therapeutic options for soft-tissue sarcoma are severely restricted due to the lack of effective drugs for the disease (47). Next-generation therapy is urgently needed.

ER-HT1080 cells were 6-fold-more resistant to eribulin than HT1080 cells. However, ER-HT1080 cells were as sensitive to rMETase as HT1080 cells. The combination of eribulin (0.15 nM) and rMETase (0.75 U/ml) (which were the IC50s for HT1080) on ER-HT1080 cells resulted in a 16-fold increase in the efficacy of eribulin. The present results have future clinical potential to solve the intractable clinical problem of drug-resistant soft-tissue sarcoma.

rMETase is effective since it targets the fundamental and universal hallmark of cancer, methionine addiction, and is showing clinical promise (3, 15, 22, 39, 48-78).

Acknowledgements

This article is dedicated to the memory of A.R. Moossa, MD, Sun Lee, MD, Professor Gordon H. Sato, Professor Li Jiaxi, Masaki Kitajima, MD, Joseph R. Bertino, MD, Shigeo Yagi, PhD, J.A.R Mead, Ph.D., Eugene P. Frenkel, MD, Professor Lev Bergelson, Professor Sheldon Penman, Professor John R. Raper, and Joseph Leighton, MD. The Robert M. Hoffman Foundation for Cancer Research provided funds for the present study.

Footnotes

  • Authors’ Contributions

    SM and RMH designed the study. QH provided rMETase. SM performed experiments. SM was the major contributor to writing the article and RMH revised the article. KM, BMK, MS, MB, NY, KH, HK, SM, KI, TH, HT and SD critically read the manuscript.

  • Conflicts of Interest

    The Authors declare that there are no competing interests in relation to this study.

  • Received June 22, 2024.
  • Revision received July 15, 2024.
  • Accepted July 16, 2024.
  • Copyright © 2024 International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) 4.0 international license (https://creativecommons.org/licenses/by-nc-nd/4.0).

References

  1. ↵
    1. Yahiro K,
    2. Matsumoto Y,
    3. Fukushi JI,
    4. Kawaguchi KI,
    5. Endo M,
    6. Setsu N,
    7. IIda K,
    8. Fukushima S,
    9. Nakagawa M,
    10. Kimura A,
    11. Oda Y,
    12. Nakashima Y
    : Class III β-Tubulin overexpression induces chemoresistance to eribulin in a leiomyosarcoma cell line. Anal Cell Pathol (Amst) 2018: 8987568, 2018. DOI: 10.1155/2018/8987568
    OpenUrlCrossRefPubMed
  2. ↵
    1. Schöffski P,
    2. Chawla S,
    3. Maki RG,
    4. Italiano A,
    5. Gelderblom H,
    6. Choy E,
    7. Grignani G,
    8. Camargo V,
    9. Bauer S,
    10. Rha SY,
    11. Blay JY,
    12. Hohenberger P,
    13. D’Adamo D,
    14. Guo M,
    15. Chmielowski B,
    16. Le Cesne A,
    17. Demetri GD,
    18. Patel SR
    : Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: a randomised, open-label, multicentre, phase 3 trial. Lancet 387(10028): 1629-1637, 2016. DOI: 10.1016/S0140-6736(15)01283-0
    OpenUrlCrossRefPubMed
  3. ↵
    1. Hoffman RM,
    2. Erbe RW
    : High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci USA 73(5): 1523-1527, 1976. DOI: 10.1073/pnas.73.5.1523
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Kaiser P.
    Methionine dependence of cancer Biomolecules 10(4): 568, 2020.
    OpenUrlCrossRefPubMed
  5. ↵
    1. Stern PH,
    2. Hoffman RM
    : Enhanced in vitro selective toxicity of chemotherapeutic agents for human cancer cells based on a metabolic defect. J Natl Cancer Inst 76(4): 629-639, 1986. DOI: 10.1093/jnci/76.4.629
    OpenUrlCrossRefPubMed
    1. Sugisawa N,
    2. Yamamoto J,
    3. Han Q,
    4. Tan Y,
    5. Tashiro Y,
    6. Nishino H,
    7. Inubushi S,
    8. Hamada K,
    9. Kawaguchi K,
    10. Unno M,
    11. Bouvet M,
    12. Hoffman RM
    : Triple-methyl blockade with recombinant methioninase, cycloleucine, and azacitidine arrests a pancreatic cancer patient-derived orthotopic xenograft model. Pancreas 50(1): 93-98, 2021. DOI: 10.1097/MPA.0000000000001709
    OpenUrlCrossRefPubMed
    1. Higuchi T,
    2. Sugisawa N,
    3. Yamamoto J,
    4. Oshiro H,
    5. Han Q,
    6. Yamamoto N,
    7. Hayashi K,
    8. Kimura H,
    9. Miwa S,
    10. Igarashi K,
    11. Tan Y,
    12. Kuchipudi S,
    13. Bouvet M,
    14. Singh SR,
    15. Tsuchiya H,
    16. Hoffman RM
    : The combination of oral-recombinant methioninase and azacitidine arrests a chemotherapy-resistant osteosarcoma patient-derived orthotopic xenograft mouse model. Cancer Chemother Pharmacol 85(2): 285-291, 2020. DOI: 10.1007/s00280-019-03986-0
    OpenUrlCrossRefPubMed
    1. Masaki N,
    2. Han Q,
    3. Wu NF,
    4. Samonte C,
    5. Wu J,
    6. Hozumi C,
    7. Obara K,
    8. Kubota Y,
    9. Aoki Y,
    10. Miyazaki J,
    11. Hoffman RM
    : Oral-recombinant methioninase lowers the effective dose and eliminates toxicity of cisplatinum for primary osteosarcoma of the mammary gland in a patient-derived orthotopic xenograft mouse model. In Vivo 36(6): 2598-2603, 2022. DOI: 10.21873/invivo.12994
    OpenUrlAbstract/FREE Full Text
    1. Masaki N,
    2. Han Q,
    3. Samonte C,
    4. Wu NF,
    5. Hozumi C,
    6. Wu J,
    7. Obara K,
    8. Kubota Y,
    9. Aoki Y,
    10. Bouvet M,
    11. Hoffman RM
    : Oral-recombinant methioninase in combination with rapamycin eradicates osteosarcoma of the breast in a patient-derived orthotopic xenograft mouse model. Anticancer Res 42(11): 5217-5222, 2022. DOI: 10.21873/anticanres.16028
    OpenUrlAbstract/FREE Full Text
    1. Sun Y,
    2. Nishino H,
    3. Sugisawa N,
    4. Yamamoto J,
    5. Hamada K,
    6. Zhu G,
    7. Lim HI,
    8. Hoffman RM
    : Oral recombinant methioninase sensitizes a bladder cancer orthotopic xenograft mouse model to low-dose cisplatinum and prevents metastasis. Anticancer Res 40(11): 6083-6091, 2020. DOI: 10.21873/anticanres.14629
    OpenUrlAbstract/FREE Full Text
    1. Aoki Y,
    2. Tome Y,
    3. Han Q,
    4. Yamamoto J,
    5. Hamada K,
    6. Masaki N,
    7. Kubota Y,
    8. Bouvet M,
    9. Nishida K,
    10. Hoffman RM
    : Oral-recombinant methioninase converts an osteosarcoma from methotrexate-resistant to -sensitive in a patient-derived orthotopic-xenograft (PDOX) mouse model. Anticancer Res 42(2): 731-737, 2022. DOI: 10.21873/anticanres.15531
    OpenUrlAbstract/FREE Full Text
    1. Aoki Y,
    2. Tome Y,
    3. Wu NF,
    4. Yamamoto J,
    5. Hamada K,
    6. Han Q,
    7. Bouvet M,
    8. Nishida K,
    9. Hoffman RM
    : Oral-recombinant methioninase converts an osteosarcoma from docetaxel-resistant to -sensitive in a clinically-relevant patient-derived orthotopic-xenograft (PDOX) mouse model. Anticancer Res 41(4): 1745-1751, 2021. DOI: 10.21873/anticanres.14939
    OpenUrlAbstract/FREE Full Text
    1. Yamamoto J,
    2. Miyake K,
    3. Han Q,
    4. Tan Y,
    5. Inubushi S,
    6. Sugisawa N,
    7. Higuchi T,
    8. Tashiro Y,
    9. Nishino H,
    10. Homma Y,
    11. Matsuyama R,
    12. Chawla SP,
    13. Bouvet M,
    14. Singh SR,
    15. Endo I,
    16. Hoffman RM
    : Oral recombinant methioninase increases TRAIL receptor-2 expression to regress pancreatic cancer in combination with agonist tigatuzumab in an orthotopic mouse model. Cancer Lett 492: 174-184, 2020. DOI: 10.1016/j.canlet.2020.07.034
    OpenUrlCrossRefPubMed
    1. Igarashi K,
    2. Li S,
    3. Han Q,
    4. Tan Y,
    5. Kawaguchi K,
    6. Murakami T,
    7. Kiyuna T,
    8. Miyake K,
    9. Li Y,
    10. Nelson SD,
    11. Dry SM,
    12. Singh AS,
    13. Elliott IA,
    14. Russell TA,
    15. Eckardt MA,
    16. Yamamoto N,
    17. Hayashi K,
    18. Kimura H,
    19. Miwa S,
    20. Tsuchiya H,
    21. Eilber FC,
    22. Hoffman RM
    : Growth of doxorubicin-resistant undifferentiated spindle-cell sarcoma PDOX is arrested by metabolic targeting with recombinant methioninase. J Cell Biochem 119(4): 3537-3544, 2018. DOI: 10.1002/jcb.26527
    OpenUrlCrossRefPubMed
  6. ↵
    1. Kubota Y,
    2. Han Q,
    3. Masaki N,
    4. Hozumi C,
    5. Hamada K,
    6. Aoki Y,
    7. Obara K,
    8. Tsunoda T,
    9. Hoffman RM
    : Elimination of axillary-lymph-node metastases in a patient with invasive lobular breast cancer treated by first-line neo-adjuvant chemotherapy combined with methionine restriction. Anticancer Res 42(12): 5819-5823, 2022. DOI: 10.21873/anticanres.16089
    OpenUrlAbstract/FREE Full Text
    1. Lim HI,
    2. Sun YU,
    3. Han Q,
    4. Yamamoto J,
    5. Hoffman RM
    : Efficacy of oral recombinant methioninase and eribulin on a PDOX model of triple-negative breast cancer (TNBC) liver metastasis. In Vivo 35(5): 2531-2534, 2021. DOI: 10.21873/invivo.12534
    OpenUrlAbstract/FREE Full Text
    1. Higuchi T,
    2. Han Q,
    3. Miyake K,
    4. Oshiro H,
    5. Sugisawa N,
    6. Tan Y,
    7. Yamamoto N,
    8. Hayashi K,
    9. Kimura H,
    10. Miwa S,
    11. Igarashi K,
    12. Bouvet M,
    13. Singh SR,
    14. Tsuchiya H,
    15. Hoffman RM
    : Combination of oral recombinant methioninase and decitabine arrests a chemotherapy-resistant undifferentiated soft-tissue sarcoma patient-derived orthotopic xenograft mouse model. Biochem Biophys Res Commun 523(1): 135-139, 2020. DOI: 10.1016/j.bbrc.2019.12.024
    OpenUrlCrossRefPubMed
    1. Igarashi K,
    2. Kawaguchi K,
    3. Kiyuna T,
    4. Miyake K,
    5. Miyake M,
    6. Li S,
    7. Han Q,
    8. Tan Y,
    9. Zhao M,
    10. Li Y,
    11. Nelson SD,
    12. Dry SM,
    13. Singh AS,
    14. Elliott IA,
    15. Russell TA,
    16. Eckardt MA,
    17. Yamamoto N,
    18. Hayashi K,
    19. Kimura H,
    20. Miwa S,
    21. Tsuchiya H,
    22. Eilber FC,
    23. Hoffman RM
    : Tumor-targeting Salmonella typhimurium A1-R combined with recombinant methioninase and cisplatinum eradicates an osteosarcoma cisplatinum-resistant lung metastasis in a patient-derived orthotopic xenograft (PDOX) mouse model: decoy, trap and kill chemotherapy moves toward the clinic. Cell Cycle 17(6): 801-809, 2018. DOI: 10.1080/15384101.2018.1431596
    OpenUrlCrossRefPubMed
    1. Igarashi K,
    2. Kawaguchi K,
    3. Li S,
    4. Han Q,
    5. Tan Y,
    6. Murakami T,
    7. Kiyuna T,
    8. Miyake K,
    9. Miyake M,
    10. Singh AS,
    11. Eckardt MA,
    12. Nelson SD,
    13. Russell TA,
    14. Dry SM,
    15. Li Y,
    16. Yamamoto N,
    17. Hayashi K,
    18. Kimura H,
    19. Miwa S,
    20. Tsuchiya H,
    21. Singh SR,
    22. Eilber FC,
    23. Hoffman RM
    : Recombinant methioninase in combination with doxorubicin (DOX) overcomes first-line DOX resistance in a patient-derived orthotopic xenograft nude-mouse model of undifferentiated spindle-cell sarcoma. Cancer Lett 417: 168-173, 2018. DOI: 10.1016/j.canlet.2017.12.028
    OpenUrlCrossRefPubMed
    1. Miyake M,
    2. Miyake K,
    3. Han Q,
    4. Igarashi K,
    5. Kawaguchi K,
    6. Barangi M,
    7. Kiyuna T,
    8. Sugisawa N,
    9. Higuchi T,
    10. Oshiro H,
    11. Zhang Z,
    12. Razmjooei S,
    13. Bouvet M,
    14. Endo I,
    15. Hoffman RM
    : Synergy of oral recombinant methioninase (rMETase) and 5-fluorouracil on poorly differentiated gastric cancer. Biochem Biophys Res Commun 643: 48-54, 2023. DOI: 10.1016/j.bbrc.2022.12.062
    OpenUrlCrossRefPubMed
    1. Kawaguchi K,
    2. Miyake K,
    3. Han Q,
    4. Li S,
    5. Tan Y,
    6. Igarashi K,
    7. Lwin TM,
    8. Higuchi T,
    9. Kiyuna T,
    10. Miyake M,
    11. Oshiro H,
    12. Bouvet M,
    13. Unno M,
    14. Hoffman RM
    : Targeting altered cancer methionine metabolism with recombinant methioninase (rMETase) overcomes partial gemcitabine-resistance and regresses a patient-derived orthotopic xenograft (PDOX) nude mouse model of pancreatic cancer. Cell Cycle 17(7): 868-873, 2018. DOI: 10.1080/15384101.2018.1445907
    OpenUrlCrossRefPubMed
  7. ↵
    1. Kubota Y,
    2. Han Q,
    3. Hozumi C,
    4. Masaki N,
    5. Yamamoto J,
    6. Aoki Y,
    7. Tsunoda T,
    8. Hoffman RM
    : Stage IV pancreatic cancer patient treated with FOLFIRINOX combined with oral methioninase: a highly-rare case with long-term stable disease. Anticancer Res 42(5): 2567-2572, 2022. DOI: 10.21873/anticanres.15734
    OpenUrlAbstract/FREE Full Text
    1. Higuchi T,
    2. Oshiro H,
    3. Miyake K,
    4. Sugisawa N,
    5. Han Q,
    6. Tan Y,
    7. Park J,
    8. Zhang Z,
    9. Razmjooei S,
    10. Yamamoto N,
    11. Hayashi K,
    12. Kimura H,
    13. Miwa S,
    14. Igarashi K,
    15. Bouvet M,
    16. Chawla SP,
    17. Singh SR,
    18. Tsuchiya H,
    19. Hoffman RM
    : Oral recombinant methioninase, combined with oral caffeine and injected cisplatinum, overcome cisplatinum-resistance and regresses patient-derived orthotopic xenograft model of osteosarcoma. Anticancer Res 39(9): 4653-4657, 2019. DOI: 10.21873/anticanres.13646
    OpenUrlAbstract/FREE Full Text
    1. Sugisawa N,
    2. Higuchi T,
    3. Han Q,
    4. Hozumi C,
    5. Yamamoto J,
    6. Tashiro Y,
    7. Nishino H,
    8. Kawaguchi K,
    9. Bouvet M,
    10. Murata T,
    11. Unno M,
    12. Hoffman RM
    : Oral recombinant methioninase combined with paclitaxel arrests recalcitrant ovarian clear cell carcinoma growth in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Cancer Chemother Pharmacol 88(1): 61-67, 2021. DOI: 10.1007/s00280-021-04261-x
    OpenUrlCrossRefPubMed
    1. Kawaguchi K,
    2. Miyake K,
    3. Han Q,
    4. Li S,
    5. Tan Y,
    6. Igarashi K,
    7. Kiyuna T,
    8. Miyake M,
    9. Higuchi T,
    10. Oshiro H,
    11. Zhang Z,
    12. Razmjooei S,
    13. Wangsiricharoen S,
    14. Bouvet M,
    15. Singh SR,
    16. Unno M,
    17. Hoffman RM
    : Oral recombinant methioninase (o-rMETase) is superior to injectable rMETase and overcomes acquired gemcitabine resistance in pancreatic cancer. Cancer Lett 432: 251-259, 2018. DOI: 10.1016/j.canlet.2018.06.016
    OpenUrlCrossRefPubMed
    1. Oshiro H,
    2. Tome Y,
    3. Kiyuna T,
    4. Yoon SN,
    5. Lwin TM,
    6. Han Q,
    7. Tan Y,
    8. Miyake K,
    9. Higuchi T,
    10. Sugisawa N,
    11. Katsuya Y,
    12. Park JH,
    13. Zang Z,
    14. Razmjooei S,
    15. Bouvet M,
    16. Clary B,
    17. Singh SR,
    18. Kanaya F,
    19. Nishida K,
    20. Hoffman RM
    : Oral recombinant methioninase overcomes colorectal-cancer liver metastasis resistance to the combination of 5-fluorouracil and oxaliplatinum in a patient-derived orthotopic xenograft mouse model. Anticancer Res 39(9): 4667-4671, 2019. DOI: 10.21873/anticanres.13648
    OpenUrlAbstract/FREE Full Text
    1. Strekalova E,
    2. Malin D,
    3. Good DM,
    4. Cryns VL
    : Methionine deprivation induces a targetable vulnerability in triple-negative breast cancer cells by enhancing TRAIL receptor-2 expression. Clin Cancer Res 21(12): 2780-2791, 2015. DOI: 10.1158/1078-0432.CCR-14-2792
    OpenUrlAbstract/FREE Full Text
    1. Igarashi K,
    2. Kawaguchi K,
    3. Kiyuna T,
    4. Miyake K,
    5. Miyaki M,
    6. Yamamoto N,
    7. Hayashi K,
    8. Kimura H,
    9. Miwa S,
    10. Higuchi T,
    11. Singh AS,
    12. Chmielowski B,
    13. Nelson SD,
    14. Russell TA,
    15. Eckardt MA,
    16. Dry SM,
    17. Li Y,
    18. Singh SR,
    19. Chawla SP,
    20. Eilber FC,
    21. Tsuchiya H,
    22. Hoffman RM
    : Metabolic targeting with recombinant methioninase combined with palbociclib regresses a doxorubicin-resistant dedifferentiated liposarcoma. Biochem Biophys Res Commun 506(4): 912-917, 2018. DOI: 10.1016/j.bbrc.2018.10.119
    OpenUrlCrossRefPubMed
    1. Higuchi T,
    2. Kawaguchi K,
    3. Miyake K,
    4. Han Q,
    5. Tan Y,
    6. Oshiro H,
    7. Sugisawa N,
    8. Zhang Z,
    9. Razmjooei S,
    10. Yamamoto N,
    11. Hayashi K,
    12. Kimura H,
    13. Miwa S,
    14. Igarashi K,
    15. Chawla SP,
    16. Singh AS,
    17. Eilber FC,
    18. Singh SR,
    19. Tsuchiya H,
    20. Hoffman RM
    : Oral recombinant methioninase combined with caffeine and doxorubicin induced regression of a doxorubicin-resistant synovial sarcoma in a PDOX mouse model. Anticancer Res 38(10): 5639-5644, 2018. DOI: 10.21873/anticanres.12899
    OpenUrlAbstract/FREE Full Text
    1. Kim MJ,
    2. Han Q,
    3. Bouvet M,
    4. Hoffman RM,
    5. Park JH
    : Recombinant oral methioninase (o-rMETase) combined with oxaliplatinum plus 5-fluorouracil improves survival of mice with massive colon-cancer peritoneal carcinomatosis. Anticancer Res 43(1): 19-24, 2023. DOI: 10.21873/anticanres.16129
    OpenUrlAbstract/FREE Full Text
    1. Igarashi K,
    2. Kawaguchi K,
    3. Li S,
    4. Han Q,
    5. Tan Y,
    6. Gainor E,
    7. Kiyuna T,
    8. Miyake K,
    9. Miyake M,
    10. Higuchi T,
    11. Oshiro H,
    12. Singh AS,
    13. Eckardt MA,
    14. Nelson SD,
    15. Russell TA,
    16. Dry SM,
    17. Li Y,
    18. Yamamoto N,
    19. Hayashi K,
    20. Kimura H,
    21. Miwa S,
    22. Tsuchiya H,
    23. Eilber FC,
    24. Hoffman RM
    : Recombinant methioninase combined with doxorubicin (DOX) regresses a DOX-resistant synovial sarcoma in a patient-derived orthotopic xenograft (PDOX) mouse model. Oncotarget 9(27): 19263-19272, 2018. DOI: 10.18632/oncotarget.24996
    OpenUrlCrossRefPubMed
    1. Tan Y,
    2. Sun X,
    3. Xu M,
    4. Tan X,
    5. Sasson A,
    6. Rashidi B,
    7. Han Q,
    8. Tan X,
    9. Wang X,
    10. An Z,
    11. Sun FX,
    12. Hoffman RM
    : Efficacy of recombinant methioninase in combination with cisplatin on human colon tumors in nude mice. Clin Cancer Res 5(8): 2157-2163, 1999.
    OpenUrlAbstract/FREE Full Text
    1. Yoshioka T,
    2. Wada T,
    3. Uchida N,
    4. Maki H,
    5. Yoshida H,
    6. Ide N,
    7. Kasai H,
    8. Hojo K,
    9. Shono K,
    10. Maekawa R,
    11. Yagi S,
    12. Hoffman RM,
    13. Sugita K
    : Anticancer efficacy in vivo and in vitro, synergy with 5-fluorouracil, and safety of recombinant methioninase. Cancer Res 58(12): 2583-2587, 1998.
    OpenUrlAbstract/FREE Full Text
    1. Machover D,
    2. Zittoun J,
    3. Broët P,
    4. Metzger G,
    5. Orrico M,
    6. Goldschmidt E,
    7. Schilf A,
    8. Tonetti C,
    9. Tan Y,
    10. Delmas-Marsalet B,
    11. Luccioni C,
    12. Falissard B,
    13. Hoffman RM
    : Cytotoxic synergism of methioninase in combination with 5-fluorouracil and folinic acid. Biochem Pharmacol 61(7): 867-876, 2001. DOI: 10.1016/s0006-2952(01)00560-3
    OpenUrlCrossRefPubMed
    1. Kokkinakis DM,
    2. Hoffman RM,
    3. Frenkel EP,
    4. Wick JB,
    5. Han Q,
    6. Xu M,
    7. Tan Y,
    8. Schold SC
    : Synergy between methionine stress and chemotherapy in the treatment of brain tumor xenografts in athymic mice. Cancer Res 61(10): 4017-4023, 2001.
    OpenUrlAbstract/FREE Full Text
    1. Choobin BB,
    2. Kubota Y,
    3. Han Q,
    4. Ardjmand D,
    5. Morinaga S,
    6. Mizuta K,
    7. Bouvet M,
    8. Tsunoda T,
    9. Hoffman RM
    : Recombinant methioninase lowers the effective dose of regorafenib against colon-cancer cells: a strategy for widespread clinical use of a toxic drug. Cancer Diagn Progn 3(6): 655-659, 2023. DOI: 10.21873/cdp.10268
    OpenUrlCrossRefPubMed
  8. ↵
    1. Morinaga S,
    2. Han Q,
    3. Kubota Y,
    4. Mizuta K,
    5. Kang BM,
    6. Sato M,
    7. Bouvet M,
    8. Yamamoto N,
    9. Hayashi K,
    10. Kimura H,
    11. Miwa S,
    12. Igarashi K,
    13. Higuchi T,
    14. Tsuchiya H,
    15. Hoffman RM
    : Extensive synergy between recombinant methioninase and eribulin against fibrosarcoma cells but not normal fibroblasts. Anticancer Res 44(3): 921-928, 2024. DOI: 10.21873/anticanres.16886
    OpenUrlAbstract/FREE Full Text
    1. Ardjmand D,
    2. Kubota Y,
    3. Sato M,
    4. Han Q,
    5. Mizuta K,
    6. Morinaga S,
    7. Hoffman RM
    : Selective synergy of rapamycin combined with methioninase on cancer cells compared to normal cells. Anticancer Res 44(3): 929-933, 2024. DOI: 10.21873/anticanres.16887
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Kubota Y,
    2. Han Q,
    3. Morinaga S,
    4. Tsunoda T,
    5. Hoffman RM
    : Rapid reduction of CEA and stable metastasis in an NRAS-mutant rectal-cancer patient treated with FOLFIRI and bevacizumab combined with oral recombinant methioninase and a low-methionine diet upon metastatic recurrence after FOLFIRI and bevacizumab treatment alone. In Vivo 37(5): 2134-2138, 2023. DOI: 10.21873/invivo.13310
    OpenUrlAbstract/FREE Full Text
    1. Sato M,
    2. Han Q,
    3. Kubota Y,
    4. Baranov A,
    5. Ardjmand D,
    6. Mizuta K,
    7. Morinaga S,
    8. Kang BM,
    9. Kobayashi N,
    10. Bouvet M,
    11. Ichikawa Y,
    12. Nakajima A,
    13. Hoffman RM
    : Recombinant methioninase decreased the effective dose of irinotecan by 15-fold against colon cancer cells: a strategy for effective low-toxicity treatment of colon cancer. Anticancer Res 44(1): 31-35, 2024. DOI: 10.21873/anticanres.16785
    OpenUrlAbstract/FREE Full Text
    1. Kubota Y,
    2. Aoki Y,
    3. Masaki N,
    4. Obara K,
    5. Hamada K,
    6. Han Q,
    7. Bouvet M,
    8. Tsunoda T,
    9. Hoffman RM
    : Methionine restriction of glioma does not induce MGMT and greatly improves temozolomide efficacy in an orthotopic nude-mouse model: A potential curable approach to a clinically-incurable disease. Biochem Biophys Res Commun 695: 149418, 2024. DOI: 10.1016/j.bbrc.2023.149418
    OpenUrlCrossRefPubMed
    1. Morinaga S,
    2. Han Q,
    3. Kubota Y,
    4. Mizuta K,
    5. Kang BM,
    6. Sato M,
    7. Bouvet M,
    8. Yamamoto N,
    9. Hayashi K,
    10. Kimura H,
    11. Miwa S,
    12. Igarashi K,
    13. Higuchi T,
    14. Tsuchiya H,
    15. Demura S,
    16. Hoffman RM
    : DNA-binding agent trabectedin combined with recombinant methioninase is synergistic to decrease fibrosarcoma cell viability and induce nuclear fragmentation but not synergistic on normal fibroblasts. Anticancer Res 44(6): 2359-2367, 2024. DOI: 10.21873/anticanres.17043
    OpenUrlAbstract/FREE Full Text
    1. Morinaga S,
    2. Han Q,
    3. Mizuta K,
    4. Kang BM,
    5. Sato M,
    6. Bouvet M,
    7. Yamamoto N,
    8. Hayashi K,
    9. Kimura H,
    10. Miwa S,
    11. Igarashi K,
    12. Higuchi T,
    13. Tsuchiya H,
    14. Demura S,
    15. Hoffman RM
    : Recombinant methioninase is selectively synergistic with doxorubicin against wild-type fibrosarcoma cells compared to normal cells and overcomes highly-doxorubicin-resistant fibrosarcoma. Anticancer Res 44(8): 3261-3268, 2024. DOI: 10.21873/anticanres.17144
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Kubota Y,
    2. Han Q,
    3. Aoki Y,
    4. Masaki N,
    5. Obara K,
    6. Hamada K,
    7. Hozumi C,
    8. Wong ACW,
    9. Bouvet M,
    10. Tsunoda T,
    11. Hoffman RM
    : Synergy of combining methionine restriction and chemotherapy: the disruptive next generation of cancer treatment. Cancer Diagn Progn 3(3): 272-281, 2023. DOI: 10.21873/cdp.10212
    OpenUrlCrossRefPubMed
  11. ↵
    1. Tan Y,
    2. Xu M,
    3. Tan X,
    4. Tan X,
    5. Wang X,
    6. Saikawa Y,
    7. Nagahama T,
    8. Sun X,
    9. Lenz M,
    10. Hoffman RM
    : Overexpression and large-scale production of recombinantl-methionine-α-deamino-γ-mercapto methane-lyase for novel anticancer therapy. Protein Expr Purif 9(2): 233-245, 1997. DOI: 10.1006/prep.1996.0700
    OpenUrlCrossRefPubMed
  12. ↵
    1. Kanda Y
    : Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48(3): 452-458, 2013. DOI: 10.1038/bmt.2012.244
    OpenUrlCrossRefPubMed
  13. ↵
    1. In GK,
    2. Hu JS,
    3. Tseng WW
    : Treatment of advanced, metastatic soft tissue sarcoma: latest evidence and clinical considerations. Ther Adv Med Oncol 9(8): 533-550, 2017. DOI: 10.1177/1758834017712963
    OpenUrlCrossRefPubMed
  14. ↵
    1. Hoffman RM
    : Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: a 40-year odyssey. Expert Opin Biol Ther 15(1): 21-31, 2015. DOI: 10.1517/14712598.2015.963050
    OpenUrlCrossRefPubMed
    1. Wang Z,
    2. Yip LY,
    3. Lee JHJ,
    4. Wu Z,
    5. Chew HY,
    6. Chong PKW,
    7. Teo CC,
    8. Ang HY,
    9. Peh KLE,
    10. Yuan J,
    11. Ma S,
    12. Choo LSK,
    13. Basri N,
    14. Jiang X,
    15. Yu Q,
    16. Hillmer AM,
    17. Lim WT,
    18. Lim TKH,
    19. Takano A,
    20. Tan EH,
    21. Tan DSW,
    22. Ho YS,
    23. Lim B,
    24. Tam WL
    : Methionine is a metabolic dependency of tumor-initiating cells. Nat Med 25(5): 825-837, 2019. DOI: 10.1038/s41591-019-0423-5
    OpenUrlCrossRefPubMed
    1. Bin P,
    2. Wang C,
    3. Zhang H,
    4. Yan Y,
    5. Ren W
    : Targeting methionine metabolism in cancer: opportunities and challenges. Trends Pharmacol Sci 45(5): 395-405, 2024. DOI: 10.1016/j.tips.2024.03.002
    OpenUrlCrossRef
    1. Hoffman RM,
    2. Jacobsen SJ
    : Reversible growth arrest in simian virus 40-transformed human fibroblasts. Proc Natl Acad Sci USA 77(12): 7306-7310, 1980. DOI: 10.1073/pnas.77.12.7306
    OpenUrlAbstract/FREE Full Text
    1. Yano S,
    2. Li S,
    3. Han Q,
    4. Tan Y,
    5. Bouvet M,
    6. Fujiwara T,
    7. Hoffman RM
    : Selective methioninase-induced trap of cancer cells in S/G2 phase visualized by FUCCI imaging confers chemosensitivity. Oncotarget 5(18): 8729-8736, 2014. DOI: 10.18632/oncotarget.2369
    OpenUrlCrossRefPubMed
    1. Coalson DW,
    2. Mecham JO,
    3. Stern PH,
    4. Hoffman RM
    : Reduced availability of endogenously synthesized methionine for S-adenosylmethionine formation in methionine-dependent cancer cells. Proc Natl Acad Sci USA 79(14): 4248-4251, 1982. DOI: 10.1073/pnas.79.14.4248
    OpenUrlAbstract/FREE Full Text
    1. Sato M,
    2. Mizuta K,
    3. Han Q,
    4. Morinaga S,
    5. Kang BM,
    6. Kubota Y,
    7. Mori R,
    8. Baranov A,
    9. Kobayashi K,
    10. Ardjmand D,
    11. Kobayashi N,
    12. Bouvet M,
    13. Ichikawa Y,
    14. Nakajima A,
    15. Hoffman RM
    : Targeting methionine addiction combined with low-dose irinotecan arrested colon cancer in contrast to high-dose irinotecan alone, which was ineffective, in a nude-mouse model. In Vivo 38(3): 1058-1063, 2024. DOI: 10.21873/invivo.13539
    OpenUrlAbstract/FREE Full Text
    1. Stern PH,
    2. Mecham JO,
    3. Wallace CD,
    4. Hoffman RM
    : Reduced free-methionine in methionine-dependent SV40-transformed human fibroblasts synthesizing apparently normal amounts of methionine. J Cell Physiol 117(1): 9-14, 1983. DOI: 10.1002/jcp.1041170103
    OpenUrlCrossRefPubMed
    1. Stern PH,
    2. Hoffman RM
    : Elevated overall rates of transmethylation in cell lines from diverse human tumors. In Vitro 20(8): 663-670, 1984. DOI: 10.1007/BF02619617
    OpenUrlCrossRefPubMed
    1. Aoki Y,
    2. Han Q,
    3. Tome Y,
    4. Yamamoto J,
    5. Kubota Y,
    6. Masaki N,
    7. Obara K,
    8. Hamada K,
    9. Wang JD,
    10. Inubushi S,
    11. Bouvet M,
    12. Clarke SG,
    13. Nishida K,
    14. Hoffman RM
    : Reversion of methionine addiction of osteosarcoma cells to methionine independence results in loss of malignancy, modulation of the epithelial-mesenchymal phenotype and alteration of histone-H3 lysine-methylation. Front Oncol 12: 1009548, 2022. DOI: 10.3389/fonc.2022.10095481
    OpenUrlCrossRefPubMed
    1. Yamamoto J,
    2. Inubushi S,
    3. Han Q,
    4. Tashiro Y,
    5. Sugisawa N,
    6. Hamada K,
    7. Aoki Y,
    8. Miyake K,
    9. Matsuyama R,
    10. Bouvet M,
    11. Clarke SG,
    12. Endo I,
    13. Hoffman RM
    : Linkage of methionine addiction, histone lysine hypermethylation, and malignancy. iScience 25(4): 104162, 2022. DOI: 10.1016/j.isci.2022.104162
    OpenUrlCrossRefPubMed
    1. Yamamoto J,
    2. Aoki Y,
    3. Inubushi S,
    4. Han Q,
    5. Hamada K,
    6. Tashiro Y,
    7. Miyake K,
    8. Matsuyama R,
    9. Bouvet M,
    10. Clarke SG,
    11. Endo I,
    12. Hoffman RM
    : Extent and instability of trimethylation of histone H3 lysine increases with degree of malignancy and methionine addiction. Cancer Genomics Proteomics 19(1): 12-18, 2022. DOI: 10.21873/cgp.20299
    OpenUrlAbstract/FREE Full Text
    1. Aoki Y,
    2. Tome Y,
    3. Han Q,
    4. Yamamoto J,
    5. Hamada K,
    6. Masaki N,
    7. Bouvet M,
    8. Nishida K,
    9. Hoffman RM
    : Histone H3 lysine-trimethylation markers are decreased by recombinant methioninase and increased by methotrexate at concentrations which inhibit methionine-addicted osteosarcoma cell proliferation. Biochem Biophys Rep 28: 101177, 2021. DOI: 10.1016/j.bbrep.2021.101177
    OpenUrlCrossRefPubMed
    1. Hoffman RM,
    2. Jacobsen SJ,
    3. Erbe RW
    : Reversion to methionine independence in simian virus 40-transformed human and malignant rat fibroblasts is associated with altered ploidy and altered properties of transformation. Proc Natl Acad Sci USA 76(3): 1313-1317, 1979. DOI: 10.1073/pnas.76.3.1313
    OpenUrlAbstract/FREE Full Text
    1. Hoffman RM,
    2. Jacobsen SJ,
    3. Erbe RW
    : Reversion to methionine independence by malignant rat and SV40-transformed human fibroblasts. Biochem Biophys Res Commun 82(1): 228-234, 1978. DOI: 10.1016/0006-291x(78)90600-9
    OpenUrlCrossRefPubMed
    1. Yamamoto J,
    2. Aoki Y,
    3. Han Q,
    4. Sugisawa N,
    5. Sun Y,
    6. Hamada K,
    7. Nishino H,
    8. Inubushi S,
    9. Miyake K,
    10. Matsuyama R,
    11. Bouvet M,
    12. Endo I,
    13. Hoffman RM
    : Reversion from methionine addiction to methionine independence results in loss of tumorigenic potential of highly-malignant lung-cancer cells. Anticancer Res 41(2): 641-643, 2021. DOI: 10.21873/anticanres.14815
    OpenUrlAbstract/FREE Full Text
    1. Hoffman RM
    : Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis. Biochim Biophys Acta 738: 49-87, 1984. DOI: 10.1016/0304-419x(84)90019-2
    OpenUrlCrossRefPubMed
    1. Abo Qoura L,
    2. Balakin KV,
    3. Hoffman RM,
    4. Pokrovsky VS
    : The potential of methioninase for cancer treatment. Biochim Biophys Acta Rev Cancer 1879(4): 189122, 2024. DOI: 10.1016/j.bbcan.2024.189122
    OpenUrlCrossRef
    1. Hoffman RM,
    2. Coalson DW,
    3. Jacobsen SJ,
    4. Erbe RW
    : Folate polyglutamate and monoglutamate accumulation in normal and SV40-transformed human fibroblasts. J Cell Physiol 109(3): 497-505, 1981. DOI: 10.1002/jcp.1041090316
    OpenUrlCrossRefPubMed
    1. Jacobsen SJ,
    2. Hoffman RM,
    3. Erbe RW
    : Regulation of methionine adenosyltransferase in normal diploid and simian virus 40-transformed human fibroblasts. J Natl Cancer Inst 65(6): 1237-44, 1980.
    OpenUrlPubMed
    1. Ghergurovich JM,
    2. Xu X,
    3. Wang JZ,
    4. Yang L,
    5. Ryseck RP,
    6. Wang L,
    7. Rabinowitz JD
    : Methionine synthase supports tumour tetrahydrofolate pools. Nat Metab 3(11): 1512-1520, 2021. DOI: 10.1038/s42255-021-00465-w
    OpenUrlCrossRefPubMed
    1. Sullivan MR,
    2. Darnell AM,
    3. Reilly MF,
    4. Kunchok T,
    5. Joesch-Cohen L,
    6. Rosenberg D,
    7. Ali A,
    8. Rees MG,
    9. Roth JA,
    10. Lewis CA,
    11. Vander Heiden MG
    : Methionine synthase is essential for cancer cell proliferation in physiological folate environments. Nat Metab 3(11): 1500-1511, 2021. DOI: 10.1038/s42255-021-00486-5
    OpenUrlCrossRef
    1. Mecham JO,
    2. Rowitch D,
    3. Wallace C,
    4. Stern PH,
    5. Hoffman RM
    : The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochem Biophys Res Commun 117(2): 429-434, 1983. DOI: 10.1016/0006-291x(83)91218-4
    OpenUrlCrossRefPubMed
    1. Stern PH,
    2. Wallace CD,
    3. Hoffman RM
    : Altered methionine metabolism occurs in all members of a set of diverse human tumor cell lines. J Cell Physiol 119(1): 29-34, 1984. DOI: 10.1002/jcp.1041190106
    OpenUrlCrossRefPubMed
    1. Tan Y,
    2. Xu M,
    3. Hoffman RM
    : Broad selective efficacy of recombinant methioninase and polyethylene glycol-modified recombinant methioninase on cancer cells In Vitro. Anticancer Res 30(4): 1041-6, 2010
    OpenUrlAbstract/FREE Full Text
    1. Sato M,
    2. Han Q,
    3. Mizuta K,
    4. Mori R,
    5. Kang BM,
    6. Morinaga S,
    7. Kobayashi N,
    8. Ichikawa Y,
    9. Nakajima A,
    10. Hoffman RM
    : Extensive Shrinkage and Long-term Stable Disease in a Teenage Female Patient With High-grade Glioma Treated With Temozolomide and Radiation in Combination With Oral Recombinant Methioninase and a Low-methionine Diet. In Vivo 38(3): 1459-1464, 2024. DOI: 10.21873/invivo.13591
    OpenUrlAbstract/FREE Full Text
    1. Sato M,
    2. Han Q,
    3. Mori R,
    4. Mizuta K,
    5. Kang BM,
    6. Morinaga S,
    7. Kobayashi N,
    8. Ichikawa Y,
    9. Nakajima A,
    10. Hoffman RM
    : Reduction of tumor biomarkers from very high to normal and extensive mmetastatic lesions to undetectability in a patient with stage IV HER2-positive breast cancer treated with low-dose trastuzumab deruxtecan in combination with oral recombinant methioninase and a low-methionine diet. Anticancer Res 44(4): 1499-1504, 2024. DOI: 10.21873/anticanres.16946
    OpenUrlAbstract/FREE Full Text
    1. Han Q,
    2. Tan Y,
    3. Hoffman RM
    : Oral dosing of recombinant methioninase is associated with a 70% drop in PSA in a patient with bone-metastatic prostate cancer and 50% reduction in circulating methionine in a high-stage ovarian cancer patient. Anticancer Res 40(5): 2813-2819, 2020. DOI: 10.21873/anticanres.14254
    OpenUrlAbstract/FREE Full Text
    1. Han Q,
    2. Hoffman RM
    : Chronic treatment of an advanced prostate-cancer patient with oral methioninase resulted in longterm stabilization of rapidly rising PSA levels. In Vivo 35(4): 2171-2176, 2021. DOI: 10.21873/invivo.12488
    OpenUrlAbstract/FREE Full Text
    1. Han Q,
    2. Hoffman RM
    : Lowering and stabilizing PSA levels in advanced-prostate cancer patients with oral methioninase. Anticancer Res 41(4): 1921-1926, 2021. DOI: 10.21873/anticanres.14958
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Kubota Y,
    2. Han Q,
    3. Hamada K,
    4. Aoki Y,
    5. Masaki N,
    6. Obara K,
    7. Tsunoda T,
    8. Hoffman RM
    : Long-term stable disease in a rectal-cancer patient treated by methionine restriction with oral recombinant methioninase and a low-methionine diet. Anticancer Res 42(8): 3857-3861, 2022. DOI: 10.21873/anticanres.15877
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

Anticancer Research: 44 (9)
Anticancer Research
Vol. 44, Issue 9
September 2024
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Ed Board (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Anticancer Research.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Recombinant Methioninase Increases Eribulin Efficacy 16-fold in Highly Eribulin-resistant HT1080 Fibrosarcoma Cells, Demonstrating Potential to Overcome the Clinical Challenge of Drug-resistant Soft-tissue Sarcoma
(Your Name) has sent you a message from Anticancer Research
(Your Name) thought you would like to see the Anticancer Research web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Recombinant Methioninase Increases Eribulin Efficacy 16-fold in Highly Eribulin-resistant HT1080 Fibrosarcoma Cells, Demonstrating Potential to Overcome the Clinical Challenge of Drug-resistant Soft-tissue Sarcoma
SEI MORINAGA, QINGHONG HAN, KOHEI MIZUTA, BYUNG MO KANG, MOTOKAZU SATO, MICHAEL BOUVET, NORIO YAMAMOTO, KATSUHIRO HAYASHI, HIROAKI KIMURA, SHINJI MIWA, KENTARO IGARASHI, TAKASHI HIGUCHI, HIROYUKI TSUCHIYA, SATORU DEMURA, ROBERT M. HOFFMAN
Anticancer Research Sep 2024, 44 (9) 3777-3783; DOI: 10.21873/anticanres.17202

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Reprints and Permissions
Share
Recombinant Methioninase Increases Eribulin Efficacy 16-fold in Highly Eribulin-resistant HT1080 Fibrosarcoma Cells, Demonstrating Potential to Overcome the Clinical Challenge of Drug-resistant Soft-tissue Sarcoma
SEI MORINAGA, QINGHONG HAN, KOHEI MIZUTA, BYUNG MO KANG, MOTOKAZU SATO, MICHAEL BOUVET, NORIO YAMAMOTO, KATSUHIRO HAYASHI, HIROAKI KIMURA, SHINJI MIWA, KENTARO IGARASHI, TAKASHI HIGUCHI, HIROYUKI TSUCHIYA, SATORU DEMURA, ROBERT M. HOFFMAN
Anticancer Research Sep 2024, 44 (9) 3777-3783; DOI: 10.21873/anticanres.17202
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • HT1080 Human Fibrosarcoma Cells Selected for Super-eribulin Resistance In Vitro Become More Malignant and Are Arrested Synergistically by Methionine Restriction in Combination With Eribulin in Nude Mice
  • HT1080 Fibrosarcoma With Acquired Trabectedin Resistance: Increased Malignancy But Sustained Sensitivity to Methionine Restriction
  • Recombinant Methioninase (rMETase) Synergistically Sensitizes Ivermectin-resistant MCF-7 Breast Cancer Cells 9.9 Fold to Low-dose Ivermectin
  • Synergistic Eradication of Fibrosarcoma With Acquired Ifosfamide Resistance Using Methionine Restriction Combined With Ifosfamide in Nude-mouse Models
  • Ivermectin Combined With Recombinant Methioninase (rMETase) Synergistically Eradicates MiaPaCa-2 Pancreatic Cancer Cells
  • Selective Synergy of Recombinant Methioninase Plus Docetaxel Against Docetaxel-resistant and -sensitive Fibrosarcoma Cells Compared to Normal Fibroblasts
  • Recombinant Methioninase Synergistically Reverses High-docetaxel Resistance Developed in Osteosarcoma Cells
  • Google Scholar

More in this TOC Section

  • Role of Platelet Interactions in Promoting Melanoma Malignancy With Insights into Proliferation, Cyclin D1 Expression, and Migration
  • Recombinant Methioninase and Cisplatinum Act Synergistically to Inhibit Lewis Lung Carcinoma Cells But Not Normal Fibroblasts
  • Light Bladder Net: Non-invasive Bladder Cancer Prediction by Weighted Deep Learning Approaches and Graphical Data Transformation
Show more Experimental Studies

Similar Articles

Keywords

  • Methioninase
  • methionine restriction
  • eribulin
  • synergy
  • efficacy
  • eribulin-resistance
  • fibrosarcoma
  • methionine addiction
  • Hoffman effect
Anticancer Research

© 2025 Anticancer Research

Powered by HighWire