Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Subscribers
    • Advertisers
    • Editorial Board
    • Special Issues 2025
  • Journal Metrics
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Anticancer Research
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Genomics & Proteomics
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Anticancer Research

Advanced Search

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Subscribers
    • Advertisers
    • Editorial Board
    • Special Issues 2025
  • Journal Metrics
  • Other Publications
    • In Vivo
    • Cancer Genomics & Proteomics
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
    • 2008 Nobel Laureates
  • About Us
    • General Policy
    • Contact
  • Visit us on Facebook
  • Follow us on Linkedin
Research ArticleExperimental Studies
Open Access

Recombinant Methioninase Is Selectively Synergistic With Doxorubicin Against Wild-type Fibrosarcoma Cells Compared to Normal Cells and Overcomes Highly-Doxorubicin-resistant Fibrosarcoma

SEI MORINAGA, QINGHONG HAN, KOHEI MIZUTA, BYUNG MO KANG, MOTOKAZU SATO, MICHAEL BOUVET, NORIO YAMAMOTO, KATSUHIRO HAYASHI, HIROAKI KIMURA, SHINJI MIWA, KENTARO IGARASHI, TAKASHI HIGUCHI, HIROYUKI TSUCHIYA, SATORU DEMURA and ROBERT M. HOFFMAN
Anticancer Research August 2024, 44 (8) 3261-3268; DOI: https://doi.org/10.21873/anticanres.17144
SEI MORINAGA
1AntiCancer Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
3Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
QINGHONG HAN
1AntiCancer Inc., San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
KOHEI MIZUTA
1AntiCancer Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
BYUNG MO KANG
1AntiCancer Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MOTOKAZU SATO
1AntiCancer Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MICHAEL BOUVET
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
NORIO YAMAMOTO
3Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
KATSUHIRO HAYASHI
3Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HIROAKI KIMURA
3Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SHINJI MIWA
3Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
KENTARO IGARASHI
3Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
TAKASHI HIGUCHI
3Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HIROYUKI TSUCHIYA
3Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SATORU DEMURA
3Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ROBERT M. HOFFMAN
1AntiCancer Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: meishale@gmail.com
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Background/Aim: Doxorubicin is first-line therapy for soft-tissue sarcoma, but patients can develop resistance which is usually fatal. As a novel therapeutic strategy, the present study aimed to determine the synergy of recombinant methioninase (rMETase) and doxorubicin against HT1080 fibrosarcoma cells compared to Hs27 normal fibroblasts, and rMETase efficacy against doxorubicin-resistant HT1080 cells in vitro. Materials and Methods: The 50% inhibitory concentrations (IC50) of doxorubicin and rMETase, as well as their combination efficacy, against HT1080 human fibrosarcoma cells, Hs27 normal human fibroblasts and doxorubicin-resistant HT1080 (DR-HT1080) cells were determined. Dual-color HT1080 cells which expressed red fluorescent protein (RFP) in the cytoplasm and green fluorescent protein (GFP) in the nuclei were used to visualize nuclear fragmentation during treatment. Nuclear fragmentation was observed with an IX71 fluorescence microscope. Results: The IC50 for doxorubicin was 3.3 μM for HT1080 cells, 12.4 μM for DR-HT1080 cells, and 7.25 μM for Hs27 cells. The IC50 for rMETase was 0.75 U/ml for HT1080 cells, 0.42 U/ml for DR-HT1080 cells, and 0.93 U/ml for Hs27 cells. The combination of rMETase and doxorubicin was synergistic against fibrosarcoma cells but not against normal fibroblasts. The combination of doxorubicin plus rMETase also caused more fragmented nuclei than either treatment alone in HT1080 cells. rMETase alone was highly effective against the DR-HT1080 cells as well as the parental HT1080 cells. Conclusion: The present results indicate the future clinical potential of rMETase in combination with doxorubicin for fibrosarcoma, including doxorubicin-resistant fibrosarcoma.

Key Words:
  • Methioninase
  • doxorubicin
  • synergy
  • fibrosarcoma
  • normal fibroblast
  • methionine addiction
  • Hoffman effect
  • methionine restriction

Fibrosarcoma is a recalcitrant disease (1). Doxorubicin is first-line treatment for fibrosarcoma, but patients can develop doxorubicin resistance which is usually fatal (2).

Multiple studies have shown that the combination of recombinant methioninase (rMETase) and chemotherapy is synergistic against cancer cells in vitro, in mouse models and in the clinic, as it targets methionine addiction, a general and fundamental hallmark of cancer, known as the Hoffman effect (3-33).

The objective of the present study was to determine the synergy of rMETase and doxorubicin on fibrosarcoma cells, compared to normal fibroblasts, and to determine rMETase efficacy on highly-doxorubicin-resistant fibrosarcoma cells in vitro.

Materials and Methods

Cells. The HT1080 human fibrosarcoma cell line and Hs27 normal human fibroblasts were acquired from the American Type Culture Collection (Manassas, VA, USA). The cells were cultivated in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum and 1 IU/ml penicillin/streptomycin. HT1080 cells were previously transfected with DsRed-2 red fluorescent protein (RFP), expressed in the cytoplasm, and histone H2B green fluorescent protein (GFP), expressed in the nucleus (34-39).

Regents. Doxorubicin was obtained from Bedford Laboratories (Bedford, OH, USA). rMETase was produced by AntiCancer Inc. (San Diego, CA, USA) as previously described (40).

Generation of doxorubicin-resistant HT1080 (DR-HT1080) cells. To generate DR-HT1080 cells, HT1080 cells were cultured for 3 months in step-wise increasing concentrations of doxorubicin (8 nM-6.4 μM).

Determination of half-maximal inhibitory concentrations (IC50) of rMETase and doxorubicin. Cell viability was assessed using the WST-8 reagent (Dojindo Laboratory, Kumamoto, Japan). Cells (HT1080, DR-HT1080 and Hs27) were cultured in 96-well plates (3,000 cells/well) in Dulbecco’s Modified Eagle’s Medium (DMEM) (GIBCO, Grand Island, NY, USA) (100 μl/well) and incubated at 37°C overnight. The cells were subjected to increasing concentrations of doxorubicin, ranging from 1 μM to 40 μM, or rMETase, ranging from 0.5 U/ml to 8 U/ml, for 72 h to determine the 50% inhibitory concentration (IC50). After the culture period, 10 μl of the WST-8 solution was added to each well. The plates were then incubated for an additional hour at 37°C. Absorption at 450 nm was recorded with a microplate reader (Sunrise; Tecan, Mannedorf, Switzerland). Drug-sensitivity curves were generated using Microsoft Excel for Mac 2016 ver. 15.52 (Microsoft, Redmond, WA, USA), and the IC50 values were determined using ImageJ ver. 1.53k (National Institutes of Health, Bethesda, MD, USA). Experiments were conducted twice, each in triplicate.

Determination of synergy of rMETase and doxorubicin. HT1080 or Hs27 cells were seeded at a density of 3,000 cells per well in 96-well plates. After 24 h, four different types of treatments were carried out: control (DMEM only), doxorubicin (at IC50), rMETase (at IC50), and a combination of doxorubicin with rMETase (at the IC50 of each). After 72 h, the viability of the cells was assessed as described above. In the present study, we defined synergy as sensitivity to a combination of agents with greater efficacy than to either agent alone.

Nuclear fragmentation assay. Dual-color HT1080 cells expressing RFP in the cytoplasm and GFP in the nucleus (34-39) were used to determine nuclear fragmentation of HT1080 cells treated with rMETase, doxorubicin, and their combination. The cells were seeded at a density of 300,000 cells per well in 6-well plates. Treatments were: control (DMEM), doxorubicin (3.3 μM alone), rMETase (0.75 U/ml) alone, or doxorubicin (3.3 μM) plus rMETase (0.75 U/ml). After 48 h, the cells were examined using an IX71 fluorescence microscope (Olympus, Tokyo, Japan) at a magnification of ×200. The number of fragmentated nuclei was quantified per visual field on six separate fields.

Statistical analysis. Statistical analysis was performed using EZR software, developed by the Saitama Medical Center and Jichi Medical University in Saitama, Japan (41). A Tukey–Kramer analysis was employed to examine the relationships between variables. Statistically-significant results were defined as those with p-values less than 0.05.

Results

Determination of the IC50 of doxorubicin and rMETase against HT1080, DR-HT1080 and Hs27 cells. The IC50 of doxorubicin against HT1080 cells was 3.3 μM, and was 12.4 μM against DR-HT 1080 cells. The IC50 of rMETase against HT1080 cells was 0.75 U/ml [data from (42)] and was 0.42 U/ml against DR-HT1080 cells. The IC50 of doxorubicin against Hs27 normal fibroblasts was 7.25 μM and that of rMETase was 0.93 U/ml [data from (42)] (Figure 1).

Figure 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1.

Doxorubicin and recombinant methioninase (rMETase) sensitivity of HT1080 fibrosarcoma cells, doxorubicin-resistant HT1080 fibrosarcoma cells (DR-HT1080) and Hs27 normal fibroblasts (mean±standard deviation), n=3. (A) Sensitivity of HT1080 and DR-HT1080 cells to doxorubicin. (B) Sensitivity of HT1080 and DR-HT1080 cells to rMETase. (C) Sensitivity of Hs27 cells to doxorubicin and rMETase.

Synergy of rMETase and doxorubicin on the viability of HT1080 fibrosarcoma cells but not Hs27 normal fibroblasts. The combination of doxorubicin (3.3 μM) plus rMETase (0.75 U/ml) was synergistic on reducing the viability of HT1080 cells (p<0.05). In contrast, doxorubicin (7.25 μM) plus rMETase (0.93 U/ml) did not show synergy on reducing the viability of Hs27 cells (Figure 2).

Figure 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 2.

Synergy of the combination of doxorubicin and recombinant methioninase (rMETase) on HT1080 fibrosarcoma cells (A) and not on Hs27 normal fibroblasts (B). Control: Dulbecco’s modified Eagle’s medium. Doxorubicin IC50: 3.3 μM on HT1080 and 7.25 μM on Hs27; rMETase IC50: 0.75 U/ml on HT1080 and 0.93 U/ml on Hs27 [data from (42)]; combination treatments used the same concentrations as in single treatments. *Significantly different at p<0.05 (n=3).

Synergy of rMETase and doxorubicin on nuclear fragmentation of HT1080 cells. The combination of doxorubicin (3.3 μM) plus rMETase (0.75 U/ml) caused significantly more fragmentated nuclei in HT1080 cells than doxorubicin alone or rMETase alone (p<0.05) (Figure 3).

Figure 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 3.

Effect of doxorubicin alone, recombinant methioninase (rMETase) alone and their combination on nuclear fragmentation in HT1080 cells. Cells were untreated (control, Dulbecco’s modified Eagle’s medium) or treated with 3.3 μM doxorubicin alone, 0.75 U/ml rMETase, alone or their combination. (A) Images of nuclei in HT1080 cells expressing green fluorescent protein (GFP). Scale bars: 100 μm. (B) Quantification of nuclear fragmentation in treated cells. Nuclear fragmentation was observed (arrow heads) with an IX71, fluorescence microscope (Olympus, Tokyo, Japan). *Significantly different at p<0.05 (n=6).

Discussion

We have previously shown that rMETase is synergistic with eribulin (42) and trabectedin (43) on HT-1080 fibrosarcoma.

For patients diagnosed with advanced or metastatic soft-tissue sarcoma, doxorubicin is first-line therapy conferring a median overall survival ranging from 7.7 to 12.8 months (44).

In 1976, Hoffman discovered methionine addiction which is a fundamental hallmark of cancer (45-74). In order to restrict methionine and target methionine addiction, our team developed rMETase (40). Subsequently, it was found that rMETase can be taken orally, which enhances its practicality and safety as a therapeutic option (23, 50).

A large number, of diverse combinations of rMETase and chemotherapy drugs have demonstrated synergy on the major types of cancer (3-33). The current study demonstrates synergy between rMETase and doxorubicin against HT1080 fibrosarcoma cells but not against normal fibroblasts. Cancer cells experience reversible arrest in the late S/G2-phase when methionine levels are depleted (51, 52). Doxorubicin specifically targets the S- phase of the cell cycle and has been shown to act synergistically when combined with methioninase on breast-cancer cells (52, 53). In contrast, the combination of doxorubicin and rMETase did not exhibit synergy in normal Hs27 cells. This is due to the fact that rMETase does not cause late S/G2 cell arrest in normal cells at the IC50 concentration for cancer cells.

Our recent studies demonstrated that the combination of eribulin or trabectedin and rMETase resulted in synergy to reduce cell viability and to cause nuclear fragmentation in dual-color HT1080 cells compared to each drug alone (42, 43). Similar results were observed in the present study with the combination of doxorubicin and rMETase.

Though DR-HT1080 cells were highly resistant to doxorubicin, they were sensitive to rMETase, which along with our previous studies showing rMETase can overcome doxorubicin resistance in various cancers (12, 13, 17, 27, 29, 54), suggest a promising strategy to overcome doxorubicin resistance in the clinic.

In conclusion, the combination of rMETase and doxorubicin and other chemotherapy drugs shows future clinical promise as a therapeutic approach for soft-tissue sarcoma and other cancers (13, 20, 75-79) by specifically targeting an underlying characteristic of cancer, methionine addiction (45-74). Methionine addiction is due to overuse of methionine (46, 48, 55-58, 60, 62, 80, 81) which is made in normal or higher amounts in cancer cells from homocysteine (46-48, 56, 57, 82-84), and is a universal hallmark of cancer (85-87).

Acknowledgements

This article is dedicated to the memory of A.R. Moossa, MD, Sun Lee, MD, Professor Gordon H. Sato, Professor Li Jiaxi, Masaki Kitajima, MD, Joseph R. Bertino, MD, Shigeo Yagi, PhD, J.A.R Mead, PhD. Eugene P. Frenkel, MD, Professor Lev Bergelson, Professor Sheldon Penman, Professor John R. Raper, and Joseph Leighton, MD. The Robert M. Hoffman Foundation for Cancer Research provided funds for the present study.

Footnotes

  • Authors’ Contributions

    SM, and RMH designed the study HQ provided the methioninase. SM performed the experiments. SM was the major contributor to writing the article and RMH critically revised the article. KM, BMK, MS, MB, NY, KH, HK, SM, KI, TH, HT, and SD critically read the article and made scientific suggestions. All Authors approved the final article.

  • Conflicts of Interest

    The Authors declare no competing interests.

  • Received May 2, 2024.
  • Revision received June 4, 2024.
  • Accepted June 6, 2024.
  • Copyright © 2024 International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) 4.0 international license (https://creativecommons.org/licenses/by-nc-nd/4.0).

References

  1. ↵
    1. Slovak ML,
    2. Hoeltge GA,
    3. Dalton WS,
    4. Trent JM
    : Pharmacological and biological evidence for differing mechanisms of doxorubicin resistance in two human tumor cell lines. Cancer Res 48(10): 2793-2797, 1988.
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Das B,
    2. Jain N,
    3. Mallick B
    : piR-39980 mediates doxorubicin resistance in fibrosarcoma by regulating drug accumulation and DNA repair. Commun Biol 4(1): 1312, 2021. DOI: 10.1038/s42003-021-02844-1
    OpenUrlCrossRefPubMed
  3. ↵
    1. Stern PH,
    2. Hoffman RM
    : Enhanced in vitro selective toxicity of chemotherapeutic agents for human cancer cells based on a metabolic defect. J Natl Cancer Inst 76(4): 629-639, 1986. DOI: 10.1093/jnci/76.4.629
    OpenUrlCrossRefPubMed
    1. Sugisawa N,
    2. Yamamoto J,
    3. Han Q,
    4. Tan Y,
    5. Tashiro Y,
    6. Nishino H,
    7. Inubushi S,
    8. Hamada K,
    9. Kawaguchi K,
    10. Unno M,
    11. Bouvet M,
    12. Hoffman RM
    : Triple-methyl blockade with recombinant methioninase, cycloleucine, and azacitidine arrests a pancreatic cancer patient-derived orthotopic xenograft model. Pancreas 50(1): 93-98, 2021. DOI: 10.1097/MPA.0000000000001709
    OpenUrlCrossRefPubMed
    1. Higuchi T,
    2. Sugisawa N,
    3. Yamamoto J,
    4. Oshiro H,
    5. Han Q,
    6. Yamamoto N,
    7. Hayashi K,
    8. Kimura H,
    9. Miwa S,
    10. Igarashi K,
    11. Tan Y,
    12. Kuchipudi S,
    13. Bouvet M,
    14. Singh SR,
    15. Tsuchiya H,
    16. Hoffman RM
    : The combination of oral-recombinant methioninase and azacitidine arrests a chemotherapy-resistant osteosarcoma patient-derived orthotopic xenograft mouse model. Cancer Chemother Pharmacol 85(2): 285-291, 2020. DOI: 10.1007/s00280-019-03986-0
    OpenUrlCrossRefPubMed
    1. Masaki N,
    2. Han Q,
    3. Wu NF,
    4. Samonte C,
    5. Wu J,
    6. Hozumi C,
    7. Obara K,
    8. Kubota Y,
    9. Aoki Y,
    10. Miyazaki J,
    11. Hoffman RM
    : Oral-recombinant methioninase lowers the effective dose and eliminates toxicity of cisplatinum for primary osteosarcoma of the mammary gland in a patient-derived orthotopic xenograft mouse model. In Vivo 36(6): 2598-2603, 2022. DOI: 10.21873/invivo.12994
    OpenUrlAbstract/FREE Full Text
    1. Masaki N,
    2. Han Q,
    3. Samonte C,
    4. Wu NF,
    5. Hozumi C,
    6. Wu J,
    7. Obara K,
    8. Kubota Y,
    9. Aoki Y,
    10. Bouvet M,
    11. Hoffman RM
    : Oral-recombinant methioninase in combination with rapamycin eradicates osteosarcoma of the breast in a patient-derived orthotopic xenograft mouse model. Anticancer Res 42(11): 5217-5222, 2022. DOI: 10.21873/anticanres.16028
    OpenUrlAbstract/FREE Full Text
    1. Sun Y,
    2. Nishino H,
    3. Sugisawa N,
    4. Yamamoto J,
    5. Hamada K,
    6. Zhu G,
    7. Lim HI,
    8. Hoffman RM
    : Oral recombinant methioninase sensitizes a bladder cancer orthotopic xenograft mouse model to low-dose cisplatinum and prevents metastasis. Anticancer Res 40(11): 6083-6091, 2020. DOI: 10.21873/anticanres.14629
    OpenUrlAbstract/FREE Full Text
    1. Aoki Y,
    2. Tome Y,
    3. Han Q,
    4. Yamamoto J,
    5. Hamada K,
    6. Masaki N,
    7. Kubota Y,
    8. Bouvet M,
    9. Nishida K,
    10. Hoffman RM
    : Oral-recombinant methioninase converts an osteosarcoma from methotrexate-resistant to -sensitive in a patient-derived orthotopic-xenograft (PDOX) mouse model. Anticancer Res 42(2): 731-737, 2022. DOI: 10.21873/anticanres.15531
    OpenUrlAbstract/FREE Full Text
    1. Aoki Y,
    2. Tome Y,
    3. Wu NF,
    4. Yamamoto J,
    5. Hamada K,
    6. Han Q,
    7. Bouvet M,
    8. Nishida K,
    9. Hoffman RM
    : Oral-recombinant methioninase converts an osteosarcoma from docetaxel-resistant to -sensitive in a clinically-relevant patient-derived orthotopic-xenograft (PDOX) mouse model. Anticancer Res 41(4): 1745-1751, 2021. DOI: 10.21873/anticanres.14939
    OpenUrlAbstract/FREE Full Text
    1. Yamamoto J,
    2. Miyake K,
    3. Han Q,
    4. Tan Y,
    5. Inubushi S,
    6. Sugisawa N,
    7. Higuchi T,
    8. Tashiro Y,
    9. Nishino H,
    10. Homma Y,
    11. Matsuyama R,
    12. Chawla SP,
    13. Bouvet M,
    14. Singh SR,
    15. Endo I,
    16. Hoffman RM
    : Oral recombinant methioninase increases TRAIL receptor-2 expression to regress pancreatic cancer in combination with agonist tigatuzumab in an orthotopic mouse model. Cancer Lett 492: 174-184, 2020. DOI: 10.1016/j.canlet.2020.07.034
    OpenUrlCrossRefPubMed
  4. ↵
    1. Igarashi K,
    2. Li S,
    3. Han Q,
    4. Tan Y,
    5. Kawaguchi K,
    6. Murakami T,
    7. Kiyuna T,
    8. Miyake K,
    9. Li Y,
    10. Nelson SD,
    11. Dry SM,
    12. Singh AS,
    13. Elliott IA,
    14. Russell TA,
    15. Eckardt MA,
    16. Yamamoto N,
    17. Hayashi K,
    18. Kimura H,
    19. Miwa S,
    20. Tsuchiya H,
    21. Eilber FC,
    22. Hoffman RM
    : Growth of doxorubicin-resistant undifferentiated spindle-cell sarcoma PDOX is arrested by metabolic targeting with recombinant methioninase. J Cell Biochem 119(4): 3537-3544, 2018. DOI: 10.1002/jcb.26527
    OpenUrlCrossRefPubMed
  5. ↵
    1. Kubota Y,
    2. Han Q,
    3. Masaki N,
    4. Hozumi C,
    5. Hamada K,
    6. Aoki Y,
    7. Obara K,
    8. Tsunoda T,
    9. Hoffman RM
    : Elimination of axillary-lymph-node metastases in a patient with invasive lobular breast cancer treated by first-line neo-adjuvant chemotherapy combined with methionine restriction. Anticancer Res 42(12): 5819-5823, 2022. DOI: 10.21873/Anticanres.16089
    OpenUrlAbstract/FREE Full Text
    1. Lim HI,
    2. Sun YU,
    3. Han Q,
    4. Yamamoto J,
    5. Hoffman RM
    : Efficacy of oral recombinant methioninase and eribulin on a PDOX model of triple-negative breast cancer (TNBC) liver metastasis. In Vivo 35(5): 2531-2534, 2021. DOI: 10.21873/invivo.12534
    OpenUrlAbstract/FREE Full Text
    1. Higuchi T,
    2. Han Q,
    3. Miyake K,
    4. Oshiro H,
    5. Sugisawa N,
    6. Tan Y,
    7. Yamamoto N,
    8. Hayashi K,
    9. Kimura H,
    10. Miwa S,
    11. Igarashi K,
    12. Bouvet M,
    13. Singh SR,
    14. Tsuchiya H,
    15. Hoffman RM
    : Combination of oral recombinant methioninase and decitabine arrests a chemotherapy-resistant undifferentiated soft-tissue sarcoma patient-derived orthotopic xenograft mouse model. Biochem Biophys Res Commun 523(1): 135-139, 2020. DOI: 10.1016/j.bbrc.2019.12.024
    OpenUrlCrossRefPubMed
    1. Igarashi K,
    2. Kawaguchi K,
    3. Kiyuna T,
    4. Miyake K,
    5. Miyake M,
    6. Li S,
    7. Han Q,
    8. Tan Y,
    9. Zhao M,
    10. Li Y,
    11. Nelson SD,
    12. Dry SM,
    13. Singh AS,
    14. Elliott IA,
    15. Russell TA,
    16. Eckardt MA,
    17. Yamamoto N,
    18. Hayashi K,
    19. Kimura H,
    20. Miwa S,
    21. Tsuchiya H,
    22. Eilber FC,
    23. Hoffman RM
    : Tumor-targeting Salmonella typhimurium A1-R combined with recombinant methioninase and cisplatinum eradicates an osteosarcoma cisplatinum-resistant lung metastasis in a patient-derived orthotopic xenograft (PDOX) mouse model: decoy, trap and kill chemotherapy moves toward the clinic. Cell Cycle 17(6): 801-809, 2018. DOI: 10.1080/15384101.2018.1431596
    OpenUrlCrossRefPubMed
  6. ↵
    1. Igarashi K,
    2. Kawaguchi K,
    3. Li S,
    4. Han Q,
    5. Tan Y,
    6. Murakami T,
    7. Kiyuna T,
    8. Miyake K,
    9. Miyake M,
    10. Singh AS,
    11. Eckardt MA,
    12. Nelson SD,
    13. Russell TA,
    14. Dry SM,
    15. Li Y,
    16. Yamamoto N,
    17. Hayashi K,
    18. Kimura H,
    19. Miwa S,
    20. Tsuchiya H,
    21. Singh SR,
    22. Eilber FC,
    23. Hoffman RM
    : Recombinant methioninase in combination with doxorubicin (DOX) overcomes first-line DOX resistance in a patient-derived orthotopic xenograft nude-mouse model of undifferentiated spindle-cell sarcoma. Cancer Lett 417: 168-173, 2018. DOI: 10.1016/j.canlet.2017.12.028
    OpenUrlCrossRefPubMed
    1. Miyake M,
    2. Miyake K,
    3. Han Q,
    4. Igarashi K,
    5. Kawaguchi K,
    6. Barangi M,
    7. Kiyuna T,
    8. Sugisawa N,
    9. Higuchi T,
    10. Oshiro H,
    11. Zhang Z,
    12. Razmjooei S,
    13. Bouvet M,
    14. Endo I,
    15. Hoffman RM
    : Synergy of oral recombinant methioninase (rMETase) and 5-fluorouracil on poorly differentiated gastric cancer. Biochem Biophys Res Commun 643: 48-54, 2023. DOI: 10.1016/j.bbrc.2022.12.062
    OpenUrlCrossRefPubMed
    1. Kawaguchi K,
    2. Miyake K,
    3. Han Q,
    4. Li S,
    5. Tan Y,
    6. Igarashi K,
    7. Lwin TM,
    8. Higuchi T,
    9. Kiyuna T,
    10. Miyake M,
    11. Oshiro H,
    12. Bouvet M,
    13. Unno M,
    14. Hoffman RM
    : Targeting altered cancer methionine metabolism with recombinant methioninase (rMETase) overcomes partial gemcitabine-resistance and regresses a patient-derived orthotopic xenograft (PDOX) nude mouse model of pancreatic cancer. Cell Cycle 17(7): 868-873, 2018. DOI: 10.1080/15384101.2018.1445907
    OpenUrlCrossRefPubMed
  7. ↵
    1. Kubota Y,
    2. Han Q,
    3. Hozumi C,
    4. Masaki N,
    5. Yamamoto J,
    6. Aoki Y,
    7. Tsunoda T,
    8. Hoffman RM
    : Stage IV pancreatic cancer patient treated with FOLFIRINOX combined with oral methioninase: a highly-rare case with long-term stable disease. Anticancer Res 42(5): 2567-2572, 2022. DOI: 10.21873/anticanres.15734
    OpenUrlAbstract/FREE Full Text
    1. Higuchi T,
    2. Oshiro H,
    3. Miyake K,
    4. Sugisawa N,
    5. Han Q,
    6. Tan Y,
    7. Park J,
    8. Zhang Z,
    9. Razmjooei S,
    10. Yamamoto N,
    11. Hayashi K,
    12. Kimura H,
    13. Miwa S,
    14. Igarashi K,
    15. Bouvet M,
    16. Chawla SP,
    17. Singh SR,
    18. Tsuchiya H,
    19. Hoffman RM
    : Oral recombinant methioninase, combined with oral caffeine and injected cisplatinum, overcome cisplatinum-resistance and regresses patient-derived orthotopic xenograft model of osteosarcoma. Anticancer Res 39(9): 4653-4657, 2019. DOI: 10.21873/anticanres.13646
    OpenUrlAbstract/FREE Full Text
    1. Sugisawa N,
    2. Higuchi T,
    3. Han Q,
    4. Hozumi C,
    5. Yamamoto J,
    6. Tashiro Y,
    7. Nishino H,
    8. Kawaguchi K,
    9. Bouvet M,
    10. Murata T,
    11. Unno M,
    12. Hoffman RM
    : Oral recombinant methioninase combined with paclitaxel arrests recalcitrant ovarian clear cell carcinoma growth in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Cancer Chemother Pharmacol 88(1): 61-67, 2021. DOI: 10.1007/s00280-021-04261-x
    OpenUrlCrossRefPubMed
  8. ↵
    1. Kawaguchi K,
    2. Miyake K,
    3. Han Q,
    4. Li S,
    5. Tan Y,
    6. Igarashi K,
    7. Kiyuna T,
    8. Miyake M,
    9. Higuchi T,
    10. Oshiro H,
    11. Zhang Z,
    12. Razmjooei S,
    13. Wangsiricharoen S,
    14. Bouvet M,
    15. Singh SR,
    16. Unno M,
    17. Hoffman RM
    : Oral recombinant methioninase (o-rMETase) is superior to injectable rMETase and overcomes acquired gemcitabine resistance in pancreatic cancer. Cancer Lett 432: 251-259, 2018. DOI: 10.1016/j.canlet.2018.06.016
    OpenUrlCrossRefPubMed
    1. Oshiro H,
    2. Tome Y,
    3. Kiyuna T,
    4. Yoon SN,
    5. Lwin TM,
    6. Han Q,
    7. Tan Y,
    8. Miyake K,
    9. Higuchi T,
    10. Sugisawa N,
    11. Katsuya Y,
    12. Park JH,
    13. Zang Z,
    14. Razmjooei S,
    15. Bouvet M,
    16. Clary B,
    17. Singh SR,
    18. Kanaya F,
    19. Nishida K,
    20. Hoffman RM
    : Oral recombinant methioninase overcomes colorectal-cancer liver metastasis resistance to the combination of 5-fluorouracil and oxaliplatinum in a patient-derived orthotopic xenograft mouse model. Anticancer Res 39(9): 4667-4671, 2019. DOI: 10.21873/anticanres.13648
    OpenUrlAbstract/FREE Full Text
    1. Strekalova E,
    2. Malin D,
    3. Good DM,
    4. Cryns VL
    : Methionine deprivation induces a targetable vulnerability in triple-negative breast cancer cells by enhancing TRAIL receptor-2 expression. Clin Cancer Res 21(12): 2780-2791, 2015. DOI: 10.1158/1078-0432.CCR-14-2792
    OpenUrlAbstract/FREE Full Text
    1. Igarashi K,
    2. Kawaguchi K,
    3. Kiyuna T,
    4. Miyake K,
    5. Miyaki M,
    6. Yamamoto N,
    7. Hayashi K,
    8. Kimura H,
    9. Miwa S,
    10. Higuchi T,
    11. Singh AS,
    12. Chmielowski B,
    13. Nelson SD,
    14. Russell TA,
    15. Eckardt MA,
    16. Dry SM,
    17. Li Y,
    18. Singh SR,
    19. Chawla SP,
    20. Eilber FC,
    21. Tsuchiya H,
    22. Hoffman RM
    : Metabolic targeting with recombinant methioninase combined with palbociclib regresses a doxorubicin-resistant dedifferentiated liposarcoma. Biochem Biophys Res Commun 506(4): 912-917, 2018. DOI: 10.1016/j.bbrc.2018.10.119
    OpenUrlCrossRefPubMed
  9. ↵
    1. Higuchi T,
    2. Kawaguchi K,
    3. Miyake K,
    4. Han Q,
    5. Tan Y,
    6. Oshiro H,
    7. Sugisawa N,
    8. Zhang Z,
    9. Razmjooei S,
    10. Yamamoto N,
    11. Hayashi K,
    12. Kimura H,
    13. Miwa S,
    14. Igarashi K,
    15. Chawla SP,
    16. Singh AS,
    17. Eilber FC,
    18. Singh SR,
    19. Tsuchiya H,
    20. Hoffman RM
    : Oral recombinant methioninase combined with caffeine and doxorubicin induced regression of a doxorubicin-resistant synovial sarcoma in a PDOX mouse model. Anticancer Res 38(10): 5639-5644, 2018. DOI: 10.21873/anticanres.12899
    OpenUrlAbstract/FREE Full Text
    1. Kim MJ,
    2. Han Q,
    3. Bouvet M,
    4. Hoffman RM,
    5. Park JH
    : Recombinant oral methioninase (o-rMETase) combined with oxaliplatinum plus 5-fluorouracil improves survival of mice with massive colon-cancer peritoneal carcinomatosis. Anticancer Res 43(1): 19-24, 2023. DOI: 10.21873/anticanres.16129
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Igarashi K,
    2. Kawaguchi K,
    3. Li S,
    4. Han Q,
    5. Tan Y,
    6. Gainor E,
    7. Kiyuna T,
    8. Miyake K,
    9. Miyake M,
    10. Higuchi T,
    11. Oshiro H,
    12. Singh AS,
    13. Eckardt MA,
    14. Nelson SD,
    15. Russell TA,
    16. Dry SM,
    17. Li Y,
    18. Yamamoto N,
    19. Hayashi K,
    20. Kimura H,
    21. Miwa S,
    22. Tsuchiya H,
    23. Eilber FC,
    24. Hoffman RM
    : Recombinant methioninase combined with doxorubicin (DOX) regresses a DOX-resistant synovial sarcoma in a patient-derived orthotopic xenograft (PDOX) mouse model. Oncotarget 9(27): 19263-19272, 2018. DOI: 10.18632/oncotarget.24996
    OpenUrlCrossRefPubMed
    1. Tan Y,
    2. Sun X,
    3. Xu M,
    4. Tan X,
    5. Sasson A,
    6. Rashidi B,
    7. Han Q,
    8. Tan X,
    9. Wang X,
    10. An Z,
    11. Sun FX,
    12. Hoffman RM
    : Efficacy of recombinant methioninase in combination with cisplatin on human colon tumors in nude mice. Clin Cancer Res 5: 2157-2163, 1999.
    OpenUrlAbstract/FREE Full Text
    1. Yoshioka T,
    2. Wada T,
    3. Uchida N,
    4. Maki H,
    5. Yoshida H,
    6. Ide N,
    7. Kasai H,
    8. Hojo K,
    9. Shono K,
    10. Maekawa R,
    11. Yagi S,
    12. Hoffman RM,
    13. Sugita K
    : Anticancer efficacy in vivo and in vitro, synergy with 5-fluorouracil, and safety of recombinant methioninase. Cancer Res 58: 2583-7, 1998.
    OpenUrlAbstract/FREE Full Text
    1. Machover D,
    2. Zittoun J,
    3. Broët P,
    4. Metzger G,
    5. Orrico M,
    6. Goldschmidt E,
    7. Schilf A,
    8. Tonetti C,
    9. Tan Y,
    10. Delmas-Marsalet B,
    11. Luccioni C,
    12. Falissard B,
    13. Hoffman RM
    : Cytotoxic synergism of methioninase in combination with 5-fluorouracil and folinic acid. Biochem Pharmacol 61(7): 867-876, 2001. DOI: 10.1016/s0006-2952(01)00560-3
    OpenUrlCrossRefPubMed
  11. ↵
    1. Kokkinakis DM,
    2. Hoffman RM,
    3. Frenkel EP,
    4. Wick JB,
    5. Han Q,
    6. Xu M,
    7. Tan Y,
    8. Schold SC
    : Synergy between methionine stress and chemotherapy in the treatment of brain tumor xenografts in athymic mice. Cancer Res 61: 4017-23, 2001.
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Suetsugu A,
    2. Jiang P,
    3. Yang M,
    4. Yamamoto N,
    5. Moriwaki H,
    6. Saji S,
    7. Hoffman RM
    : The use of living cancer cells expressing green fluorescent protein in the nucleus and red fluorescence protein in the cytoplasm for real-time confocal imaging of chromosome and cytoplasmic dynamics during mitosis. Anticancer Res 35: 2553-7, 2015.
    OpenUrlAbstract/FREE Full Text
    1. Hoffman RM,
    2. Yang M
    : Whole-body imaging with fluorescent proteins. Nat Protoc 1(3): 1429-1438, 2006. DOI: 10.1038/nprot.2006.223
    OpenUrlCrossRefPubMed
    1. Hoffman RM,
    2. Yang M
    : Subcellular imaging in the live mouse. Nat Protoc 1(2): 775-782, 2006. DOI: 10.1038/nprot.2006.109
    OpenUrlCrossRefPubMed
    1. Jiang P,
    2. Yamauchi K,
    3. Yang M,
    4. Tsuji K,
    5. Xu M,
    6. Maitra A,
    7. Bouvet M,
    8. Hoffman RM
    : Tumor cells genetically labeled with GFP in the nucleus and RFP in the cytoplasm for imaging cellular dynamics. Cell Cycle 5(11): 1198-1201, 2006. DOI: 10.4161/cc.5.11.2795
    OpenUrlCrossRefPubMed
    1. Hoffman RM,
    2. Yang M
    : Color-coded fluorescence imaging of tumor-host interactions. Nat Protoc 1(2): 928-935, 2006. DOI: 10.1038/nprot.2006.119
    OpenUrlCrossRefPubMed
  13. ↵
    1. Yamamoto N,
    2. Jiang P,
    3. Yang M,
    4. Xu M,
    5. Yamauchi K,
    6. Tsuchiya H,
    7. Tomita K,
    8. Wahl GM,
    9. Moossa AR,
    10. Hoffman RM
    : Cellular dynamics visualized in live cells in vitro and in vivo by differential dual-color nuclear-cytoplasmic fluorescent-protein expression. Cancer Res 64(12): 4251-4256, 2004. DOI: 10.1158/0008-5472.CAN-04-0643
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Tan Y,
    2. Xu M,
    3. Tan X,
    4. Tan X,
    5. Wang X,
    6. Saikawa Y,
    7. Nagahama T,
    8. Sun X,
    9. Lenz M,
    10. Hoffman RM
    : Overexpression and large-scale production of recombinantl-methionine-α-deamino-γ-mercaptomethane-lyase for novel anticancer therapy. Protein Expr Purif 9(2): 233-245, 1997. DOI: 10.1006/prep.1996.0700
    OpenUrlCrossRefPubMed
  15. ↵
    1. Kanda Y
    : Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48(3): 452-458, 2013. DOI: 10.1038/bmt.2012.244
    OpenUrlCrossRefPubMed
  16. ↵
    1. Morinaga S,
    2. Han Q,
    3. Kubota Y,
    4. Mizuta K,
    5. Kang BM,
    6. Sato M,
    7. Bouvet M,
    8. Yamamoto N,
    9. Hayashi K,
    10. Kimura H,
    11. Miwa S,
    12. Igarashi K,
    13. Higuchi T,
    14. Tsuchiya H,
    15. Hoffman RM
    : Extensive synergy between recombinant methioninase and eribulin against fibrosarcoma cells but not normal fibroblasts. Anticancer Res 44(3): 921-928, 2024. DOI: 10.21873/anticanres.16886
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Morinaga S,
    2. Han Q,
    3. Kubota Y,
    4. Mizuta K,
    5. Kang BM,
    6. Sato M,
    7. Bouvet M,
    8. Yamamoto N,
    9. Hayashi K,
    10. Kimura H,
    11. Miwa S,
    12. Igarashi K,
    13. Higuchi T,
    14. Tsuchiya H,
    15. Demura S,
    16. Hoffman RM
    : DNA-binding agent trabectedin combined with recombinant methioninase is synergistic to decrease fibrosarcoma cell viability and induce nuclear fragmentation but not synergistic on normal fibroblasts. Anticancer Res 44(6): 2359-2367, 2024. DOI: 10.21873/anticanres.17043
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Judson I,
    2. Verweij J,
    3. Gelderblom H,
    4. Hartmann JT,
    5. Schöffski P,
    6. Blay JY,
    7. Kerst JM,
    8. Sufliarsky J,
    9. Whelan J,
    10. Hohenberger P,
    11. Krarup-Hansen A,
    12. Alcindor T,
    13. Marreaud S,
    14. Litière S,
    15. Hermans C,
    16. Fisher C,
    17. Hogendoorn PC,
    18. dei Tos AP,
    19. van der Graaf WT, European Organisation and Treatment of Cancer Soft Tissue and Bone Sarcoma Group
    : Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled phase 3 trial. Lancet Oncol 15(4): 415-423, 2014. DOI: 10.1016/S1470-2045(14)70063-4
    OpenUrlCrossRefPubMed
  19. ↵
    1. Hoffman RM
    : Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: a 40-year odyssey. Expert Opin Biol Ther 15(1): 21-31, 2015. DOI: 10.1517/14712598.2015.963050
    OpenUrlCrossRefPubMed
  20. ↵
    1. Hoffman RM,
    2. Erbe RW
    : High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci USA 73(5): 1523-1527, 1976. DOI: 10.1073/pnas.73.5.1523
    OpenUrlAbstract/FREE Full Text
    1. Bin P,
    2. Wang C,
    3. Zhang H,
    4. Yan Y,
    5. Ren W
    : Targeting methionine metabolism in cancer: opportunities and challenges. Trends Pharmacol Sci 45(5): 395-405, 2024. DOI: 10.1016/j.tips.2024.03.002
    OpenUrlCrossRef
  21. ↵
    1. Wang Z,
    2. Yip LY,
    3. Lee JHJ,
    4. Wu Z,
    5. Chew HY,
    6. Chong PKW,
    7. Teo CC,
    8. Ang HY,
    9. Peh KLE,
    10. Yuan J,
    11. Ma S,
    12. Choo LSK,
    13. Basri N,
    14. Jiang X,
    15. Yu Q,
    16. Hillmer AM,
    17. Lim WT,
    18. Lim TKH,
    19. Takano A,
    20. Tan EH,
    21. Tan DSW,
    22. Ho YS,
    23. Lim B,
    24. Tam WL
    : Methionine is a metabolic dependency of tumor-initiating cells. Nat Med 25(5): 825-837, 2019. DOI: 10.1038/s41591-019-0423-5
    OpenUrlCrossRefPubMed
    1. Kaiser P
    : Methionine dependence of cancer. Biomolecules 10(4): 568, 2020. DOI: 10.3390/biom10040568
    OpenUrlCrossRefPubMed
  22. ↵
    1. Han Q,
    2. Tan Y,
    3. Hoffman RM
    : Oral dosing of recombinant methioninase is associated with a 70% drop in PSA in a patient with bone-metastatic prostate cancer and 50% reduction in circulating methionine in a high-stage ovarian cancer patient. Anticancer Res 40(5): 2813-2819, 2020. DOI: 10.21873/anticanres.14254
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Hoffman RM,
    2. Jacobsen SJ
    : Reversible growth arrest in simian virus 40-transformed human fibroblasts. Proc Natl Acad Sci USA 77(12): 7306-7310, 1980. DOI: 10.1073/pnas.77.12.7306
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Yano S,
    2. Li S,
    3. Han Q,
    4. Tan Y,
    5. Bouvet M,
    6. Fujiwara T,
    7. Hoffman RM
    : Selective methioninase-induced trap of cancer cells in S/G2 phase visualized by FUCCI imaging confers chemosensitivity. Oncotarget 5(18): 8729-8736, 2014. DOI: 10.18632/oncotarget.2369
    OpenUrlCrossRefPubMed
  25. ↵
    1. Kubota Y,
    2. Han Q,
    3. Aoki Y,
    4. Masaki N,
    5. Obara K,
    6. Hamada K,
    7. Hozumi C,
    8. Wong ACW,
    9. Bouvet M,
    10. Tsunoda T,
    11. Hoffman RM
    : Synergy of combining methionine restriction and chemotherapy: the disruptive next generation of cancer treatment. Cancer Diagn Progn 3(3): 272-281, 2023. DOI: 10.21873/cdp.10212
    OpenUrlCrossRefPubMed
  26. ↵
    1. Miki K,
    2. Xu M,
    3. An Z,
    4. Wang X,
    5. Yang M,
    6. Al-Refaie W,
    7. Sun X,
    8. Baranov E,
    9. Tan Y,
    10. Chishima T,
    11. Shimada H,
    12. Moossa AR,
    13. Hoffman RM
    : Survival efficacy of the combination of the methioninase gene and methioninase in a lung cancer orthotopic model. Cancer Gene Ther 7(2): 332-338, 2000. DOI: 10.1038/sj.cgt.7700103
    OpenUrlCrossRefPubMed
  27. ↵
    1. Yamamoto J,
    2. Han Q,
    3. Inubushi S,
    4. Sugisawa N,
    5. Hamada K,
    6. Nishino H,
    7. Miyake K,
    8. Kumamoto T,
    9. Matsuyama R,
    10. Bouvet M,
    11. Endo I,
    12. Hoffman RM
    : Histone methylation status of H3K4me3 and H3K9me3 under methionine restriction is unstable in methionine-addicted cancer cells, but stable in normal cells. Biochem Biophys Res Commun 533(4): 1034-1038, 2020. DOI: 10.1016/j.bbrc.2020.09.108
    OpenUrlCrossRefPubMed
  28. ↵
    1. Coalson DW,
    2. Mecham JO,
    3. Stern PH,
    4. Hoffman RM
    : Reduced availability of endogenously synthesized methionine for S-adenosylmethionine formation in methionine-dependent cancer cells. Proc Natl Acad Sci USA 79(14): 4248-4251, 1982. DOI: 10.1073/pnas.79.14.4248
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Stern PH,
    2. Mecham JO,
    3. Wallace CD,
    4. Hoffman RM
    : Reduced free-methionine in methionine-dependent SV40-transformed human fibroblasts synthesizing apparently normal amounts of methionine. J Cell Physiol 117(1): 9-14, 1983. DOI: 10.1002/jcp.1041170103
    OpenUrlCrossRefPubMed
  30. ↵
    1. Stern PH,
    2. Hoffman RM
    : Elevated overall rates of transmethylation in cell lines from diverse human tumors. In Vitro 20(8): 663-670, 1984. DOI: 10.1007/BF02619617
    OpenUrlCrossRefPubMed
    1. Aoki Y,
    2. Han Q,
    3. Tome Y,
    4. Yamamoto J,
    5. Kubota Y,
    6. Masaki N,
    7. Obara K,
    8. Hamada K,
    9. Wang JD,
    10. Inubushi S,
    11. Bouvet M,
    12. Clarke SG,
    13. Nishida K,
    14. Hoffman RM
    : Reversion of methionine addiction of osteosarcoma cells to methionine independence results in loss of malignancy, modulation of the epithelial-mesenchymal phenotype and alteration of histone-H3 lysine-methylation. Front Oncol 12: 1009548, 2022. DOI: 10.3389/fonc.2022.1009548
    OpenUrlCrossRefPubMed
  31. ↵
    1. Yamamoto J,
    2. Inubushi S,
    3. Han Q,
    4. Tashiro Y,
    5. Sugisawa N,
    6. Hamada K,
    7. Aoki Y,
    8. Miyake K,
    9. Matsuyama R,
    10. Bouvet M,
    11. Clarke SG,
    12. Endo I,
    13. Hoffman RM
    : Linkage of methionine addiction, histone lysine hypermethylation, and malignancy. iScience 25(4): 104162, 2022. DOI: 10.1016/j.isci.2022.104162
    OpenUrlCrossRefPubMed
    1. Aoki Y,
    2. Tome Y,
    3. Han Q,
    4. Yamamoto J,
    5. Hamada K,
    6. Masaki N,
    7. Kubota Y,
    8. Bouvet M,
    9. Nishida K,
    10. Hoffman RM
    : Deletion of MTAP highly sensitizes osteosarcoma cells to methionine restriction with recombinant methioninase. Cancer Genomics Proteomics 19(3): 299-304, 2022. DOI: 10.21873/cgp.20321
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. Yamamoto J,
    2. Aoki Y,
    3. Inubushi S,
    4. Han Q,
    5. Hamada K,
    6. Tashiro Y,
    7. Miyake K,
    8. Matsuyama R,
    9. Bouvet M,
    10. Clarke SG,
    11. Endo I,
    12. Hoffman RM
    : Extent and instability of trimethylation of histone H3 lysine increases with degree of malignancy and methionine addiction. Cancer Genomics Proteomics 19(1): 12-18, 2022. DOI: 10.21873/cgp.20299
    OpenUrlAbstract/FREE Full Text
    1. Aoki Y,
    2. Tome Y,
    3. Han Q,
    4. Yamamoto J,
    5. Hamada K,
    6. Masaki N,
    7. Bouvet M,
    8. Nishida K,
    9. Hoffman RM
    : Histone H3 lysine-trimethylation markers are decreased by recombinant methioninase and increased by methotrexate at concentrations which inhibit methionine-addicted osteosarcoma cell proliferation. Biochem Biophys Rep 28: 101177, 2021. DOI: 10.1016/j.bbrep.2021.101177
    OpenUrlCrossRefPubMed
    1. Aoki Y,
    2. Yamamoto J,
    3. Tome Y,
    4. Hamada K,
    5. Masaki N,
    6. Inubushi S,
    7. Tashiro Y,
    8. Bouvet M,
    9. Endo I,
    10. Nishida K,
    11. Hoffman RM
    : Overmethylation of histone H3 lysines is a common molecular change among the three major types of soft-tissue sarcoma in patient-derived xenograft (PDX) mouse models. Cancer Genomics Proteomics 18(6): 715-721, 2021. DOI: 10.21873/cgp.20292
    OpenUrlAbstract/FREE Full Text
    1. Hoffman RM,
    2. Jacobsen SJ,
    3. Erbe RW
    : Reversion to methionine independence in simian virus 40-transformed human and malignant rat fibroblasts is associated with altered ploidy and altered properties of transformation. Proc Natl Acad Sci USA 76(3): 1313-1317, 1979. DOI: 10.1073/pnas.76.3.1313
    OpenUrlAbstract/FREE Full Text
    1. Hoffman RM,
    2. Jacobsen SJ,
    3. Erbe RW
    : Reversion to methionine independence by malignant rat and SV40-transformed human fibroblasts. Biochem Biophys Res Commun 82(1): 228-234, 1978. DOI: 10.1016/0006-291x(78)90600-9
    OpenUrlCrossRefPubMed
    1. Yamamoto J,
    2. Aoki Y,
    3. Han Q,
    4. Sugisawa N,
    5. Sun Y,
    6. Hamada K,
    7. Nishino H,
    8. Inubushi S,
    9. Miyake K,
    10. Matsuyama R,
    11. Bouvet M,
    12. Endo I,
    13. Hoffman RM
    : Reversion from methionine addiction to methionine independence results in loss of tumorigenic potential of highly-malignant lung-cancer cells. Anticancer Res 41(2): 641-643, 2021. DOI: 10.21873/anticanres.14815
    OpenUrlAbstract/FREE Full Text
    1. Hoffman RM
    : Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis. Biochim Biophys Acta 738: 49-87, 1984. DOI: 10.1016/0304-419x(84)90019-2
    OpenUrlCrossRefPubMed
    1. Abo Qoura L,
    2. Balakin KV,
    3. Hoffman RM,
    4. Pokrovsky VS
    : The potential of methioninase for cancer treatment. Biochim Biophys Acta Rev Cancer 1879(4): 189122, 2024. DOI: 10.1016/j.bbcan.2024.189122
    OpenUrlCrossRef
    1. Ardjmand D,
    2. Kubota Y,
    3. Sato M,
    4. Han Q,
    5. Mizuta K,
    6. Morinaga S,
    7. Hoffman RM
    : Selective synergy of rapamycin combined with methioninase on cancer cells compared to normal cells. Anticancer Res 44(3): 929-933, 2024. DOI: 10.21873/anticanres.16887
    OpenUrlAbstract/FREE Full Text
    1. Sato M,
    2. Mizuta K,
    3. Han Q,
    4. Morinaga S,
    5. Kang BM,
    6. Kubota Y,
    7. Mori R,
    8. Baranov A,
    9. Kobayashi K,
    10. Ardjmand D,
    11. Kobayashi N,
    12. Bouvet M,
    13. Ichikawa Y,
    14. Nakajima A,
    15. Hoffman RM
    : Targeting methionine addiction combined with low-dose irinotecan arrested colon cancer in contrast to cigh-dose irinotecan alone, which was ineffective, in a nude-mouse model. In Vivo 38(3): 1058-1063, 2024. DOI: 10.21873/invivo.13539
    OpenUrlAbstract/FREE Full Text
    1. Kubota Y,
    2. Aoki Y,
    3. Masaki N,
    4. Obara K,
    5. Hamada K,
    6. Han Q,
    7. Bouvet M,
    8. Tsunoda T,
    9. Hoffman RM
    : Methionine restriction of glioma does not induce MGMT and greatly improves temozolomide efficacy in an orthotopic nude-mouse model: A potential curable approach to a clinically-incurable disease. Biochem Biophys Res Commun 695: 149418, 2024. DOI: 10.1016/j.bbrc.2023.149418
    OpenUrlCrossRefPubMed
    1. Sato M,
    2. Han Q,
    3. Kubota Y,
    4. Baranov A,
    5. Ardjmand D,
    6. Mizuta K,
    7. Morinaga S,
    8. Kang BM,
    9. Kobayashi N,
    10. Bouvet M,
    11. Ichikawa Y,
    12. Nakajima A,
    13. Hoffman RM
    : Recombinant methioninase decreased the effective dose of irinotecan by 15-fold against colon cancer cells: a strategy for effective low-toxicity treatment of colon cancer. Anticancer Res 44(1): 31-35, 2024. DOI: 10.21873/anticanres.16785
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Choobin BB,
    2. Kubota Y,
    3. Han Q,
    4. Ardjmand D,
    5. Morinaga S,
    6. Mizuta K,
    7. Bouvet M,
    8. Tsunoda T,
    9. Hoffman RM
    . Recombinant methioninase lowers the effective dose of regorafenib against colon-cancer cells: A strategy for widespread clinical use of a toxic drug. Cancer Diagn Progn 3(6): 655-659, 2023. DOI: 10.21873/cdp.10268
    OpenUrlCrossRefPubMed
  34. ↵
    1. Sato M,
    2. Han Q,
    3. Mizuta K,
    4. Mori R,
    5. Kang BM,
    6. Morinaga S,
    7. Kobayashi N,
    8. Ichikawa Y,
    9. Nakajima A,
    10. Hoffman RM
    : Extensive Shrinkage and Long-term Stable Disease in a Teenage Female Patient With High-grade Glioma Treated With Temozolomide and Radiation in Combination With Oral Recombinant Methioninase and a Low-methionine Diet. In Vivo 38(3): 1459-1464, 2024. DOI: 10.21873/invivo.13591
    OpenUrlAbstract/FREE Full Text
    1. Sato M,
    2. Han Q,
    3. Mori R,
    4. Mizuta K,
    5. Kang BM,
    6. Morinaga S,
    7. Kobayashi N,
    8. Ichikawa Y,
    9. Nakajima A,
    10. Hoffman RM
    : Reduction of Tumor Biomarkers from very High to Normal and Extensive Metastatic Lesions to Undetectability in a Patient With Stage IV HER2-positive Breast Cancer Treated With Low-dose Trastuzumab Deruxtecan in Combination With Oral Recombinant Methioninase and a Low-methionine Diet. Anticancer Res 44(4): 1499-1504, 2024. DOI: 10.21873/anticanres.16946
    OpenUrlAbstract/FREE Full Text
    1. Kubota Y,
    2. Han Q,
    3. Morinaga S,
    4. Tsunoda T,
    5. Hoffman RM
    : Rapid reduction of CEA and stable metastasis in an NRAS-mutant rectal-cancer patient treated with FOLFIRI and bevacizumab combined with oral recombinant methioninase and a low-methionine diet upon metastatic recurrence after FOLFIRI and bevacizumab treatment alone. In Vivo 37(5): 2134-2138, 2023. DOI: 10.21873/invivo.13310
    OpenUrlAbstract/FREE Full Text
    1. Kubota Y,
    2. Sasaki M,
    3. Han Q,
    4. Hozumi C,
    5. Tsunoda T,
    6. Hoffman RM
    : Efficacy of recombinant methioninase on late-stage patient cancer in the histoculture drug response assay (HDRA) as a potential functional biomarker of sensitivity to methionine-restriction therapy in the clinic. Cancer Diagn Progn 4(3): 239-243, 2024. DOI: 10.21873/cdp.10314
    OpenUrlCrossRefPubMed
  35. ↵
    1. Kubota Y,
    2. Sato T,
    3. Han Q,
    4. Hozumi C,
    5. Morinaga S,
    6. Mizuta K,
    7. Tsunoda T,
    8. Hoffman RM
    : [11C] Methionine-PET imaging as a cancer biomarker for methionine addiction and sensitivity to methionine-restriction-based combination chemotherapy. In Vivo 38(1): 253-258, 2024. DOI: 10.21873/invivo.13432
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Hoffman RM,
    2. Coalson DW,
    3. Jacobsen SJ,
    4. Erbe RW
    : Folate polyglutamate and monoglutamate accumulation in normal and SV40-transformed human fibroblasts. J Cell Physiol 109(3): 497-505, 1981. DOI: 10.1002/jcp.1041090316
    OpenUrlCrossRefPubMed
  37. ↵
    1. Jacobsen SJ,
    2. Hoffman RM,
    3. Erbe RW
    : Regulation of methionine adenosyltransferase in normal diploid and simian virus 40-transformed human fibroblasts. J Natl Cancer Inst 65(6): 1237-44, 1980.
    OpenUrlPubMed
  38. ↵
    1. Ghergurovich JM,
    2. Xu X,
    3. Wang JZ,
    4. Yang L,
    5. Ryseck RP,
    6. Wang L,
    7. Rabinowitz JD
    : Methionine synthase supports tumour tetrahydrofolate pools. Nat Metab 3(11): 1512-1520, 2021. DOI: 10.1038/s42255-021-00465-w
    OpenUrlCrossRefPubMed
    1. Sullivan MR,
    2. Darnell AM,
    3. Reilly MF,
    4. Kunchok T,
    5. Joesch-Cohen L,
    6. Rosenberg D,
    7. Ali A,
    8. Rees MG,
    9. Roth JA,
    10. Lewis CA,
    11. Vander Heiden MG
    : Methionine synthase is essential for cancer cell proliferation in physiological folate environments. Nat Metab 3(11): 1500-1511, 2021. DOI: 10.1038/s42255-021-00486-5
    OpenUrlCrossRef
  39. ↵
    1. Guo R,
    2. Liang JH,
    3. Zhang Y,
    4. Lutchenkov M,
    5. Li Z,
    6. Wang Y,
    7. Trujillo-Alonso V,
    8. Puri R,
    9. Giulino-Roth L,
    10. Gewurz BE
    : Methionine metabolism controls the B cell EBV epigenome and viral latency. Cell Metab 34(9): 1280-1297.e9, 2022. DOI: 10.1016/j.cmet.2022.08.008
    OpenUrlCrossRefPubMed
  40. ↵
    1. Mecham JO,
    2. Rowitch D,
    3. Wallace C,
    4. Stern PH,
    5. Hoffman RM
    : The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochem Biophys Res Commun 117(2): 429-434, 1983. DOI: 10.1016/0006-291x(83)91218-4
    OpenUrlCrossRefPubMed
    1. Stern PH,
    2. Wallace CD,
    3. Hoffman RM
    : Altered methionine metabolism occurs in all members of a set of diverse human tumor cell lines. J Cell Physiol 119(1): 29-34, 1984. DOI: 10.1002/jcp.1041190106
    OpenUrlCrossRefPubMed
  41. ↵
    1. Tan Y,
    2. Xu M,
    3. Hoffman RM
    : Broad selective efficacy of recombinant methioninase and polyethylene glycol-modified recombinant methioninase on cancer cells In Vitro. Anticancer Res 30(4): 1041-6, 2010
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

Anticancer Research: 44 (8)
Anticancer Research
Vol. 44, Issue 8
August 2024
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Ed Board (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Anticancer Research.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Recombinant Methioninase Is Selectively Synergistic With Doxorubicin Against Wild-type Fibrosarcoma Cells Compared to Normal Cells and Overcomes Highly-Doxorubicin-resistant Fibrosarcoma
(Your Name) has sent you a message from Anticancer Research
(Your Name) thought you would like to see the Anticancer Research web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
8 + 3 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Recombinant Methioninase Is Selectively Synergistic With Doxorubicin Against Wild-type Fibrosarcoma Cells Compared to Normal Cells and Overcomes Highly-Doxorubicin-resistant Fibrosarcoma
SEI MORINAGA, QINGHONG HAN, KOHEI MIZUTA, BYUNG MO KANG, MOTOKAZU SATO, MICHAEL BOUVET, NORIO YAMAMOTO, KATSUHIRO HAYASHI, HIROAKI KIMURA, SHINJI MIWA, KENTARO IGARASHI, TAKASHI HIGUCHI, HIROYUKI TSUCHIYA, SATORU DEMURA, ROBERT M. HOFFMAN
Anticancer Research Aug 2024, 44 (8) 3261-3268; DOI: 10.21873/anticanres.17144

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Reprints and Permissions
Share
Recombinant Methioninase Is Selectively Synergistic With Doxorubicin Against Wild-type Fibrosarcoma Cells Compared to Normal Cells and Overcomes Highly-Doxorubicin-resistant Fibrosarcoma
SEI MORINAGA, QINGHONG HAN, KOHEI MIZUTA, BYUNG MO KANG, MOTOKAZU SATO, MICHAEL BOUVET, NORIO YAMAMOTO, KATSUHIRO HAYASHI, HIROAKI KIMURA, SHINJI MIWA, KENTARO IGARASHI, TAKASHI HIGUCHI, HIROYUKI TSUCHIYA, SATORU DEMURA, ROBERT M. HOFFMAN
Anticancer Research Aug 2024, 44 (8) 3261-3268; DOI: 10.21873/anticanres.17144
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Human fibrosarcoma cells selected for very-high doxorubicin resistance, acquire trabectedin and eribulin cross-resistance, remain sensitive to recombinant methioninase, and have increased c-MYC expression
  • HT1080 Human Fibrosarcoma Cells Selected for Super-eribulin Resistance In Vitro Become More Malignant and Are Arrested Synergistically by Methionine Restriction in Combination With Eribulin in Nude Mice
  • Synergistic Eradication of Fibrosarcoma With Acquired Ifosfamide Resistance Using Methionine Restriction Combined With Ifosfamide in Nude-mouse Models
  • Ivermectin Combined With Recombinant Methioninase (rMETase) Synergistically Eradicates MiaPaCa-2 Pancreatic Cancer Cells
  • Selective Synergy of Recombinant Methioninase Plus Docetaxel Against Docetaxel-resistant and -sensitive Fibrosarcoma Cells Compared to Normal Fibroblasts
  • Recombinant Methioninase Synergistically Reverses High-docetaxel Resistance Developed in Osteosarcoma Cells
  • Recombinant Methioninase Increases Eribulin Efficacy 16-fold in Highly Eribulin-resistant HT1080 Fibrosarcoma Cells, Demonstrating Potential to Overcome the Clinical Challenge of Drug-resistant Soft-tissue Sarcoma
  • Overcoming High Trabectedin Resistance of Soft-tissue Sarcoma With Recombinant Methioninase: A Potential Solution of a Recalcitrant Clinical Problem
  • Google Scholar

More in this TOC Section

  • Enhanced DNA Double-strand Break Induction by Carbon Ions Under Intratumoral Hypoxia
  • C-myc Oncogene Numerical Imbalances Analysis in Laryngeal Squamous Cell Carcinoma
  • Association of Interleukin-12A Genotypes With Nasopharyngeal Carcinoma Risk
Show more Experimental Studies

Similar Articles

Keywords

  • Methioninase
  • Doxorubicin
  • synergy
  • fibrosarcoma
  • normal fibroblast
  • methionine addiction
  • Hoffman effect
  • methionine restriction
Anticancer Research

© 2025 Anticancer Research

Powered by HighWire